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The “kissing number problem” asks for the maximal number of white spheres that can touch a black

sphere of the same size in n-dimensional space. The answers in dimensions one, two and three are

classical, but the answers in dimensions eight and twenty-four were a big surprise in 1979, based on an

extremely elegant method initiated by Philippe Delsarte in the early seventies, which concerns inequali-

ties for the distance distributions of kissing configurations.

Delsarte’s approach led to especially striking results in cases where there are exceptionally symmetric,

dense and unique configurations of spheres: In dimensions eight and twenty-four these are given by the

shortest vectors in two remarkable lattices, known as the E8 and the Leech lattice.

However, despite the fact that in dimension four there is a special configuration which is conjectured to

be optimal and unique—the shortest vectors in the D4 lattice, which are also the vertices of a regular

24-cell—it was proved that the bounds given by Delsarte’s method aren’t good enough to solve the

problem in dimension four. This may explain the astonishment even to experts when in the fall of 2003,

Oleg Musin announced a solution of the problem, based on a clever modification of Delsarte’s method

[21, 22].

Independently, Delsarte’s by now classical approach has recently also been adapted by Henry Cohn and

Noam Elkies [5] to deal with optimal sphere packings more directly and more effectively than had been

possible before. Based on this, Henry Cohn and Abhinav Kumar [6] have now proved that the sphere

packings in dimensions eight and twenty-four given by the E8 and Leech lattices are optimal lattice

packings (for dimension eight this had been shown before) and that they are optimal sphere packings, up

to an error of not more than 10−28 percent.

Here we try to sketch the setting, to explain some of the ideas, and to tell the story. For this we start with a

brief review of the sphere packing and kissing number problems. Then we look at the remarkable kissing

configurations in dimensions four, eight and twenty-four. We give a sketch of Delsarte’s method, and how

it was applied for the kissing number problem in dimensions eight and twenty-four. Then Musin’s ideas

kick in, which leads us to look at some non-linear optimization problems, as they occur as subproblems

in his approach. Finally we sketch an elegant construction of the Leech lattice in dimension twenty-four,

which starts from the graph of the icosahedron and very simple linear algebra. This is the lattice which

Cohn and Kumar have now proved to be optimal in dimension twenty-four, by another extremely elegant

and puzzling adaption of Delsarte’s method. A sketch for this will end our tour.
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Three classical problems

The “kissing number problem” is a basic geo-

metric problem that got its name from billiards:

Two balls “kiss” if they touch. The kissing num-

ber problem asks how many white balls can touch

one given ball at the same time, if all the balls have

the same size. If you arrange the balls on a pool

table, it is easy to see that the answer is exactly six:

Six balls just perfectly surround a given ball.

The perfect kissing arrangement for n = 2

The sphere packing problem is to determine the

maximal density of a packing of balls (all of them

of the same size) in Euclidean n-space.

One class of packings to consider are lattice pack-

ings, which are invariant under any translation that

takes one ball of the packing to the other.

It is a simple exercise (recommended) to prove, for

dimension two, that the “obvious” hexagonal pack-

ing of equal-sized disks (two-dimensional balls) in

the plane—a lattice packing in which each disk

touches κ(2) = 6 others—is the optimal lattice

packing, and to compute its density.

The hexagonal lattice packing in the plane

It is not so easy to prove that the hexagonal packing

is indeed an optimal sphere packing for dimension

two. (Experts disagree whether the first proof for

this, given by Thue 1892/1910, was indeed com-

plete; if there was a gap, it was closed by Mahler

and by Segre in 1940. See e. g. [13] for a proof.)

Thus the hexagonal planar lattice packing yields

optimal solutions for the two-dimensional cases of

the kissing number problem, the lattice packing

problem, and the sphere packing problem. How-

ever, there are various indications that solutions of

these three problems in higher dimensions are not

so simple, they are not just given by “one perfect

lattice packing,” and things are much more compli-

cated than in dimension two. This starts to show

already in dimension three.

Geometry is difficult . . .

. . . as soon as you reach dimension three.

The kissing number problem in dimension three

asks “How many balls can touch a given ball at

the same time.” This problem is indeed very in-

teresting, and surprisingly hard. Isaac Newton and

David Gregory had a famous controversy about it in

1694: Newton said that 12 should be the correct an-

swer, while Gregory thought that 13 balls could fit.

The regular icosahedron yields a configuration of

12 touching balls that has great beauty and symme-

try, and leaves considerable gaps between the balls,

which are clearly visible in our figure.

The icosahedron configuration
(Graphics: Detlev Stalling, ZIB Berlin)

So perhaps if you move all of them to one side,

would a 13th ball possibly fit in? It is a close
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call, but the answer is no, 12 is the correct an-

swer. To prove this is a hard problem, which was

finally solved by Schütte and van der Waerden [26]

in 1953. A short sketch of an elegant proof was

given by Leech [17] in 1956: But it is a substantial

challenge to derive a complete proof from this.

The lattice packing problem for dimension three

was solved by Gauß in 1831, in an “Anzeige” (what

today we’d call a book review) of a book by Lud-

wig August Seeber. Indeed, Gauß proved a result

about ternary quadratic forms which he even in-

terpreted geometrically, and which easily implies

that the so-called “face-centered cubic (fcc)” pack-

ing is the unique densest lattice sphere packing for

dimension three.

The fcc sphere packing

The centers for this sphere packing are all the inte-

gral points in
� 3 with exactly one or exactly three

even coordinates. Again it’s a nice exercise to

prove that this does, indeed, give a lattice packing,

that we can pack spheres of radius 1
2

√
2 with their

centers in the lattice points, to compute the density

of the resulting sphere packing, and to recognize

that in this packing, each sphere is “kissed” by ex-

actly 12 other spheres—whose touching points do

not give a regular icosahedron.

Just recall that the general sphere packing prob-

lem for dimension 3, known as the “Kepler con-

jecture,” was only recently solved, by Thomas C.

Hales. The controversial story about that case has

been told elsewhere (see for instance [13, 14] and

[27]), and may even continue after the publication

of Hales’ papers (which are expected to appear in

the Annals and Discrete & Comput. Geometry).

So the lattice packing problem is different from

the general sphere packing problem, and it seems

to be considerably simpler. This starts with the fact

that lattice packings are easy to describe (by a basis

matrix). The density of a lattice packing is easily

derived from the length of a shortest nonzero lat-

tice vector and the determinant of a basis matrix.

Also the subtleties in the definition of “density” of

a sphere packing disappear in the lattice case.

. . . and in high dimensions

It is likely that for most dimensions the optimal

kissing arrangement is not unique and not rigid, the

optimal sphere packing is not a lattice packing, and

thus the methods discussed in this paper will not be

able to give optimal results—but they do give the

best known results in virtually the whole range of

dimensions, from n = 1 to very large.

Here are three indications that the final answers in

high dimensions won’t be extremely simple:

• The optimal lattice packings E7, E8 and Λ9

(conjectured) in dimensions 7, 8 and 9 have

approximate densities 0.29530, 0.25367 and

0.14577, respectively—so there is a “sudden

drop” beyond n = 8, it seems. A similar effect

happens at n = 24. (See the figure below, taken

from Cohn & Elkies [5] with their kind permis-

sion). This non-monotone behaviour indicates

that there are “special effects” happening in spe-

cial dimensions.

4 8 12 16 20 24 28 32
0

1

2

−1

−2

−3

upper curve: the previously best upper bound
lower curve: Cohn & Elkies’ new upper bound

bottom line: best packing known

Plot of log2 δ + n(24 − n)/96 vs. dimension n, where

δ is the “center density”
(from Cohn & Elkies [5])
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• In dimension n = 9 the non-lattice packing

known as “P9a” contains spheres which kiss 306
others, while it is known that in each lattice pack-

ing the kissing number (which is the same for all

spheres) cannot exceed 272. So it seems that in

general, the optimal kissing configuration is not

given by a lattice.

• In dimension n = 10 the packing “P10c” has a

greater density than the best known lattice pack-

ing, “Λ10.”

In most dimensions, there is not even a plausible

conjecture for a best sphere packing; also every di-

mension seems to have its own characteristics, with

remarkable phenomena occuring in dimensions 4,

8 and 24—which is, however, not reflected in the

upper bounds we have.

Three kissing configurations

The theory of lattices and sphere packings features

some of the most beautiful objects in mathemat-

ics, including some remarkable kissing configura-

tions in special dimensions. In the following, we

describe optimal kissing configurations of spheres

in dimensions 4, 8 and 24. In each of them, the

vectors are the shortest vectors of a lattice of high

symmetry, and there are special binary codes, large

simple groups, and a lot of other miracles attached

to them. Thompson’s little book [28] is a nice

historical account of the discoveries, Conway &

Sloane’s book [7] is the classical technical account,

which includes a number of the key research pa-

pers in the subject, and Elkies’ prize-winning No-

tices papers [11] explain a lot of the connections

to other mathematical fields such as theta functions

and modular forms.

n = 4: There are 24 vectors with two zero com-

ponents and two components equal to ±1; they all

have length
√

2, and a minimum distance of
√

2.

Properly rescaled (that is, multiplied by
√

2) they

yield the centers for a kissing configuration of unit

spheres, and imply that κ(4) ≥ 24. The convex

hull of the 24 points yields a famous 4-dimensional

polytope, the “24-cell” discovered in 1852 by Lud-

wig Schäfli. Its facets are 24 regular octahedra.

n = 8: Again we present a configuration with sim-

ple integer coordinates which then can be rescaled.

Our configuration includes the
(
8
2

)
4 = 112 vectors

of type “(06,±22),” that is, with two nonzero co-

ordinates, which are ±2, as well as the 27 = 128
vectors of type “(±18)” with an even number of

negative components. All the 112 + 128 = 240
vectors have length

√
8 = 2

√
2, which is also the

minimum distance between the points.

At the same time, the vectors above are the shortest

nonzero vectors of the exceptional root lattice E8,

which appears, for example, in the classification of

simple Lie algebras. It consists of all integral vec-

tors in � 8 whose coordinates are all odd or all even,

and for which the sum of all coordinates is divisible

by 4.

A “Schlegel diagram” of the 24-cell
(Graphics: Michael Joswig/polymake [12])

n = 24: The configuration consists of the shortest

(nonzero) vectors in a remarkable lattice, the Leech

lattice, for which we will outline a simple construc-

tion further below.

The vectors have three different types: The vec-

tors of type “(016,±28)” have 16 zero coordinates,

and eight coordinates that are ±2, with an even

number of minus signs. The Leech lattice con-

tains 759 · 27 = 97152 of them, all of them of

length
√

32 = 4
√

2. The second type of vectors are

“(022,±42),” with two non-zero components, ±4,

of arbitrary sign. There are
(
24
2

)
4 = 1104 of them,

again of length
√

32, and we take them all. The

third type is vectors of the form “(±123,±(−3)),”
obtained from a vector with one entry −3 and all

entries +1 by reversing the sign on a number of co-

ordinates which is divisible by 4. Exactly 3 · 215 =
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98304 of these are contained in the Leech lattice,

again of length
√

32. Miraculously, all the resulting

97152 + 1104 + 98304 = 196560 vectors have the

same length, and the minimum distance between

them is again
√

32: and this minimum distance is

achieved very often.

The Delsarte method

Philippe Delsarte (Phillips Research Labs) started

in the early seventies [8] to develop an approach

that via linear programming yields upper bounds

for cardinalities of binary codes where Krawtchouk

polynomials appear at the core of the method. (See

Best [4] for a beautiful exposition.)

However, Delsarte’s approach was much more gen-

eral, yielding cardinality bounds for “association

schemes” [9]. An important case is the situa-

tion for spherical codes in the Delsarte–Goethals–

Seidel method [10], where Gegenbauer polynomi-

als play the decisive role.

Here is our sketch: If N unit spheres kiss the

unit sphere in � n, then the set of kissing points

is a rather special configuration of unit vectors,

namely N vectors x1, . . . , xN ∈ � n that satisfy

〈xi, xj〉 ≤ 1
2 for i 6= j, while 〈xi, xi〉 = 1 for

all i. If we write the xi as the columns of a matrix

X ∈ � n×N , then the special properties amount to

a matrix

(
xij

)
:= XT X ∈ � N×N

with the following properties:

(i) it has ones on the diagonal,

(ii) all off-diagonal entries are at most 1
2 ,

(iii) it has rank (at most) n, and

(iv) it is positive semidefinite.

Now we use a result that may be traced to a paper

by Schoenberg [25]. He characterized the functions

f one may apply to the entries of matrices with

properties (i), (iii), and (iv) such that the resulting

matrix (
f(xij)

)

is guaranteed to be still positive semidefinite. If we

restrict f to be a polynomial of degree at most d,

then Schoenberg’s answer is that f can be an arbi-

trary non-negative combination of the Gegenbauer

polynomials G
(n)
k of degree k ≤ d. These poly-

nomials (also known as the spherical or the ultra-

spherical polynomials) may be defined in a vari-

ety of ways. One compact description is that for

any n ≥ 2 and k ≥ 0, G
(n)
k (t) is a polynomial of

degree k, normalized such that G
(n)
k (1) = 1, and

such that G
(n)
0 (t) = 1, G

(n)
1 (t) = t, G

(n)
2 (t) =

nt2−1
n−1 , . . . are orthogonal with respect to the scalar

product

〈
g(t), h(t)

〉
:=

∫ +1

−1
g(t)h(t)(1 − t2)

n−3

2 dt

on the vector space � [t] of polynomials, which

arises naturally in integration over Sn−1. This is

just one of many possible descriptions and defini-

tions of these remarkable polynomials. For exam-

ple, the readers are invited to derive a recursion

from this description by applying Gram–Schmidt

orthogonalization. For n = 3 one obtains the Leg-

endre polynomials, for n = 4 the Chebychev poly-

nomials of the second kind (but with a different

normalization than usual). Perhaps one more use-

ful fact to know about Gegenbauer polynomials is

that computer algebra systems such as Maple and

Mathematica “know them”.

The key property of the Gegenbauer polynomials

that we need, Schoenberg’s lemma, is a simple

consequence of the classical addition theorem for

spherical harmonics—beautifully explained and

derived in the book by Andrews, Askey & Roy

[2, Chap. 9], who credit Müller [20], who in turn

says that this goes back to Gustav Herglotz (1881–

1925).

Lemma 1 (Addition Theorem [2, Thm. 9.6.3]).

The Gegenbauer polynomial G
(n)
k (t) can be written

as

G
(n)
k (〈x, y〉) =

ωn

m

m∑

`=1

Sk,`(x)Sk,`(y),

where ωn is the (n− 1)-dimensional area of Sn−1,

and the functions Sk,1, Sk,2, . . . , Sk,m form an or-

thonormal basis for the space of “spherical har-

monics of degree k,” which has dimension m =
m(k, n) =

(
k+n−2

k

)
+

(
k+n−3

k−1

)
.

This easily yields Schoenberg’s result:
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Lemma 2 (Schoenberg [25]).

If (xi,j) ∈ � N×N is a positive semidefinite matrix

of rank at most n with ones on the diagonal, then

the matrix
(
G

(n)
k (xi,j)

)
is positive semidefinite as

well. In particular, the sum of all its entries is non-

negative.

Proof. We can write the matrix (xi,j) as XT X ,

that is, xi,j = 〈xi, xj〉 for vectors xi, xj ∈ Sn−1.

Here we prove only that the sum of all entries of(
G

(n)
k (xi,j)

)
is non-negative: For this we plainly

compute

N∑

i,j=1

G
(n)
k (〈xi, xj〉) =

=
ωn

m

N∑

i,j=1

m∑

`=1

Sk,`(xi)Sk,`(xj)

=
ωn

m

m∑

`=1

( N∑

i=1

Sk,`(xi)
)( N∑

j=1

Sk,`(xj)
)

=
ωn

m

m∑

`=1

( N∑

i=1

Sk,`(xi)
)2

≥ 0.

To get a feel for “what this means,” let (xij) be a

positive semidefinite matrix of rank n ≥ 2 with

ones on the diagonal, and let’s look at the polyno-

mials f(t) such that
(
f(xij)

)
has a non-negative

sum of entries. Clearly f(t) = 1 has this property,

and f(t) = t as well. It starts to be interesting if we

apply f(t) = t2+α, since then the set of admissible

αs depends on the rank n. The claim of Schoen-

berg’s lemma is that we can take any α ≥ − 1
n ,

since t2 + α = n−1
n G

(n)
2 (t) + ( 1

n + α).

Theorem 3 (Delsarte, Goethals & Seidel [10]).

If

f(t) =

d∑

k=0

ckG
(n)
k (t)

is a nonnegative combination of Gegenbauer poly-

nomials, with c0 > 0 and ck ≥ 0 otherwise, and if

f(t) ≤ 0 holds for all t ∈ [−1, 1
2 ], then the kissing

number for � n is bounded by

κ(n) ≤ f(1)

c0
.

Proof. We estimate the sum of all entries of the ma-

trix
(
f(xij)

)
in two ways.

The first one is the simple computation

N∑

i,j=1

f(xij) =

d∑

k=0

ck

N∑

i,j=1

G
(n)
k (xij)

≥ c0

N∑

i,j=1

G
(n)
0 (xij) = c0N

2,

which rests on the fact that by Schoenberg’s lemma

the sum of all entries of the matrix
(
G

(n)
k (xij)

)
is

nonnegative.

The second, equally simple computation

N∑

i,j=1

f(xij) = N f(1) +
∑

i 6=j

f(xij) ≤ N f(1)

(1)

depends on the fact that all the off-diagonal entries

of the matrix
(
f(xij)

)
are nonpositive, due to our

assumption on the function f(t) in the range where

the scalar products xij = 〈xi, xj〉 lie.

Now the two estimates yield c0N
2 ≤ N f(1).

n = 8 and n = 24

The kissing number problems in dimensions eight

and twenty-four were solved in the late seventies,

by matching the Delsarte–Goethals–Seidel bound

with the very special E8 and Leech configurations:

Andrew Odlyzko and Neil Sloane (at AT&T Bell

Labs) and independently Vladimir I. Levenšteı̆n in

Russia proved that the correct, exact maximal num-

bers for the kissing number problem are κ(8) =
240 and κ(24) = 196560.

In dimensions with a candidate for a unique opti-

mal configuration for the kissing number problem,

one has a quite straightforward guess for the poly-

nomial to be used in Delsarte’s method. Namely,

for the estimate (1) to be tight, we must have

f(xij) = 0 for all scalar products xij that actually

occur for i 6= j in our candidate solution.

Thus, in dimension n = 8 the configuration given

by the roots of the E8 lattice seems so nice and

dense and rigid that it might be unique. It is also

very symmetric, and the only scalar products that

occur (if the roots are normalized to length 1) are
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±1, ±1
2 , and 0. Thus the “obvious” function to

write down is

f8(t) := (t − 1
2)t2(t + 1

2)2(t + 1).

You (or your computer algebra system) have to ex-

pand this polynomial in terms of Gegenbauer poly-

nomials, check that all coefficients in the expansion

are nonnegative, compute f8(1)/c0, and get 240;

this is what Odlyzko & Sloane [23] [7, Chap. 13]

did in 1979, and Levenšteı̆n [18] did independently

at the same time.

-1 -0.5 0.5 1

0.05

0.1

0.15

0.2

f8(t)

One can proceed similarly for n = 24 and the

shortest roots of the Leech lattice, which have the

additional scalar products ± 1
4 . Thus one uses

f24(t) := (t− 1
2)(t+ 1

4)2t2(t+ 1
4)2(t+ 1

2)2(t+1).

It works!

The same approach cannot work for dimension

n = 3, where the optimal configuration is far from

unique, so the function f would have to be equal to

zero in a whole range of possible scalar products to

get a tight estimate N ≤ 12, or would have to be

close to zero to get the estimate N < 12.9999, say,

which would be good enough to prove κ(3) = 12.

Status 2004: Kissing Numbers

The only exact values of kissing numbers known:

n lattice regular polytope

κ(1) = 2 A1

κ(2) = 6 A2 hexagon

κ(3) = 12 H3 icosahedron

κ(4) = 24 D4 24-cell

κ(8) = 240 E8

κ(24) = 196560 Λ24

Musin’s trick

To determine the kissing number for n = 4 has

been a challenge for quite a while now. There is

a claim by Wu-Yi Hsiang that dates back to 1993,

but that apparently hasn’t been backed up by a de-

tailed proof. It may be surprising that for n = 4
the Delsarte method doesn’t work: After all, we

have a conjectured unique optimal configuration of

unit vectors, given by the 24-cell (the D4 lattice),

with only very few scalar products between distinct

points (± 1
2 , 0, and −1). However, from the “obvi-

ous” polynomial

f4(t) = (t − 1
2)t2(t + 1

2)2(t + 1),

which is the same polynomial as for n = 8 and the

E8 lattice, we only get κ(4) ≤ f4(1)/c0 = 28.8.

Once we look a little bit harder for a suitable func-

tion, Delsarte’s bound yields that κ(4) ≤ 25, but

nothing better than that. Arestov & Babenko [3]

have analyzed this case in detail, and proved that

even with an optimally chosen Delsarte function,

the bound obtained will not be smaller than 25.

So it came as a great surprise that now the Russian

mathematician Oleg Musin, who lives in Los An-

geles, has indeed found a method to modify Del-

sarte’s method in a very beautiful and clever way,

which yields better bounds. In particular he im-

proves the upper bound from 25 to 24.

Oleg R. Musin
(photo: private)
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In the meantime, an announcement [22] has ap-

peared in print, the long version [21] is submitted

and being refereed. So let’s assume that the details

and computations work out right (which are tech-

nical, and for some of which alternative routes are

outlined in the preprint) and will be confirmed in

the reviewing process. Then, indeed, κ(4) = 24
is the answer! However, Musin makes no claim

to have proved that the special configuration of the

24-cell is unique.

Here we want to only sketch Musin’s beautiful

idea: He allows the function f(t) to get positive

“opposite to the given sphere,” that is, close to

t = −1. Here is the result in a nutshell.

Theorem 4 (Musin’s theorem). Fix a parameter

t0 in the range −1 ≤ t0 < −1
2 . If

f(t) =
∑

k≥0

ckG
(n)
k (t)

is a nonnegative combination of Gegenbauer poly-

nomials (ck ≥ 0 for all k, with c0 > 0), and if

f(t) ≤ 0 holds for all t ∈ [t0,
1
2 ], while f ′(t) < 0

for t ∈ [−1, t0], then the kissing number for � n is

bounded by

κ(n) ≤ 1
c0

max{h0, h1, . . . , hµ},

where hm is the maximum of

f(1) +

m∑

j=1

f(〈e1, yj〉)

over all configurations of m ≤ µ unit vectors yj

in the spherical cap given by 〈e1, yj〉 ≤ t0 whose

pairwise scalar products are at most 1
2 . Here µ de-

notes the maximal number of points that fit into the

spherical cap.

Proof. We argue just as in the proof of Delsarte’s

theorem—except that in (1) we cannot drop all

non-diagonal terms: We now only get that

N∑

i,j=1

f(xij) ≤
N∑

i=1

(
f(1) +

∑

j:〈xi,xj〉≤t0

f(xij)
)
.

(2)

Letting m denote the number of points that could

appear in the last sum (0 ≤ m ≤ µ) yields the

estimate in Musin’s theorem.

Nonlinear optimization problems

The bad news about Musin’s approach is that it

forces him to compute, at least approximately, the

numbers h0, . . . , hµ, and this leads to non-convex

optimization problems.

Almost everything can be written as a non-linear,

non-convex, constrained optimization problem.

For example, the question whether 25 spheres can

kiss a given sphere is immediately answered if we

solve the problem

min
x1,...,x25∈S3

max
1≤i<j≤25

〈xi, xj〉. (3)

Indeed, if the answer is 1
2 or smaller, then the 25

points xi that achieve the minimum give a kissing

configuration. If the answer is larger than 1
2 , then a

kissing configuration with 25 spheres doesn’t exist.

However, high-dimensional, non-linear, non-

convex, constrained optimization problems are ex-

tremely hard to solve. We may interpret (3) as

a problem in 100 variables, the coordinates of

x1, . . . , x25 ∈ � 4, constrained by the restrictions

xi ∈ S3. Or we may eliminate the constraints, say

by introducing polar coordinates, and thus have an

unconstrained problem in 75 variables. Eliminating

the symmetry of the 3-sphere will reduce the num-

ber of variables by 10, but not significantly simplify

the problem. This problem is non-convex, since it

has lots of minima: Indeed, any asymmetric opti-

mal configuration will yield 25! minima, and we

may assume that there are lots of “combinatorially

different” optimal solutions. Numerical methods

for non-linear optimization, such as local descent

methods, might find some feasible point, and they

should even find a stationary point, say a local max-

imum or minimum of the function to be optimized.

Such methods exist and are widely used, the most

popular ([24], Matlab) and the most questionable

([16], [19]) one probably being the Nelder–Mead

simplex method. However, a local improvement

method can’t guarantee to find a global optimum.

Dimension reduction

However, the good news for Musin’s approach is

that if parameters are chosen carefully, if t0 is small

8



enough (that is, close to −1), and if the monotonic-

ity assumption is exploited carefully, then one gets

low-dimensional problems of a type that can be

treated numerically.

So, it is already a remarkable achievement that

Musin’s improvement of the Delsarte method

yields a clean and simple proof for the Newton–

Gregory problem, κ(3) < 13. Indeed, choosing

t0 = −0.5907 and a suitable polynomial f3(t) of

degree 9, Musin gets µ = 4, and the parameters

h0 = f3(1) = 10.11, h1 = f3(1) + f3(−1) =
12.88, while all other hi’s are smaller.

A sketch of Musin’s proof for κ(4) < 25. Musin
produced a polynomial of degree 9 satisfying the
assumptions of his theorem with t0 ≈ −0.608:

f(t) = G
(4)
0 (t) + 2G

(4)
1 (t) + 6.12G

(4)
2 (t)

+ 3.484G
(4)
3 (t) + 5.12G

(4)
4 (t) + 1.05G

(4)
5 (t)

= 53.76t9 − 107.52t7 + 70.56t5 + 16.384t4

− 9.832t3 − 4.128t2 − 0.434t− 0.016.

-1 -0.5 0.5 1

2

4

6

8

10

f(t)

This was found via discretization and linear

programming—such methods had been employed

already by Odlyzko & Sloane for the same purpose.

To evaluate hm, we have to consider arrangements

of m points y1, . . . , ym in the spherical cap C0 :=
{y ∈ S3 : 〈e1, y〉 ≤ t0}. The points have a min-

imum distance of 60◦ = π/3 = arccos( 1
2 ) given

by 〈yi, yj〉 ≤ 1
2 , and this distance is larger than the

radius arccos(−t0) of the spherical cap. We know

that in an optimal arrangement for a given m we

cannot move one or several of the points towards

the center of the cap while maintaining the “mini-

mum distance” requirement, because of the mono-

tonicity assumption on f(t). From this Musin [21,

Lemma 1] derives strong conditions on the com-

binatorics of optimal configurations. For example,

for m ≥ 1 the center −e1 of the spherical cap is

contained in the (spherical) convex hull of the m
points yi; for m ≥ 2 each point has at least one

other point at distance exactly π/3 (for m ≥ 2),

etc. This already yields that h0 = f(1) = 18.774
and h1 = f(1) + f(−1) = 24.48. Also,

h2 = max
ϕ≤π/3

f(1)+f(− cos(ϕ))+f(− cos(π
3−ϕ)),

which yields h2 ≈ 24.8644. The computations of

hm for m = 3, 4, 5 amount to rather well-behaved

optimization problems in m − 1 variables that can

be solved numerically, and yield hm < h2; for the

case m = 6 Musin shows that h6 < h2 by a sepa-

rate argument.

y1

−e1

y2

An h3-configuration (not to scale)

Clearly there is potential for other applications

of Musin’s insight—in the whole range of sphere

packing and coding theory problems where Del-

sarte’s method was used in the last thirty years,

with tremendous success.

Sphere packings

Surprisingly, Musin’s breakthrough is not the only

remarkable recent piece of progress related to

the packing of spheres in high-dimensional space.

Namely, by again extending and improving upon

Delsarte’s method, Henry Cohn (Microsoft Re-

search) in joint papers with Noam Elkies (Harvard

University) and with Abhinav Kumar (a mathemat-

ics graduate student at Harvard) has obtained new

upper bounds on the density of sphere packings in

n-space.

Once you know bounds for spherical codes (the

kissing number is a special case of this, and these

9



more general bounds can be derived in a similar

fashion), you can bound the density of a sphere

packing in this dimension. This is the classi-

cal way of using Delsarte’s method in the context

of sphere packings, by Kabatjanskiı̆ & Levenšteı̆n

[15], which up to now gave the best upper bounds

for the density of high-dimensional sphere pack-

ings.

Cohn and Elkies found a more direct approach to

the problem. Instead of using functions defined

only on the interval [−1, 1], they use functions de-

fined on all of � n to get good bounds, as follows.

Let f : � n → � be an L1 function and let its

Fourier transform f̂ be defined as

f̂(t) :=

∫
�

n

f(x)e2πi〈x,t〉dx.

The function f(t) is called admissible if there is

a constant ε > 0 such that |f(x)| and |f̂(x)| are

bounded above by a constant times (1 + |x|)−n−ε.

One crucial property of these functions is the Pois-

son summation formula

∑

x∈Λ

f(x + v) =
1

|Λ|
∑

t∈Λ∗

e−2πi〈v,t〉 f̂(t),

for every vector v ∈ � n and every lattice Λ ⊂ � n,

where Λ∗ = {y ∈ � n : 〈x, y〉 ∈ �
for all x ∈ Λ}

is its dual lattice.

Henry Cohn
(photo courtesy of Valerie Samn)

Theorem 5 (Cohn & Elkies [5]). Suppose that

f : � n → � is an admissible function, not identi-

cally zero, which satisfies the following two condi-

tions:

(1) f(x) ≤ 0 for |x| ≥ 1, and

(2) f̂(t) ≥ 0 for all t.

Then the density of n-dimensional sphere packings

is bounded above by

∆n ≤ ωn

n2n

f(0)

f̂(0)
.

Proof. A periodic packing is given by vectors

v1, . . . , vN and a lattice Λ such that the pack-

ing consists of all spheres centered at translates

of v1, . . . , vN by elements of Λ, and such that

vi − vj ∈ Λ implies that i = j. It is easy to see that

periodic packings come arbitrarily close in density

to the densest possible sphere packing, so it is suffi-

cient to consider packings of this type. Rescale the

packing so that all spheres have radius 1/2. The

density of such a packing is ωn

n2n
N
|Λ| , since 1

nωn is

the volume of a unit n-ball.

Now we bound the quantity

N∑

j,k=1

∑

x∈Λ

f(x + vj − vk).

From below, the Poisson summation formula yields

a lower estimate of N 2f̂(0)/|Λ|. To get an upper

bound, observe that x + vj and vk are two centers

of the packing. Thus, |x + vj − vk| < 1 if and

only if x+ vj = vk, i.e. x = 0 and j = k. We have

f(x+vj−vk) ≤ 0 whenever |x+vj−vk| ≥ 1, and

thus, Nf(0) is an upper bound for the sum. This

yields

Nf(0) ≥ N2f̂(0)

|Λ| ,

and thus the theorem.

The Golay code and the Leech lattice

Since the most spectacular applications of the set-

up by Cohn and Elkies concern the Leech lattice,

we describe it here. For this we start with a con-

struction of the (extended binary) Golay code, a re-

markable binary linear code of length 24, dimen-

sion 12 and minimal distance 8, that is, a linear

10



12-dimensional subspace of (
�

2)
24, consisting of

212 = 4096 code words (vectors), all of which ex-

cept for the zero vector have weight (number of

ones) at least 8. There are myriads of ways in the

literature to describe this code, the most compact

one being just a list of 12 basis vectors. Here, we

choose not just any basis but one based on the ad-

jacency matrix of the graph X of the icosahedron

to make use of some symmetries later, following

lecture notes by Aigner [1].

Consider the binary 12 × 24 matrix

G := ( I |B ) ∈ � 12×24,

where I is the identity matrix of order 12, and

B = J−A is the all-one matrix of that order minus

the adjacency matrix A of the icosahedron. Thus B
is a symmetric 0/1-matrix with seven ones in each

row and each column, corresponding to the seven

non-neighbors for each vertex of the icosahedron

(counting the vertex itself). We will see in a minute

that the code

C := rowspan(G) ⊂ (
�

2)
24

is a (24, 12, 8)-code. It has been proved that there

is a unique such code, the famous Golay code.

The icosahedron graph
(Graphics: Michael Joswig/polymake [12])

Consider B2. We have

(B2)ij = 12 − |N(vi) ∪ N(vj)|
for every pair of vertices vi, vj ∈ V (X), where we

write N(v) for the set of vertices adjacent to a ver-

tex v. Therefore,

(B2)ij =





7 if dist(vi, vj) = 0,
4 if dist(vi, vj) = 1,
4 if dist(vi, vj) = 2,
2 if dist(vi, vj) = 3.

Thus all entries of I −B2 are even, which we write

as I − B2 ≡ O (mod 2), and it follows that

GGT = I + B2 ≡ O (mod 2).

This implies that C ⊆ C⊥, and thus C = C⊥,

since dim(C) + dim(C⊥) = 24. From this, to-

gether with the fact that all rows of G have Ham-

ming weight 8, we conclude that for each c ∈ C
the Hamming weight is divisible by 4.

All that is left to show is that there are no code

words of weight 4. Note that

BG = B(I |B) = (B |B2) ≡ (B | I) (mod 2).

This implies that for each code word c = (cL | cR),
(cR | cL) is a code word, too. If c has weight 4, then

one of cL and cR has weight at most 2. All one has

to do to exclude code words of weight 4 is there-

fore to check sums of up to two rows of G, and we

have already seen that a sum of two different rows

has weight at least 16 − 8 = 8.

In order to construct the Leech lattice from the Go-

lay code, consider the lattice

Γ24 = {x ∈ � 24 : x mod 2 ∈ C}.

Then Γ24 = Γ1 ∪ Γ2, where

Γ1 =
{
x ∈ Γ24 :

∑
xi ≡ 0 (mod4)

}
,

Γ2 =
{
x ∈ Γ24 :

∑
xi ≡ 2 (mod4)

}
.

Finally, let Λ24 = 2Γ1 ∪ (1 + 2Γ2). One can show

that this is a lattice with minimum distance
√

32,

the Leech lattice.

Optimality of the Leech lattice

Cohn and Elkies have conducted a systematic com-

puter search for suitable admissible functions. In

this context, the role of the Gegenbauer polyno-

mials is played by Bessel functions (times some

power of |x|). These are the functions whose

Fourier transform is a delta function on a sphere

centered at the origin, so a function with nonneg-

ative Fourier transform is like a nonnegative linear
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combination of them (but with an integral instead

of a sum). The best currently known function was

found by Cohn and Kumar [6], a radial function

that consists of a polynomial of degree 803 (eval-

uated at |x|2, so technically it is a polynomial of

degree 1606) multiplied by e−π|x|2 . It yields a den-

sity bound that is above the density of the Leech

lattice by a factor of less than 1+10−29. Similarly,

they found a function that provides a density bound

that is above the density of the E8-lattice by a fac-

tor of less than 1 + 10−14. Functions which show

that these lattices are in fact densest possible sphere

packings are yet to be found.

But what about the easier quest of finding the dens-

est lattice packing? In dimension 8 the question

was settled, while in dimension 24 it was still open.

This case was now answered by Cohn and Ku-

mar [6]. Since it is known that the Leech lattice is a

local optimum for the density of lattice packings, it

is enough to show that every denser lattice has to be

very close to the Leech lattice. This required find-

ing the above mentioned admissible function, and

then quite a bit of work involving linear program-

ming and association scheme theory.

The reader may have arrived at this point and say

“what a shame they don’t explain this in more de-

tail.” Well, we feel the same—and refer you to

the original papers/preprints, which are fascinating

mathematics, and a pleasure to read!
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