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Abstract

Elementary flux mode (EM) analysis is an important tool in the constraint-based analysis
of genome-scale metabolic networks. Due to the combinatorial complexity of these networks,
as well as the advances in the level of detail to which they can be reconstructed, an exhaustive
enumeration of all EMs is often not practical. Therefore, in recent years interest has shifted
towards searching EMs with specific properties.

We present a novel method that allows computing EMs containing a given set of target
reactions. This generalizes previous algorithms where the set of target reactions consists of
a single reaction. In the one-reaction case, our method compares favorably to the previous
approaches. In addition, we present several applications of our algorithm for computing
EMs containing two target reactions in genome-scale metabolic networks.

A software tool to demonstrate the algorithms described in this paper is available at
https://sourceforge.net/projects/caefm.

Contact: Laszlo.David@fu-berlin.de, |Alexander.Bockmayr@fu-berlin.de

1 Introduction

Elementary (flux) modes (EMs) (Schuster and Hilgetag), [1994; Schuster et al. {1999, 2000}, [2002;
Papin et al.l 2004) are an important concept for the structural analysis of metabolic networks,
with many practical applications (see e.g. (Zanghellini et al., [2013) and references therein).
As a consequence, the development of methods for the computation of EMs has become an
active research area over the past years (Gagneur and Klamt, [2004; von Kamp and Schuster,
2006; [Terzer and Stelling, 2008; Terzer}, |2009; [de Figueiredo et al., 2009; Rezola et al., 2011
2013)). The computational complexity of enumerating all EMs is not known (Acuna et al., 2009).
However, there exist several algorithms and software packages for an exhaustive enumeration
in a given metabolic network (Gagneur and Klamt}, 2004; Terzer and Stelling, [2008; von Kamp
and Schuster, 2006; Terzer, 2009). While these methods work very well for small networks,
due to the possibly exponential number of EMs, they may fail for medium or large genome-
scale networks. With the ever increasing size of genome-scale metabolic network reconstructions,
EM analysis nowadays can often be used only under additional assumptions (e.g., modifying the
system boundary of the network, blocking a large number of uptake reactions etc.). These extra
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assumptions may have the bad side effect of changing the structure of the network, sometimes
introducing artificial pathways (Marashi et al.l 2012).

One way to deal with genome-scale networks is to define a subset of interest R; of the
full reaction set R, without altering the network topology. [Kaleta et al. (2009)) look for sets
of reactions in Rj, called flux patterns, which indicate the existence of an EM having those
reactions in its support. They enumerate a basis for this set, the elementary flux patterns.
Urbanczik and Wagner| (2005) and Marashi et al. (2012)) project the steady-state flux cone onto
the subspace defined by R, and enumerate the partial EMs for this subspace.

Given the difficulty of computing and analyzing the full set of all EMs, recent research has
focused on finding a special subset of EMs ((de Figueiredo et al,[2009; Rezola et al., 2011, 2013).
de Figueiredo et al|(2009)) describe a mixed-integer programming method to enumerate the k
shortest EMs (k > 1). Their method has been extended to find shortest EMs involving one
reaction of choice and also to enumerate a minimal generating set of EMs (Rezola et al., 2011).
In the last paper, the authors note that their method cannot be applied to find elementary
modes involving two predefined reactions.

The problem of finding an EM involving two or more given reactions was also considered
by |Acuna et al.| (2009). They give a more general formulation, in that they not only want their
EM to involve a certain set of target reactions 7' C R (with |T'| = ¢t > 0), but also to avoid
another set of reactions F' C R (with F NT = ). In other words, the goal is to find an EM e,
with e; # 0 for ¢ € T and ¢; = 0 for ¢ € F. The authors show that defining a set of reactions
F to be avoided does not add to the difficulty of the problem, and in fact reactions belonging
to F' can simply be removed from the network. Acuna et al| (2010) study the complexity and
prove that the decision problem, whether an EM involving two or more target reactions exists,
is not solvable in polynomial time, unless P = NP.

To the best of our knowledge, no algorithm for this problem has been published so far. Here,
we develop a mixed-integer programming approach for the more general problem of computing k
elementary modes (k > 1) involving a given set of target reactions 7', for |T'| > 2. Computational
experiments show that the method can be applied even to large genome-scale networks.

2 Preliminaries

We consider a metabolic network N with a set of metabolites M and a set of reactions R.
Formally, the network N is defined as N = (M, R, S, Irr), with a stoichiometric matrix S €
RMXR, and a set of irreversible reactions Irr C R. For I C M and J C R, we denote by
Sty the submatrix of S defined by the rows from I and the columns from J. Any subset of
reactions R' C R defines a metabolic subnetwork N' = (M, R’, S’ Irr’), with S" = Sy =
Svr € RMR and Irr’ = IrrN'R.

The stoichiometric constraints Sv = 0 (mass balance) and the thermodynamic constraints
Ve > 0 define the steady-state flur cone C = {v € R® | Sv = 0,vr > 0}. Any vector
v € C\{0} is called a flur mode. The support of v is the set supp(v) = {j € R | vj # 0} of
active reactions in v. A reaction that is not active in any flux mode v € C' is called blocked. A
flux mode v € C'\ {0} with minimal support (with respect to C) is called an elementary mode
(EM). The goal of this paper is to study the following problem (Z):

Given a metabolic network N = (M, R, S, Irr), a set of target reactions T C R and
k > 1, compute a set E of EMs in N, |E| = k, such that supp(e) D T, for all e € E.

Flux coupling analysis (Burgard et al., [2004) defines four binary relations for pairs of un-
blocked reactions i, j € R. We say that i is directionally coupled to j and write i — j, if v; # 0
implies v; # 0, for all v € C. The reactions ¢ and j are partially coupled if both ¢ — j and



j — i hold. Two partially coupled reactions i and j are fully coupled if there is A # 0 such that
v; = Avj, for all v € C. If neither i — j nor j — ¢, then the reactions 7 and j are uncoupled.
Following (Marashi and Bockmayr} 2011), we call two uncoupled reactions i and j mutually
exclusive if they are never active together in the same EM, otherwise they are called sometimes
coupled.

For the rest of this paper, we assume that all reactions are irreversible, i.e., Irr = R, and
that none of the reactions is blocked. These assumptions do not limit the applicability of our
methods. Reversible reactions can be split into a forward and backward reaction. In general,
this operation may induce a number of artificial EMs in the form of two-cycles. However, these
two-cycles do not make problem (£?) more difficult to solve. In fact, the only case where such
two-cycles satisfy the conditions of problem (42) is for |T| = 1. In this case, there is exactly one
artificial EM that needs to be filtered out from the final solution set. For |T'| > 1 no pairs of
split reactions will be part of the same EM. All blocked reactions can be identified in polynomial
time, by solving a linear number of linear programs. Afterwards, they can be removed from the
network without altering the underlying flux cone.

3 Methods

In the following, we divide the general problem (&) into three subproblems and discuss them
individually: the one-reaction case, the two-reaction case and the general ¢t-reaction case (where
t = |T| > 2). The underlying details vary in each case, but there is a general concept followed
by all three methods. In every case, we aim to incrementally find an alternating sequence N1,
el, N2, €%, ..., N¥ €* of subnetworks and EMs of the input network N with the following
properties for all i € {1,...,k}:

1. The target reactions 71, ..., r; are part of every subnetwork N°.

2. In every subnetwork N?, reaction r; is directionally coupled to the reactions ra, ..., 7.
3. No subnetwork N? has as flux mode any of the EMs e for [ < i.

4. €' is an EM in N* involving 7.

Clearly, the main difficulty in finding such a sequence of subnetworks is in imposing condition
(2). In turn, once a new subnetwork N* = (M, R, S%) has been found, a corresponding EM e
can be computed by solving the linear program LP(N?) (Acuiia et al., 2009).

LP(N?): min 0

st. Sv = 0,
Ury > 17
v; > 0, VjeR.

Using a simplex-based method, we can compute a basic feasible solution e’ of LP(N?), which
corresponds to a vertex of the truncated flux cone of N’ and thus defines an EM in N*. Due to
the conservation property of EMs (see e.g. Lemma 1 in (Marashi and Bockmayr, 2011))), € is
also an EM in N. The set E' := {e', ..., €'}, i > 1, contains EMs of the original network N that
involve every target reaction. Terminating the search after k& EMs have been found provides a
solution to problem <.



3.1 The one-reaction problem

If the set of target reactions consists of only one reaction, condition (2) is trivially satisfied for
every subnetwork satisfying condition (1). Assuming N, e!, N2, ¢2, ... N’ ¢! have already
been computed, we can determine a new subnetwork N‘*! by solving the following mixed-integer
linear program (MILP1).

MILP1(EY) : min 0

st. Sv = 0,
o 21,
a < v < May, Vi e R,
Dtesupp(eny @ < [supp(e")| =1, Vu € [1..d],
v = 0, Vi e R,
a € {0,1}, vieR.

The constraints in (MILP1) are the same as for the computation of the so-called shortest
EMs in (de Figueiredo et al. 2009). There are two groups of variables: v represents the
steady-state flux values of the reactions, while the 0-1 vector a models the support of v (i.e.,
vy > 0 < a; = 1). The variables v; and a; are linked by the 3rd constraint, using a suitably large
constant M > 0. An important difference to (de Figueiredo et al.l, 2009) is the objective function
(see also Sect. . We do not try to find the smallest set of reactions satisfying the constraints
of (MILP1). Instead computing any feasible solution is sufficient. This turns out to be enough
to derive a subnetwork that satisfies conditions (1-3). Indeed, given a feasible solution (v/,a’)
of (MILP1), define N**! by R := {I € R | aj = 1}. This subnetwork N**! clearly satisfies
conditions (1) and (2), while the 4th constraint in (MILP1), the so-called no-good constraints,
guarantees condition (3). By solving LP(N**1) we obtain an EM e**1.

Table |1} summarizes the method for the one-reaction case. The two conditional exit points
of the algorithm are Step 2 and 6. If the algorithm terminates at Step 2, Prop. [1] assures all
EMs will be found. In contrast, if the exit occurs at Step 6, we enumerate k EMs.

Step  Action

0. Initialize 7 := 1, F := 0.

1. Try to find a feasible solution (v’,a’) of
MILP1(E).

2. If MILP1(E) is infeasible, then STOP.

3. Otherwise, use (v',a’) to derive subnet-
work N,

4. Find a basic feasible solution e’ of LP(N?).

5. Let E:=FU{e'} and i :=i + 1.

6. If ¢ > k then STOP.

7. Go to Step 1.

Table 1: Algorithm 1 for the one-reaction case.

Proposition 1. For any EM e ¢ E and sufficiently large M > 0, there is a flur mode v' in N
such that (v, supp(e)) is a feasible solution for MILP1(E).

A formal proof of Prop. [l is omitted here. It can be easily obtained by suitably scaling the
vector e.
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Figure 1: Example network. Thick arrows represent the optimal solution of (MILP2)

We note that it is possible to initialize N' := N, thus avoiding the need to solve the very
first mixed-integer program. The computationally hard part is Step 1 of the algorithm, while
the rest of the steps can be computed in polynomial time.

3.2 The two-reaction problem

A natural idea to find a shortest EM involving a pair of reactions {ri,r2} € R would be to
extend the previous method by forcing both r1 and r9 to be active, while minimizing the total
number of active reactions:

(MILP2) : min ) ;cp @

s.t. Sv = 0,
vy > 1,
Ury 21,

a < vy < May, Vi e R,

vy > 0, VieR,

aq € {0,1}, VieR.

(MILP2) indeed finds a shortest flux mode containing 1 and 9. However, it may fail to produce
an EM. As illustrated by Fig. [1} if we apply (MILP2) for reactions 1 and 5, a non-elementary
flux mode will be found, involving the reactions 1,6,7,5. However, an optimal solution (v*,a*)
of (MILP2) still has interesting properties, which will turn out to be useful for refining our
method. These are described in the following propositions.

Proposition 2. Let v* =7 | \ie?, with A\; > 0, be any decomposition of an optimal solution
(v*,a*) of (MILP2) into s EMs in N. Then for all i € [1..s], €. > 0 or €., > 0. There exists
i € [1..s] with €., >0 and e, >0, if and only if s = 1.

Proof. Suppose there exists i € [1..s] such that e., = 0 and e/, = 0. Let p := min{v;/eé» | j €
supp(e’)} and v’ := v* — pe!. Then there exist A > 0 and o’ € {0,1}® such that (\/,d’) is a
feasible solution of (MILP2), with ), a; < >",c% @, in contradiction to the optimality of v*.

From s = 1, we get v* = Aje!, A\; > 0, and therefore efnl > 0 and efnz > 0. Conversely, suppose
there exists 4 € [1..s] such that e}, > 0 and e, > 0. Up to scaling, e’ is a feasible solution of
(MILP2) with supp(e’) C supp(v*). From the optimality of v*, we get supp(e') = supp(v*),
which implies s = 1. O

Prop. [2|shows that any EM participating in a decomposition of v* must contain at least one
of the two target reactions. The only case when an EM contains both r; and 79 is when the
optimal solution v* itself is an EM.

The result can be formulated in a stronger form, extending it to the whole subnetwork
N* = (M, R*, Spr+) defined by v* (with R* = supp(v*)). Every EM e in this subnetwork will
satisfy e,, > 0 or e,, > 0. If v* is itself an EM, then also the subnetwork N* will have only one
EM, namely v*. The following Corollary summarizes our previous results.



Corollary 3. In the subnetwork N* defined by v*, the reactions r1 and ro are either fully
coupled or mutually exclusive.

Our next proposition shows that any flux mode using the reactions r; and 72 can be scaled
by a positive factor so that it becomes a feasible solution of (MILP2).

Proposition 4. Let v € C' with v,, > 0 and vy, > 0. Then for sufficiently large M > 0, there
exists a feasible solution (v',a’) of (MILP2), such that v' = \v, for some X > 0.

Proof. Let X := 1/ min{v; | ¢ € supp(v)} and M := max{v;/v; | i, € supp(v)}. Now consider
v/ == Mv and let q; := 1, for all | € supp(v), and a; := 0, for all | € R\ supp(v). For all
I € supp(v), v; = v/ min{v; | i € supp(v)} > 1. Thus, v, > 1 and v, > 1. By definition
of d, for all I € supp(v), aj = 1 < v] = v/ minfv; | i € supp(v)} < max{v;/v; | 3,5 €
supp(v)} = M = Maj. Since v' € C also holds, we conclude that (v, a’) is a feasible solution of
(MILP2). O

In general, when decomposing an arbitrary steady-state flux vector into EMs, the number
of participating EMs ranges from using only one to many. Moreover, a decomposition does
not necessarily have to be unique. It turns out that in our special case, a decomposition is
much more constrained. In fact, no decomposition can contain more than two EMs. As direct
corollary of this result, we will also get the uniqueness of the decomposition.

Proposition 5. Let (v*,a*) be an optimal solution of (MILP2) and let v* = Y5 _; Nie', with
Ai >0, for alli € [1..s], be a decomposition of v* into s EMs with pairwise different support.
Then s < 2.

Proof. Assume s > 2. From Prop. [2|it follows that there exist i,j € [1..s] such that e’ and e/
both contain 7 or both contain ry. Without loss of generality, we assume that e’ and e/ both
contain r1. Then, since s # 1, both e’ and e’ do not contain ro. Let Rqg := supp(e’) \ supp(e?).
Since €’ is an EM, we have Ry # 0. Let p := min{v}/el | r € Raig }- The vector v/ := v* — pel
satisfies supp(v') C supp(v*). However, it need not be feasible for (MILP2) because it may
violate some constraint v, > 0. Let V := {r € R | v, < 0} C supp(e?) N supp(e’). If V # 0,
define ¢ := min{v}./eL. | r € V} < 0, otherwise ¢ := 0. Then v” := v + (1 — )¢’ > 0,0} >
0,v;, > 0, and we still have supp(v”) C supp(v*). By Prop. 4} this implies the existence of
a feasible solution for (MILP2) with a smaller objective function value than v*, which is a
contradiction. O

Corollary 6. Any decomposition of v* into EMs is unique.

Proof. The result is trivial if v* is itself an EM. Thus we only have to consider the case s = 2.

Assume by contradiction that v* = Aje! + A\je? = pie® + poe?, where at least three of e!, €2,
e3, e* have pairwise different support. Clearly, then v* = (Are! + Ae? + pre® + pget) /2, which
contradicts the result of Prop. [5 O

Of special interest is Cor. |3 which asserts that in the subnetwork N* defined by v*, r1 and o
are either fully coupled or mutually exclusive. Thus, to make the optimal solution of (MILP2) an
EM, it is enough to add constraints that exclude the second case. These additional constraints
must disallow the existence of an EM in N* involving exactly one of r; and ro. This can be
achieved by requiring that r; should be directionally coupled to ry in N* (or alternatively that
r9 is directionally coupled to 7). To formulate this mathematically, we delete ro from N* and
require that r; is blocked in the resulting subnetwork N’. More formally, if " := S
is the stoichiometric matrix of N’, then the following system should be infeasible:

*,supp(v*)\{r2}



S’z = 0,
zr, = 1,
z > 0.

By applying Farkas’ Lemma (see e.g. (Schrijver, 1998)), this infeasibility requirement can be
turned into a feasibility condition in the dual space. Let y € R™, x € R. Then the following
system in y and z should be feasible:

()Ty+ue
x

> 0

< -1

Here u" is the r-th unit vector (with an entry 1 for component r, and 0 otherwise) and T
denotes transposition of a matrix.

This formulation inherently uses S’, the stoichiometric matrix of the new subnetwork. Natu-
rally, information about it is not derivable independently. Thus the first constraint set needs to
be reformulated to dynamically adjust itself according to the current solution (v, a) of (MILP2).
This leads to the following constraints:

STy +ux
x

—M(1—a+u"),

_1 DirC(Tl, 7"2)

>
<

where 1 denote a vector all whose components are 1.

By using a large enough constant M, the first constraint becomes trivially satisfiable for
inactive reactions (a; = 0) and for rg, where the right-hand side simplifies to —M. In contrast,
for active reactions (a; = 1) different from ry, the right-hand side sums up to 0, thus effectively
activating the constraint. The inequalities DirC(rq, r2) are called directional coupling constraints
for r1 implying ro. Extending (MILP2) with DirC(ry,r2), allows computing a shortest EM
through ry and ro. The following Prop. [7] summarizes our construction. It guarantees that by
adding the constraints DirC(ri,r2), any feasible solution of (MILP2) defines a subnetwork in
which condition (2) is satisfied.

Proposition 7. Let (v',a’) be any feasible solution of (MILP2) augmented with the directional
coupling constraints DirC(r1,m3). Then in the subnetwork N’ defined by supp(v'), r1 is direc-
tionally coupled to ro.

By iteratively adding no-good constraints corresponding to already found EMs, we are able
to enumerate any number of EMs in an increasing order of length. The resulting mixed-integer
linear program can be expected to work for smaller-scale network models, but due to the diffi-
culty of proving optimality in mixed-integer linear programs, the algorithm will most likely turn
impractical for larger models. The reason for the bottle-neck is clearly that in every iteration
we aim to find the shortest EM not yet discovered. Similar to the one-reaction case, we next
trade the optimality condition on the length for an easier to solve program. The final form
of our method is given in the mixed-integer linear program (MILP3). Tab. [2[ summarizes the
algorithm in the two-reaction case.



MILP3(E%) : min 0

st. Sv = 0
vy 2> 1,
Upy > 1,
a < v < Mya, Vi e R,
STy+ume > My(a—1—u"),
—T Z 17
Dtesupp(eny @ < [supp(e)| — 1, Vu € [1..4],
v > 0, VieR,
a; € {0, 1}, VieR,
T, ym € R, Ym e M.
Step  Action
0. Initialize 7 := 1, F := 0.
1. Try to find a feasible solution (v’,a’) of
MILP3(E).

If MILP3(E) is infeasible, then STOP.
From (v',a’) derive subnetwork N°.

Find a basic feasible solution e’ of LP(N?).
Let B := EU{e'} and i :=1i + 1.

If ¢ > k then STOP.

Go to Step 1.

N gtk N

Table 2: Algorithm 2 for the two-reaction case.

3.3 The general t-reaction case

Although this problem seems to be much harder at first sight, it turns out that the previous
results provide all the ingredients necessary to tackle this general case. We propose two strategies
for building a mixed-integer linear program that can be used in a similar fashion to (MILP3).

In the cascade method, we extend (MILP2) with DirC(rq,r2), DirC(re, r3), ..., DirC(ri_1, r¢).
Based on Prop. [7| and the transitivity of directional coupling (Larhlimi et al., [2012), in any

feasible solution of this new MILP, reaction r; will imply reactions ro, ..., 7, thus satisfying
condition (2). Similarly, in the hub method, DirC(ry,r2), DirC(r1,r3), ..., DirC(r1, ;) are added
to (MILP2).

Alternative coupling strategies can be thought of. Indeed, by constructing any spanning
tree on the vertices ri, ro,... 1, with r1 being the root of the tree, and taking the union of the
directionality constraints corresponding to each edge, we create the conditions for a subnetwork
where every desired reaction is directionally coupled to 1. At this time, it is unclear whether
there is a practical advantage in choosing one of these methods compared to the others. In all
cases, the total number of constraints (and variables) is the same and grows linearly with ¢.

3.4 Flux uncoupling

The computational complexity of the problem to decide for a pair of uncoupled reactions whether
they are sometimes coupled or mutually exclusive (Marashi and Bockmayr, |2011)) is NP-complete
(Acuna et al., [2010)). However, this problem can be seen as a special case of Sect. Indeed,



rather than enumerating some (or all) EMs involving these two reactions, we are merely inter-
ested in the existence of any. For this purpose, it is enough to execute Step 1 of Algorithm 2.
If MILP3(0) is feasible (resp. infeasible), we can conclude that our two reactions are sometimes
coupled (resp. mutually exclusive).

While this works for any pair of reactions, the above solution might not be optimal if our
goal is to find all uncoupling relations. For a given pair of reactions, rather than stopping after
Step 1 of Algorithm 2, one could continue executing Steps 2-7 and potentially compute an EM,
if one exists. This EM can then be used to decide not only about the uncoupling relation for
the current pair of reactions, but for other pairs as well. More specifically, once an EM e has
been computed for two reactions ¢ and j, this EM can also be used to show that other pairs of
reactions in supp(e) are sometimes coupled. This may greatly reduce the number of pairs for
which solving a MILP is necessary. Moreover, by performing FCA (David et al., 2011}; Larhlimi
et al. 2012)) as a heuristic presolving step, many uncoupling pairs can be deduced without
having to solve a MILP.

3.5 Choosing big-M values

One issue that we have not addressed so far is the importance of choosing right values for M
and M;. From the theoretical side, we are assured about the existence of My and M; values
for which the algorithm behaves as intended. However, when implementing these algorithms, it
becomes crucial to choose correct values. On one hand, we are inclined to select large constants
to guarantee the correctness of the solutions. If we select constants that are not large enough, we
risk cutting off feasible solutions corresponding to EMs we may interested in. On the other hand,
the larger these values are, the less numerically stable the MILPs become. In the following, we
analyze how setting My and M; affects the output of the algorithms.

We note that every feasible solution (v, a) of (MILP3) satisfies v; € [1, M| for a; = 1. Thus,
M) represents the largest ratio v;/v; that can occur for non-zero fluxes v; and v;.

M appears only in the directional coupling constraints. For any flux vector that contains
r1 but not 79, the directional coupling constraints will be infeasible, regardless of the choice
of My. Thus the only bad case occurs when an EM containing both r; and ro that should
be feasible is rendered infeasible by the directional coupling constraints. This happens if M;
is chosen not large enough, such that some of the constraints that should be trivially satisfied
become unsatisfiable. Let v' be an EM for which this case occurs, i.e., v, > 0, v, > 0, with
infeasible DirC(ry,72) constraints. Let a € {0,1}" be a vector corresponding to the support of
v’. We investigate the following LP-relaxation of (MILP3).

min 0
STy+ume > M(a—1—u"),
—x > 1.

Its corresponding dual-LP reads

max w — M Zie{ﬂai:o}u{m} Yi

Sv = 0,
Upy —W = O’
v,w > 0

Note that the null vector 0 is always dual feasible. Since in our assumption the primal is
infeasible, the dual must be unbounded. We conclude that the primal is infeasible because w =
Ve > MY e {ilai=0}U{ra} Vi- In order to avoid this problem, we recommend over-approximating
My with M7 > ’Url/’l)i,i S R\ {7’1}.



4 Results and Discussion

The above described methods have been implemented in Matlab. The MILP solver of choice was
Gurobi 5.0. In the following, we present several use-case scenarios that have been performed on
different real-world networks. These tests were aimed at validating the correctness of the meth-
ods, and also to motivate their existence, by applying them on networks where an exhaustive
EM enumeration would fail. Furthermore, we ran benchmarking tests to measure the running
time of the algorithms and other statistical properties. All computations were performed using
a single Intel T2600 (2.16 GHz) processor on a 32-bit Windows 7 system, with a maximum
memory of 640MB allocated to Matlab.

Checking the correctness of the resulting flux vectors is easy. A simple rank test as in (Kamp
and Schuster, 2006) can prove the EM property, while checking for non-zero entries in the target
reactions assures that we are indeed using them. Due to the nature of the algorithms, the EM
property never gets violated. Indeed, because the last step of every method presented involves
solving an LP to optimality using a Simplex based method, the result will be a vertex of the
truncated flux cone.

4.1 Use-case scenario 1

de Figueiredo et al. (2008) compare graph-based pathway enumeration with EM analysis in the
context of discovering pathways producing G6P (KEGG entry C00668) from AcCoA (KEGG
entry C00024). The underlying network was based on the human Krebs-cycle with two possible
configurations, one of which was able to display the required phenotype, while the other was not.
Answering this type of questions is a perfect use-case scenario for our method. Indeed, we ran
our algorithms, trying to find EMs containing the required reactions, and in both configurations
we were able to replicate the answers presented by the authors.

It is important to mention that the network used in the previous study is quite small (20
metabolites and 26 reactions). EM enumeration tools work very well for models of this size.
Thus, we performed the same analysis for a genome-scale reconstruction of the human metabolic
model (Duarte et al.l 2007). A crucial difference, beside the size of the models, is that in the
latter network, the two metabolites we were interested in are internal to the model. This is
important for two reasons. First, the number of adjacent reactions to each metabolite can be
more than one, making the selection of a pair of reactions involving G6P and AcCoA non-
unique. Indeed, after eliminating the blocked reactions from the network, we still had 63 viable
pairs of reactions.

Secondly, and more importantly, for two internal reactions r; and 72, one cannot easily find
out whether reaction r; is a predecessor of ro or vice-versa. In the case of boundary reactions,
it is very natural to claim that in an EM, uptake reactions precede outgoing reactions. We
could say that the products of the outgoing reactions are obtained from the substrates of the
uptake reactions. A similar statement for internal reactions is not trivial. Deciding whether
one internal reaction precedes another one is an unsolved problem. While our method can still
identify EMs with internal reactions, the interpretation of these EMs has to be done with care.

For these reasons, two artificial transport reactions were added to the network, one importing
AcCoA and the other secreting G6P. The biological interpretation of our method applied to this
modified system would be the following. ” Assuming we can inject AcCoA into the network and
have a method to secret G6P. Can the underlying network convert AcCoA into G6P?”. Allowing
one hour of running time, we could identify 6 EMs with the desired property. The number of
reactions taking part in these EMs ranged from 58 to 286.

In a similar way, a possible usage of the tool would be to enumerate EMs that produce
biomass, allowing the system to grow, but at the same time also produce one or more by-
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products (e.g. biofuels or toxic compounds). Such a set of EMs gives us insight into the
growth-coupled production capabilities of a microorganism. Alternatively, these EMs could
also be used as an input for other methods, such as constrained cut set computation (Hadicke
and Klamt, |2011)).

4.2 Use-case scenario 2

While the main novelty of the paper is Algorithm 2, Algorithm 1 provides an alternative method
for computing EMs through a single given reaction. Compared to methods like (de Figueiredo
et all 2009), our algorithm improves running time at the cost of computing not necessarily
the shortest EMs. While shorter EMs are more likely to represent biological phenotypes that
occur in practice, it is unclear if only the shortest ones should be of interest. Rezola et al.
(2011) introduced the concept of generating flur modes (GFMs) and compared the 100 shortest
EMs with the 100 shortest GFMs producing lysine in the E. coli iAF1260 model (Feist et al.,
2007)). They argued that even though GMFs are longer and take more time to compute, they
present a more varied description of the total solution set. We extended their experiment by
also considering Algorithm 1. We enumerated 100 EMs producing lysine and compared their
statistical properties with the other two methods. The results are summarized in Table

Method NoR LI AHD
shortest EM* 54 | 25-26 | 12.79
shortest GFMs* | 132 | 25-37 | 16.21
Algorithm 1 272 | 25-57 | 26.082

Table 3: Comparison between shortest EMs, shortest GFMs and Algorithm 1. (NoR) - total
number of reactions involved in any of the computed modes. (LI) - length interval of the modes.
(AHD) - Average Hamming distance. "*’ indicates numbers taken from (Rezola et al., [2011]).

It becomes clear from Table [3| that Algorithm 1 computes a broader range of pathways that
can be used for lysine production. While it still finds some representatives of the shortest EMs,
it also detects more advanced EMs. Fig. 2| presents the length distribution of the EMs obtained
by Algorithm 1.

Even if we extend our interest beyond the set of shortest EMs, one might still want to avoid
unreasonably long ones (i.e., those involving more than L reactions, for some L > 1). This can
easily be achieved by adding the constraint ) ;. a; < L to the MILP formulation.

In our next experiment, we compared Algorithm 1 with the method of |[de Figueiredo et al.
(2009) for computing shortest EMs. As input we used the metabolic network of S. Cerevisiae
iND750 (Duarte et all|2004) with ethanol (R_ETOH) being the target reaction, required to be
active in all EMs. For various M values and choosing the flux variables to be either integer or
continuous, 20 EMs were computed in each case. Table {4 summarizes the results.

Table [ highlights the main differences in the two methods. Algorithm 1 finds EMs much
quicker at the expense of individual EMs’ length. As expected, in almost every case, the higher
the constant M was chosen, the more expensive the computation becomes. de Figueiredo et al.
(2009) remark that using continuous flux variables, the MILPs might be more time consuming
to solve. However, when computing the shortest EMs in this particular network, we do not
consistently observe this behavior. Indeed, while for M = 10, choosing the flux variables as
continuous proved to be slightly more expensive, in all other cases continuous variables led to
shorter running times.

In every iteration of Algorithm 1, the MILPs to be solved become more complex, since they
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Figure 2: Histogram of the length of EMs found by Algorithm 1

Table 4: Comparing Algorithm 1 with the computation of shortest EMs (Running time in secs).

Integer variables Continuous variables
Method Length Time Length Time

M = 10 Shortest 6-10 1719s 6-10 2074s
- Algo. 1 6-15 16s 6-23 15s

M = 100 Shortest 6-10 8158s 6-10 3421s
Algo. 1 6-21 21s 6-31 18s

Shortest 6-10 14362s 6-10 7780s

M = 1000 Algo. 1 6-31 16s 6-50 29s

contain additional constraints. Over time, these constraints are expected to slow down the
solving of (MILP2). Hence, the rate at which new EMs are computed is expected to decrease,
the more EMs we enumerate. To study this effect, we enumerated 1000 EMs in the network of
S. Cerevisiae iND750 (Duarte et al., 2004), with ethanol (R_ETOH) being the target reaction.
The flux variables were chosen as continuous, while a value for M of 1000 was used. The total
running time was 4350 seconds. For reference, in the same time frame we could compute only
16 EMs with the method presented by de Figueiredo et al.| (2009). We measured the time (¢;)
required for the computation of the i-th EM, for all i € {1,...,1000}. These times displayed a
wide range of variation. Thus, in order to display them we used the mean times ¢; := 1/i 22:1 tj.
Fig. |3 illustrates these results. In order to study how the lengths of consecutive EMs vary, we
also measured in the previous experiment the length /; of the i-th EM, for all i € {1,...,1000}.
Fig. 4] shows the evolution of the mean lengths I; := 1/i Z§:1 lj.

4.3 Statistical analysis and flux uncoupling

The main bottleneck of the method are cases when EMs of the required type do not exist.
While finding an EM if it exists seemed to work well in practice, proving their non-existence
(i.e., showing (MILP3) to be infeasible) is rather hard and time-consuming. Intuitively, one can
think of the MILPs search-tree. Depending on how many feasible solutions there are, the solver
might find one without traversing the whole tree. For proving the non-existence, the whole
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Figure 4: Mean length of the EMs computed.
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search-tree must be traversed.

In the next experiment, we tried to compute an EM for every pair of reactions. A maximum
time of 60 seconds was allocated for each pair. Reaching the timeout meant that we were unable
to compute if this pair shared an EM or not. The test has been performed on two small to
medium-sized real world networks, the central metabolism of E. coli (ECC) (Palsson, 2006|) and
the H. pylori (HP) (Thiele et al. [2005) genome-scale metabolic network. For the constants M
and M, the value of 10000 was chosen, while the feasibility tolerance was set to 107%. The
total running time in the case of ECC was approximately 3 hours, while the algorithm took
close to 3 days in the case of HP.

Netw. | Reac. | Pairs | EM found | Mean length | No EM
ECC 90 8010 7691 24.36 176
HP 269 | 72092 66749 46.57 1862

Table 5: Summary of the correct computational results

Table [5| empirically sheds light on the nature of real-world networks. One can observe in
these networks that most pairs of reactions share at least one EM, and the algorithm presented
in this paper is able to find them.

Network | Timed out | Numerical error
ECC 78 65
HP 2078 1403

Table 6: Summary of the bad instances

From Table@ it becomes clear that (although not many) there are cases where the algorithm
does not produce a relevant result, either by not finishing before its time-out, or by producing
an erroneous result. The latter cases are attributed to the incorrect choice of My and M; and
numerical imprecisions in the MILP solver.

Seeing the high probability for the existence of an EM containing two randomly chosen
reactions, the question arises whether solving (MILP2) would suffice. If it correctly finds an
EM in most cases, this would motivate using (MILP2) as a heuristic approach to the problem.
Unless the two reactions are blocked, (MILP2) is always feasible, and the optimal solution
is characterized by Cor. [3| which asserts that we either get an EM or a false positive. We
performed the same experiment as before, and attempted to compute a flux vector for every
pair of reactions. We decided about the EM property of the computed flux vectors by applying
the rank test (Gagneur and Klamt 2004, Lemma 2). For every instance, a maximum of 60
seconds was allowed. Table [ summarizes these results.

Network EM found False positive Timed out
ECC 5212 2686 202
HP 206 9213 62673

Table 7: The performance of (MILP2) on metabolic networks
It turns out that in the case of the small E. Coli network, (MILP2) performs reasonably

well. In 67% of the cases where EMs exist, it correctly finds one. However, for the medium-scale
H. Pylori network, solving (MILP2) to optimality almost never terminates in the allocated time.
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Based on this empirical evidence we conclude that (MILP2) may not be a viable approach for
medium- to large-scale metabolic networks.

5 Conclusion

We have presented novel methods to compute EMs involving any number of predefined target
reactions. These algorithms can also be used to distinguish between mutually exclusive and
sometimes coupled reactions. From the application on genome-scale metabolic networks, we
conclude that the methods work as intended and are fast enough for practical use. They should
become a valuable asset for constraint-based analysis of metabolic networks.

A prototype implementation in Matlab is available for download at https://sourceforge.
net/projects/caefm.
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