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We investigate the convergence of an implicit Voronoi finite volume method for reaction-
diffusion problems including nonlinear diffusion in two space dimensions. The model allows
to handle heterogeneous materials and uses the chemical potentials of the involved species
as primary variables. The numerical scheme uses boundary conforming Delaunay meshes
and preserves positivity and the dissipative property of the continuous system. Starting from
a result on the global stability of the scheme (uniform, mesh-independent global upper and
lower bounds), we prove strong convergence of the chemical activities and their gradients to
a weak solution of the continuous problem. In order to illustrate the preservation of qualitat-
ive properties by the numerical scheme, we present a long-term simulation of the Michaelis-
Menten-Henri system. Especially, we investigate the decay properties of the relative free en-
ergy and the evolution of the dissipation rate over several magnitudes of time, and obtain
experimental orders of convergence for these quantities.

1. Introduction and model equations

In a bounded domain 2 C R? we consider m species X,, with initial densities U,, which underly diffusion
processes and undergo chemical reactions. The relation between the densities w,, of the species X, and
the corresponding chemical potentials v,, is assumed to be given by Boltzmann statistics, i.e.,

uy, =u,e”, v=1,...,m. (1.1)
The reference densities %, may depend on the spatial position and express the possible heterogeneity of
the system under consideration. For the mass fluxes j,, we make the ansatz

Juv=—D,(-,e",...;e")u,Vu,,= —Dyu,e"” Vu,, v=1,...,m, (1.2)

with diffusion coefficients D, :  x R” — R, which are allowed to depend on the space variable and
the state variable. To describe chemical reactions we introduce a finite subset R C Z'!' x Z'!'. Each pair
(o, 3) € R represents the vectors of stoichiometric coefficients of a reversible reaction, written in the
form

a1Xy + -+ X = B1Xy + o+ B X

According to the mass action law, the net rate of such a pair of reactions is of the form k(o g)(a® — ad),
where k(o g is a reaction coefficient, a,, := exp(v,) corresponds to the chemical activity of X, and



a® :=[[)-, a% . The net production rate of species X,, corresponding to all accruing reactions is
R,(-, e, ... e"m) = Z k(a,p)(a® — aP)(B, — a). (1.3)
(.B)eER

The stoichiometric subspace S is defined by
S =span{a—B:(a,8) € R}

and its orthogonal complement is denoted by S*. Our reaction-diffusion system consists of m continuity
equations. Considering no flux boundary conditions on I' = 0€2 we obtain the following system of partial
differential equations:

ou,
ot

—|—V.jy—R,,:0in]R+><Q, n.jV:O onR+xF7 (14)

u,(0)=U, inQ, v=1,...,m.

The aim of the paper consists in a study of a discretization scheme (Euler backward in time and Voronoi
finite volume meshes in space) of Problem (1.4). It is strongly desired to retain the analytic properties of
the continuous problem also in the discretization scheme.

For the introduced nonlinear reaction-diffusion system we prove the convergence of the discretized
solutions to a weak solution of the continuous problem for arbitrary, even anisotropic boundary con-
forming Delaunay-Voronoi finite volume meshes. Basic ingredients are energy estimates and uniform
strictly positive lower and upper bounds for the discretized densities as proven in [8].

Convergence studies of discretization schemes for nonlinear PDEs are an ongoing research topic. In [7]
the convergence of a reaction-diffusion system including the fast reaction limit is studied. The work of [1]
proves convergence of a nonlinear degenerate chemotaxis model. Furthermore, in [6] the convergence of
a gradient scheme for nonlinear parabolic equations is demonstrated.

In Section 2 we collect the general assumptions concerning the data of the continuous problem and give
a summary on results obtained so far for the continuous problem. Section 3 starts with the description
of the discretization, introduces the prolongated quantities, summarizes results obtained so far for the
discrete scheme and gives some uniqueness result for the discrete problem. Our main results concerning
the convergence of the scheme are proved in Section 4. We start with a priori estimates in Subsection
4.1 from which we derive in Subsection 4.2 the existence of a converging subsequence and prove that
the limit is a weak solution of the continuous problem. Finally we derive strong convergence results.
The paper is closed by a numerical example involving the Michaelis-Menten-Henri kinetics. Besides the
concentrations of the different species, we investigate the decay properties of the relative free energy and
the evolution of the dissipation rate, and obtain experimental orders of convergence for these quantities.
In Appendix A we collect some results needed in Section 4.

2. The continuous problem

2.1. General assumptions on the data
We formulate basic assumptions with respect to the data of the problem, cf. [15, 11].

Definition 2.1 (Reaction order, cf. [11]). A source term of a reaction is of order n, iff there exists a smallest
number n € N such that there exists a constant ¢ > 0 with
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Va € R?, V(a, B) € R.

We study the problem under the following assumptions:



(A1) Q C R2?isa bounded polygonal domain, T := 0.

Let m € N be given and R a finite subset of Z" x Z''. For all (o, 3) € R the reaction rates
kiap) @ @ x R™ — R, satisfy the Carathéodory condition and there exist real constants 0 < ¢,
¢, < oo such that ¢, < ko g)(®,y) <, faa. © € Q,Vy € R™. Source terms of reactions are
at most quadratic.

The diffusion coefficients D, : €2 x R™ — R_ satisty the Carathéodory condition and there exist
constants 0 < ¢p, ¢p < oo such that cp < D,(x,y) < ¢p, faa. x € Q, Vy € R™ and
v =1,...,m. Finally, w,, U, € L*(Q) and there exist constants 0 < ¢y, ¢z < co and 0 < ¢,
¢y < oo such that ¢ < @, (x) < g, and ¢y < Uy(x) < ¢y, resp. faa. x € Qandv =1,...,m.

Remark 2.2. These technical assumptions (A1) allow us to handle a general class of reaction-diffusion
systems, including heterogeneous materials and nonlinear diffusion processes. Heterogeneous materials
can be found quite often in the modeling of biological or chemical processes involving different phases (see
[3]). Therefore, we assume the dependence of the diffusion coefficients and the reaction rate coefficients
on the spatial variable. For example, a different state of matter or a different background material leads to
coefficients which are spatially dependent in a maybe non smooth way.

The dependence of the diffusion coefficients on the state variable is motivated by problems like those
considered in [10, 9]. For example, recombination reactions of Shockley-Read-Hall, Auger type, and mole
fractions, see [11, 33, 21, 14], contain reaction rate coeflicients depending on the state variable. Sometimes
enzymes have more than one binding side where the reactivity of a docking place is influenced by the num-
ber of free bindings (in biochemistry the behavior is called allosteric regulation). From the modeling point
of view this leads to reaction coefficients which depend on the concentration of an regulating molecule,
see [26].

The assumptions on the space dimension and on the reaction order are technical to obtain existence
and boundedness results in a general class of problems as in [11] for the continuous problem. Note, that
only the source terms of the reaction terms are restricted, the sink terms may be large.

2.2. Summary of results for the continuous problem

Letu := (u1,...,Un),v := (v1,...,0y)anda := (a1, ..., an,) denote the vector of densities, chemical
potentials and activities of all species. Let us introduce the Gelfand triple X € Y = Y* € X*, where

X := H'Y(Q,R™), Y := L*(Q,R™), W= X NL®Q,R™).

Moreover, we define the operators A : W — X*, E : X — X* by

(Av,v) = / (Z D,u, e" Vv, - VU, — R,,(e”)vl,> dx,
Q v=1

m (2.6)
(Ev,T) = Z/ (u, ™ v) de Vv € X.
v=1"
In the setting of (A1), a weak formulation of (1.4) can be stated as follows: Find (u, v) such that:
u'(t) + Av(t) =0, u(t) = Ev(t) faa. t e Ry, u(0) =T, } P)
u€ H} (Ry, X*), ve Ll (Ry,X)NL®(Ry, L(Q,R™)).

Such problems have been investigated e.g. in [20, 15]; the papers [11, 12, 17, 18, 19] deal with electrically
charged species. The papers [11, 12, 16, 17] consider more general state equations than (1.1). We shortly
summarize results for (P) obtained in two space dimensions.

If (u, v) is a solution to (P) then

ult)—U el = {w e X" (<wy, 1>)V_1 e 5} vt > 0. 2.7)

goooy



Therefore, if u* := tlim u(t) exists, then necessarily u* € U + U. According to [11, 17] there exists
—00

a unique stationary solution (u*,v*) to (P) additionally fulfilling u* € U + U. This (u*,v*) is a ther-
modynamic equilibrium of the system. The free energy along solutions to (P) decays monotonously and
exponentially to its equilibrium value [16, 20].

If the source terms of all reactions are of maximal order 2 then all solutions (u, v) to (P) are globally
bounded, especially the particle densities are positively bounded away from zero (see e.g. [19]).

Considering regularized problems, finding a priori estimates which do not depend on the regularization
level, and solving the regularized problems the existence of solutions to (P) is shown in [19, 11]. Unique-
ness results for (P) can be obtained by standard arguments, if the diffusion coefficients do not depend on
the state variables. For cases with diffusion coefficients depending on the state variable we refer to [11].
In three space dimensions there are similar, but weaker results available, see [20, 11].

3. Discretized reaction-diffusion systems

3.1. Voronoi finite volume discretization

The solutions of reaction-diffusion systems preserve some quantities like mass (invariants, cf. (2.7)) and
positivity. Therefore, the aim is to respect the conservation of these quantities by the approximated solu-
tion. The finite volume method has been developed by engineers to study systems of conservation laws.

In the following, we work with Voronoi meshes, which represent a class of admissible finite volume
meshes [5]. In the following, we will assume that the Voronoi meshes M are derived as dual grids of
boundary conforming Delaunay triangulations 7. The Delaunay grids will be used for piecewise affine
interpolation by P finite element functions.

Our notation is basically taken from [15] and visualized in Figure 1.

.

Figure 1: Notation of Voronoi meshes M = (P, V, )

Let Q be an open bounded, polygonal subset of R2. A Voronoi mesh is defined as triple M = (P, V), £).
Here, P denotes a family of grid points in €2,V denotes a family of Voronoi control volumes and £ denotes
a family of faces in R. The number of grid points is denoted by M = #P.

The corresponding control volume K of each grid point xx € P is defined by

K={zeQ:|r—ak|<|x—zg] Ve € P,z # i} .

The set of all neighboring control volumes of K is denoted by My,(K). The Lebesgue measure of each
control volume K is denoted by | K| and the mesh size of M by
size(M) = sup diam(K).
KeV
For two different K, L € V the one-dimensional Lebesgue measure of K N L is either zeroor K NL = &
for one o € £. Here the symbol o = K |L denotes the one-dimensional face between the control volumes
K and L and m,, is its Lebesgue measure.



We introduce the subset &;,,; C & containing all interior faces. Further, we introduce for all K € V the
subset £ C Eing, such that Vo € Eg AL € Ny(K): 0 = LN K.

The Euclidian distance between two neighboring grid points x i, z1, € P over the faceo = K|L € &y
is denoted by d,,.

Remark 3.1 (see [15]). Let M = (P, V), £) a Voronoi mesh. The dual (P, 7") of a Voronoi mesh consists
of a family P of grid points in ) and a family 7 of triangles and is called Delaunay triangulation if any
circumcircle of a triangle 7' = (v g, x,xpr) € P3 does not contain any vertexzy € Pwithx; € T. A
Delaunay triangulation is called boundary conforming iff the circumcircles of all triangles with 7N # ()
do not contain any grid pointz; € P,z; ¢ T.

A Voronoi mesh is derived from a Delaunay triangulation by the intersection of half spaces and hence
convex. If the domain consists of more then one material and the interfaces are aligned to the triangle
edges of the Delaunay mesh, then all subdomain triangulations have to be boundary conforming.

Definition 3.2 (see [13]). Let 2 be an open bounded, polygonal subset of R? and M = (P,V,€) a
Voronoi mesh.

e The symbol Xy (M) denotes the set of all piecewise constant functions from §2 to R which are
constant on every Voronoi control volume K € V. The constant value of w, € Xy (M) on the
control volume K € V is denoted by wr.

e Letp > 1. The discrete LP- norm of wy, € Xy (M) is defined by

1/p
lwnll e = (Z !KHlep> :

Kevy

e The discrete H' semi-norm of wy, € Xy, (M) is defined by

m
wnltp = Y, Telugx —wil, Ty = -
0=K|LEEn; 7

Here wy and wy, are the constant values of wy, in the control volumes K and L. The term T}, is the
so called transmissibility across the edge o = K| L, see [5]. The full discrete H'- norm is given by

2 2 2
lwnllzn pg = Wl g+ lwnllzz

We prescribe the approximation of a function f : 2 x R™ — R by

1
() = o /K f(a, ) de,

where K € V. In this context we introduce the approximation of the diffusion coefficients and the reaction
terms on a Voronoi cell K € V by

1 1
DVK() = / DIJ Zz,: dl’, RVK ©) = / Ry Z, ) dl’, (38)
K] J P RANTF
and analogously the approximation of k(o g) -

The corresponding piecewise constant function can be estimated from above and below by the upper
and lower bound of the continuous function. For K € V we denote by

1
ull) = / uy(z)de = |Kluyg = Uyi e |K|, Tyx = / uy (x) dz
K K| Jx



the mass of the v- th species in K and by u, i the constant density on K. For every species X,,, v =
1,...,m, we introduce the discrete initial values by

Utk :—/ Uy(z)dz, KeV.
K

The space-discrete version of the continuous problem (P) is obtained by testing with the characteristic
function of K. Using Gauss theorem, we derive the approximated flux term

/V'jyde:/ goonxdl Y —TYI Z(vpr, vok) (VoL — vuk),
K oK

0'=K|LE€K
where
- forx
Z(x,y) =4 *¥’ ad ; z,y €R, (3.9)
e’ forx =y

represents the logarithmic mean value of e” in the interval [z, y|. In the following we write Z = Z(v, 1, vy k)
foro = K|L € Eprand Dy = Dy (e"1% ... emK). With this definition of Z7 it is possible to switch
between a gradient in potentials and activities, i.e., the discrete version of Va, = a, Vv, holds. The sym-
bol Y, defines an averaging of D, u, over the edge 0 = K|L, which is symmetric in K and L, and is
given by

-DI/K + Dz/L Uy + Uy,

Y7 = , o= K|L.
2 2
By D, we mean D, = D, (e"' ¥, ..., e"mK). Following [15], we use the notation
Uy = (UI&K))KE]% u = (ula )a UK = (ul/K)V 1
Uy = (UVK)K€V7 V= (Ula )7 VK = (UVK)ITJn:b
UV = (UIEK))K€V7 U = (U17 m)7
CLK*(eU"K)T 15 :(CU”K)KG];, 1/:1,...,m.
Furthermore, we define the scalar products
m
<uua UV>RM = Z ‘K|UVK,UVK7 <u7 U>]RMm = Z <u’1/7 UV>]RM'
Key v=1

Definition 3.3 (Time discretization). Let S = [0,7] C R be a finite time interval. A time discretization
of S is defined as a strictly increasing sequence of real numbers (t,,))_; with ¢y = 0 and ty = 7. The
time step is defined by

tgn) =t, —th1<oo for n=1,...,N

and the largest possible time step is denoted by {5y =  sup t((;n).

n=1,...,N
A discretization of the whole domain Q = S x (2 is defined by the tuple D = (M, (¢,,)]_,) and the size
of the discretization is denoted by size(D) = max{size(M), {5y }. In the convergence proof we consider
size(D) — 0. We introduce the operator E : RMm _, RMm by

Fv = ((’L_LZ,K ek |K|)V:1 7m)K€V’

which maps in every control volume the chemical potential of every species to its mass. Furthermore we
define A : RMm — RMm by

Av=| > LY Z(vur —vr) ~ [K|Ruk () - (3.10)
o=K|Le€k Kev,

v=1,...m



Using these definitions we state the discrete version of (P) by: Find a tuple (u, v) such that

wltn)-wllnt) 4 Ap(t,) =0, wu(ts) = Ev(t,), n=1,...,N
£ (Pp)
u(0) ="U.
The discrete weak form of A is given by
<A'v, ’w>RMm = Z Z TUYVUZ:,T(’UZ,L — UI/K)(wl/L — ’LUVK)
v=1 o= i
K|Le&int (3.11)

— Z Z |K|Ry k("% )w, ¢ Yo, w € RM™,
v=1 Key

We associate the discrete (vectorial) solutions (u, v) to (Pp) piecewise constant functions (uy, vy) and
call them solutions to (Pp), too.

Remark 3.4. In all proofs, real constants C' > 0 with different meaning are numbered consecutively.
The constants only depend on the data (lower bounds of the diffusion coefficients, upper bounds of the
reaction rate constants, lower and upper bounds of the reference densities and initial values), see (A1)
and not on the discretization, unless otherwise stated.

Concerning vectors w € R¥, k € N we use: By writing w > 0 we mean w; > 0 resp. w; > 0 for
i =1,...,k. Bylnw we denote (Inw;)¥_, and by e¥ the vector (e®?)%_, is denoted.

Moreover the symbols S, Sz and S3 have a local meaning and differ from time to time. Generally
these terms arise from testing the problem (Pp) by test functions and discussing the expressions for the

time-derivative (S1), diffusion term (S2) and reaction term (S3) separately.

3.2. Prolongated quantities

We introduce piecewise constant in time and piecewise constant in space interpolation of a,, denoted by
ay p(t, ) fulfilling a, ,(t, ) = ayk (ty) fort € (t,—1,t,) and x € K, K € V. By a,,(t, x) we denote
the piecewise constant in time and piecewise linear in space interpolation of a, fulfilling a,,;(¢,2x) =
ayk(tn) fort € (tn—1,t,) and K € V. Writing a; we mean a; = (a,,;)); and by aj, we mean a;, =
(ay p)ye ;. The same notation holds for the chemical potentials v,,. Further we introduce an operator Kp
mapping the space-time-discrete concentrations into the space C'(.S, X*) by

(Kpup)(t) := t(ln)((t — tp—1)up(tn) + (tn — t)un(tn—1)) for t € (tn_1,tn).
1

We remark that the concentrations uy, are piecewise constant on the control volumes K € V. Obviously, it
holds (Kpuy)' = t(%) (un(tn) —up(tn—1)) forallt € (t,—1,ty,]. With e” we denote the vector (e )7 ;.
8

We introduce a reconstruction of the reference densities onto the grid by ﬁpﬂyh. For this we work with
the half-diamonds

Tox ={tex +(1—t)y:t € (0,1),y € o},
Tor ={tep,+(1—t)y:t€(0,1),y €},

where 0 = K|L € &£ denotes the Voronoi surface of two neighboring Voronoi cells K, L with corres-
ponding nodes x i, x1, € P, see Figure 2. The two half-diamonds 7, i and T, , form the so-called kite
D, = Ty UT,p, of the edge 0 = K|L € &y, the union of all these kites covers the domain (2. Then
the reconstruction operator is defined by

~ uyr, ifrelyk,
Ppion(z) =4 W0 BTSN gy KL e, (3.12)
UpL, ifx e Ty,p,



Figure 2: Kite D, = T, U Ty, of theedge o = K|L

We use the piecewise constant in space interpolation of the discretized reaction term R, and the dis-
cretized diffusion coefficient D, i introduced by R, ,(z, an(z)) = Ry k(ax) and by D, (x,an(x)) =
D, k(ak)forallz € K, K €V, see (3.8). In the same manner as in (3.12) we denote the reconstruc-
tion operator of the diffusion coefficient by (ﬁpD,,,h (ap))(x). Note that the same L>°-bounds for the
diffusion coefficient and the reference densities given in (A1), also hold for its reconstruction ﬁpﬂyh and
ﬁDDy,h(ah)- Since

Pply(2) = Tyi = Tn(z), =€ TkiLr, L € Nv(K), K €V

we can write shortly @, , instead of ﬁpﬁyh. The same holds for (ﬁpr,h(ah)) () and therefore we write
Dy p(ap).

3.3. Summary of results for the discretized problem

We collect some results for the discrete problem. For more details we refer to our previous papers [15, 8].
In [8] it was proved that the discrete problem (Pp) has alocal solution, if we assume for the reaction terms
that the following sensible conditions

R,(-(a1,...,ap-1,0,ap41,...,0)) >0 Vv =1,...,m, a € R, (3.13)

and
JstesSt:st>0 (3.14)

hold, see [8, (3.14)] and [8, (3.15)]. Condition (3.13) is known as quasi positivity, see [2, 28]. The second
condition (3.14) imposes conservation of atom number, see [14, Sec. 6.4.3]. As stated in [8, 15] the solu-
tions uy, of the discrete problem (Pp) lie in an affine subspace U + U and there exists a unique stationary
solution to (Pp).

We work with boundary conforming Delaunay-Voronoi meshes and impose the additional assumption
on the reference densities:

(A2) LetZbeafiniteindexset. Let Q2 C R?bea polygonal domain andlet 2 = U;<7); bea finite disjoint
union of subdomains such that the discontinuities of w,, v = 1,. .., m, coincide with subdomain
boundaries. Let the over all one dimensional measure of all internal subdomain boundaries be
bounded by 6. There exists some y € (0, 1] such that @, € C%7(Q;) := {w|q,,w € C*(R?)},
v=1,...,m,I € Z,see[15, (A4)].

For all R > 0 exists a constant vz € (0, 1] such that k(o g)lo, € C*72(€2; x Brm (0, R)) for all
(a,B) € Rand D,|q, € C*7%(Q; x Bgm(0,R)),v = 1...,mforall I € Z. Here Bgn (0, R)
denotes the ball in R centered at 0 with radius R.

There exists a constant P € N such that for all considered discretizations D = (M, (t,)_,) of
§2 x S the property sup y(_(p ) ¢) MaXxey card £ < P holds.



Along all solutions (u, v) to (Pp) the free energy

Flu) = Zm: 3 \K](uVK<ln

v=1Key

~1) + ik )

decays monotonously and exponentially to its equilibrium value, see [15]. Forallv € R™™ the dissipation

Uy K
Uy K

rate of the system is given by D(v) := <//1\'v, U>RM and nonnegative, see [15].
The next result supplies the main ingredient for our new results.
Theorem 3.5 (Uniform upper and lower bounds, see [8, Theorem 3, 4]). Let (A1) be fulfilled and D =

(M, (tn)_,) be a discretization fulfilling (A2). Then there exist constants 0 < c1, c2 < oo only depending
on the data and not on the mesh size of M such that for every solution (uy, vp,) to (Pp)

ess inguv,h(tn) >c1 Yn>1, v=1,...,m (3.15a)
xe

esssup u, p(tn) <coa Yn>1, v=1,....m (3.15b)
zeN

holds uniformly for all discretizations.

From Theorem 3.5 we conclude forv =1,...,m
0 < infess inf a, ,(t), supesssupa,p(t) <oo VteS. (3.16)
D e ’ D e ’

3.4. Uniqueness result

In this subsection we prove the uniqueness of the discrete solution. Only for this result we additionally
assume that the diffusion coefficients only depend on the space variable and not on the state variable. The
results in the other sections are independent of this assumption.

Theorem 3.6. Let (A1) be fulfilled and D = (M, (t,))_,) a discretization fulfilling (A2). Assuming that
the diffusion coefficients only depend on the space variable and not on the state variable and suppose that the
time step restriction

#m < 2%:2 Vn=1,....N (3.17)

holds, where Cy depends on the Lipschitz constant of the reactions. Then there exists at most one solution to
the discrete problem (Pp).

Proof. It suffices to prove uniqueness on a time step ¢,,_ to t,. Assuming that (Pp) has two solutions
(u(tn),v(t,)) and (w(ty),v(ty)) for the same initial value (w(t,—1),v(tn—1)). We test (Pp) by the
difference of the two solutions @ = eV — ev. From (3.11) we deduce S + S3 = S5 with

5 <u(tn) —(Tg(tn_1)’a(tn)> ) <'¢7(tn) - g<tn_1>’a(tn)>
té RMm t(s RMm

_ <ﬂ<tn> ), a(tn)>
t(g RMm

m
52 = Z Z TUYVJ((GVL - aZ/K) - (al/L - al/K)) (auL - al/K)
v=1 a:K\LEé‘mt

S3:=> Y |K|(Ruk(ak) — Rux(Gk))dvk.

v=1Key

and



Since the diffusion coefficients only depend on the space variable, the averaging Y, is equal for both
solutions. Since (z — y)z > 3 (2% — y?) and |Gy p (tn—1) Hi2 = 0 the term S} can be estimated by

m

I fcg~
S1 > Z t(T) {2’au,h(tn)Hi2 -

v=1"Y§

v &'

~ Cq o~
Jun(tue)l | = ) -
1

By (A1) the flux term S5 can be estimated with a constant C; > 0 as follows

m m
Sy = Z Z TgYVU(aVL - al/K)Q = QDQUZ |ay’h|12gl:M'
v=1

v=1 Uegint

Due to Theorem 3.5 and the local Lipschitz continuity of the reaction terms we find with Cs > 0

1S5] <Y Y |K||Ruk(ak) — Ruk(@x)llal < Co > [[aynll7e-

v=1 Key v=1

The constant C5 depends on the Lipschitz constant of the reaction term. From S} + Sy = S3 we find

m
1 Co\ = 2 ~ 2
Y| oo~ o ) lawnlze + epee annli ¢ <0
2t Ca

v=1

The assumption (3.17) ensures that the term in front of the L?-norm is greater zero. Hence a,,p = 0 for
alln=1,...,Nand v = 1,...,m and the two solutions coincide. O

4. Convergence

4.1. A priori estimates

In a first step we provide uniform bounds for the solutions to the discrete problem (Pp) for different
discretization levels.

Lemma 4.1 (A priori estimates). Let (A1) be fulfilled and let D = (M, (t})X_,) be a sequence of discret-
izations fulfilling (A2). For solutions (up,, vy) to the discrete Problems (Pp) the reconstructed quantities a;
and Kpuy, fulfill

sup {”alHL2(S,X) + [ Kpun g (s,x+) + HKDuhHC(S,Y)} < +oo.
Proof. We test the discrete Problem (Pp) with a(t,). By using the inequality 1/2(2% — 3?) < (v — y)z

for x,y € R, the lower and upper bounds on the reference densities, see (A1), we obtain the following
estimate

N
n) | w(ty) — w(t,—
Si :_E:tf;)< ( )t(")( 1),a(tn)>
n=1 RMm

6
"/ Cy
L&y 2 2
> > (Tl - Flon O )
v=1

On the other hand by using the definition of A and Z9 as well as Theorem 3.5 we get from (3.11) the
estimate

RMm

m N
<SS el i+ ellavals + e}
v=1n=1

S = — i tf;”)<2v(tn), a(tn)>
n=1

10



Here c; is a positive constant depending on the lower bound of the reference densities and the diffusion
coefficients. The reaction term was estimated by by some constant due to Theorem 3.5. The discrete H*
semi-norm was completed to the full H' norm. Therefore we deduce using Theorem 3.5 once more with
constants cz,cq > 0

supuaznmX <sup{2t5 ZnayhrmM}

n=1 v=1

m
Z{C3|avh ||L2+C4Zt5 ||auh||L2+1)} 0.

v=1 n=1

(4.18)

From Theorem 3.5 we also conclude

sup sup [lup (1) ||y = supsup || Kpup(t)|ly < o0
D tes D teS

and supyp, | Kpunl| 25,y < 0o. Since K7 is a continuous interpolant in time we find Kpuy, € C(S,Y)
and supp, | Kpup||¢ g,y < o0. We prove the boundedness of

N o ftn
sgp H(KD’LLh)/Hiz(&X*) = s%pZ/t H(Kpuh)’Hi* dt. (4.19)
n—1

First we estimate || ( Kpuyp)'(t) Hg(* . For this we use an arbitrary w € X and denote by w, x = ﬁ S wo(z) d
forall K € Vand v =1,...,m. By wj, we denote the corresponding piecewise constant function. Then

we obtain
uh(tn) - Uh(tnfl) w
+(m) ’
1) X*

w

= <Uh(tn)—uh(tn—1),(n)>
ts 'y

_ Z Z |K‘UVK UVK(tn—l)wVK

v=1KeV 5

B u(ty) — u(tn—1) w
o £ ’
5 RMm

- <A\v(t")’ w>RMm‘

Using (3.11), (3.9), the boundedness of the reaction terms due to (Al), by Theorem 3.5 and Holders
inequality we obtain the following estimates

m
(Av.0) | < 3 { sl alwnal g +eollwnnlzs}-
v=1

Using the following arguments
 |wunlpg pg < Cllwwl gy, see [5, Lemma 3.4];
o wonllpe < Cllwsllg + lwy = wypll 23

e by a discrete Poincaré inequality (see [8, (A.38)]) results

2 2
ku - wl/,h”L2(Q) = Z va - wVKHLQ(K)
Key

< Cdiam(Q)” > [lwy | F1 sy = C diam(Q)?[[wy [|3710,
Key

11



and we get
m
‘<Av,w>RMm‘ < (C?Z |au,h|H1’M ‘|‘08> Jwl] x-
v=1

Thus we find

v=1

. 2
H(Kpuh)'H;* < <C7 Z | @bl g pq + CS)

and by using [|a || 12(g x) < 00 we obtain from (4.19) the following estimate

m

N tn
supZ/ H<KDUh)’H§<* dt < sup 69/ (Z ’a”’hﬁll,M + 1) dt < oo
D p=17tn—1 D S

v=1
for all D. Finally, together with supp, [[Kpun| 25 x+) < c1o5upp [|[Kpunllf2(gy) < oo we obtain

supp || Kpunl| g x+) < o0 H

4.2. Weak solution

In this subsection we prove that a subsequence of solutions to the discrete problems (Pp) converges to a
weak solution of the continuous problem (P). In a first step we show the weak convergence of subsequences
in different spaces and by using a result of [23] we obtain strong convergence of a subsequence of the
chemical activities in L2(S,Y’). In a second step we conclude the strong convergence of the chemical
activities in L?(S, X).

Theorem 4.2. Let (A1) be fulfilled and let D = (M, (t%)N_,) be a sequence of discretizations fulfilling (A2).
Then there exista € L>(S,Y) N L*(S, X), U € HI(S X*) N L%(S,Y) and non-labeled subsequences
ap, aj, up, such that

ap — ain L*(S,Y), a; — ain L*(8, X), (4.20)
up, — win L*(S,Y), Kpuy, — in H(S, X*) (4.21)
as size(D) — 0. And (u,v) = (u,na) is a weak solution of the continuous problem (P).

Have in mind, that the sequence of reference densities is bounded from above and below, i.e. there exist
0 < ¢z < g < oo such that

¢z < min ess mf Uyp(z) <Uyp < max  esssup Uy p(z) < Gy,

v=1....m z€Q v=1,...m 2€Q

see also (Al).

Proof. In order to show the assertions of the theorem we proceed in several steps.

Weak Precompactness: Due to Lemma 4.1 and (3.16) we deduce the existence of functions
ae L>™(S,Y)NLYS, X), ue HY(S,X*)NL*S,Y),
such that, at least for non-labeled subsequences,
1. up, > winY,
2. a; — ain L%(S, X), L*(S,Y),

3. Kpup — tin HY(S, X*), L*(S,Y),

12



4. Kpup(t) — u(t) in Y, and additionally in LP(Q)™ forp € [1,00) forallt € S

as size(D) — 0. Note that, due to Theorem 3.5 we can extract a subsequence such that Kpuy, () — u(t)
in LP(Q2)™ for p € [1,00) and for all t € S. We also mention that due to Lemma A.3 we have u, — @
in Y. Moreover, by the definition of Kp and Lemma A.3 we have u,(0) = Kpup(0) — U inY for
size(D) — 0, hence U = u(0). Using Definition 3.3 we find that

N tn
lun — Kpunljzgsx = D / (tn = t)°[|(Kpun) || . dt
n=1vtn-1

< ng(Kpuh —0

12

) HLQ(S,X*)
and therefore for subsequences Kpup(t) — up(t) — 0in X* and up () — u(t) in X* faa. t € Sas
size(D) — 0. Due to Lemma 4.1 and Theorem 3.5 we get supy, ||a;(t)|ly < oo for all ¢ € S, hence there
exists a non-labeled subsequence, such that a;(¢) — a(t) inY faa. t € S.

Strong convergence of the activities: Now we use a result of [23]: Let (¢;)jen be an orthogonal basis
of L*(Q). For all € > 0 there exists a N, > 0 such that

Ne
2 2 2
[wllZ2q) < Z (w, ©j)720) + vl Ywe HY(Q). (4.22)
j=1
We apply the result for different discretizations, i.e., w = a,; — a, v, v = 1,...,m, and obtain after

integration over S

2
l|avs — avy L2(S,HY(2)"

Ne T
2 2
L8020 < 2 /0 (Ot = Ay, 05) oy B + €| avs — avy
j=1
Note the boundedness of supy, ||a, || L2(S.H1(Q)" Since a,,; is bounded in Y for all ¢ € .S, by the domin-
ated convergence theorem we conclude that (a,;)p is a Cauchy sequence in L*(S, L*(Q2)) and therefore
ayy — @y in L2(S, L2(Q)) for v = 1,...,m. Since up, /u, = ay, and since ap, — a; — 0in L%(S,Y) (see
(1.31)) we obtain

lun/tn = all 2(syy < llan — @l p2(syy + llar = @l 25y = 0.

On the other hand by using u;(t) — u(t) in X* fa.a. ¢ € S and supp, |lup(t)|y < ooforallt € S
we obtain for a non-labeled subsequence uy,(t) — u(t) in Y fa.a. ¢ € S. Now we apply the strong
convergence of Uy, — @ in Y and the uniform boundedness from above and below of the sequence (uy,)
to get

up(t)/up, — u(t)/uinY faa. t € S. (4.23)

Finally, due to supp, ||up /Unl| 25y < oo we find by the dominated convergence theorem uy, /), — u/u
in L2(S,Y’) which gives us @ = u/u. Since ay, is uniformly bounded from above and below (see (3.16))
the bounds also hold for the limit @ and therefore @ is positive and v := Ina.

From Lemma A.4 together with (A1) we conclude with some ¢ > 0 that

1Run(an) = Ru(@)72(s,y) < cllRun(an) = Ru(@lp1(s,yy = 0,

> ~ (4.24)
[@wn Dyn(an) — HuDl/(a)H%%S,Y) < c|[tynDyn(an) — HI/DI/(G)HLl(S,Y) — 0

as size D — 0. This gives pointwise convergence a.e. for subsequences.

13



Weak solution: Since C5°(£2)™ is dense in X we use test functions ¢ € C§°(£2)™ and a pure time
function x € C§°(S). Set ¢ = (v (2K ))Kevy=1...m and ¢, p(x) = @, (zk) forz € K, K € V.
By ¢, we denote the piecewise affine interpolation of ¢. Note that ¢,,; € L>(2). Let be X(t,) =
(x(tn) + x(tn=1))/2forn = 1,..., N. We note that

(n) (t5")?
t& Y(tn) - 9 (n) (X(tn) +X(tn—1))
ts
tn
- t(lm/ X(tn)(t = tn1) + X(tn1) (tn — 1) dt (4.25)
5 tn—l

:/t" (Kpx)(B)dt, n=1,....N

tn—1

and (Kpy) — xin L?(S) (use the mean-value form of the Taylor series remainder). We use test functions
X (tn) t € (th—1,tn],n=1,..., N for(3.11) and sum overn = 1, ..., N to obtain S; + Sy = S5 with

N
n)_ w(ty) — w(t,—
Sl = Zt((s )X(tn)< ( ) (n)( 1)790> )
n=1 t RMm

§

N m
Spi= Y tIXE) Y D TS avn — au)(pur — puk),
n=1

v=1 U:T‘Légint

N m
Sy =3 t0%(ta) S Y IK|Ruk(ak)evi
n=1

v=1KeVy

- /Q (K ) (8) R (an) oo da dt.

We remark that the interpretation of the discrete sums as an integral over () = S x (2 like in the last two
lines is crucial for the convergence proof. In the following we will do this several times. We define

St ::/S<ﬁ’,g0>xxdt,

$=3 / N / D,(@)7,Va, - Ve, dt dx,
=175 Q
§3 = Z/ X/ R, (a)p, dz dt.
v=1"/5 Q
Time derivative: Using (4.25) the term S; can be interpreted as
s1=% /Q Con((Epuys) (1)) (Kpy)(t) dz dt.
v=1
By partial time integration (and Kpx(0) = x(0) = x(tn) = Kpx(tn) = 0) we obtain

Si=-3 | [ euntEoun o) dds.

Now we use ¢, — @ inY, (Kpx)(t) — x"in L?(S), Kpuy — @in L?(S,Y) andu € H'(S, X*) to
find

size D—0

lim S = —/ (@, )y X dt = 5.
S

14



Reactions:  Using (4.25) the reaction term 53 can be written in the form S3 = S31 + S32,

Sai=3 /S (Kpx)(t) /Q (Ron(an) — Ro(@))pun da dt,

Swi=) [ o0 [ Ro@g.ndear

Since ), — @ in Y we find S3y — S5 and by Cauchy-Schwarz inequality we get

S31 < Z ”(KDX)(t)(PV,hH[p(Q)”Ru,h(ah) - RV(a)HLQ(Q)'

v=1
For the first term we find limgj,e p—y0 || (pr)(t)gp,,thLQ(Q) = |Ix®vll2(g) and due to (4.24) the second

term tends to zero, and we find limgj,. p_.g S31 = 0, hence limg;,e p_,o S3 = Ss.

Diffusion:  For the diffusion term we use (4.25) and the notation of Subsection 3.2 to get So = Sa1 + S22
with

Sui= /S (Kpx) (1) /Q (Do (an )y — Do(@)) Vay, - Vg, da dt,
v=1

Spp =Y / (Kpx)(t) / D, (@)a,Vay, - Vi, dxdt.
v=1 S Q

Applying Cauchy-Schwarz inequality and the boundedness of KpxV,,; and of the reference densities
we find with a constant ¢ > 0

m
So1 < Z CHVGVJHL2(S7L2(Q)2) ”ﬂl/,th/,h(a/h) - EuDu(a)“L2(57L2)a

v=1

and from (4.24) and Lemma 4.1 we obtain Sy; — 0 as size(D) — 0. For Sy we use weak-strong
convergence with a; — @ in L%(S, X) and (Kpx)yp; — x¢ in L2(S, X) to find limg,e p_y0 S22 = S,
hence limgj,e p_so So = §2. Since S1 + So = S3 and limgje p_so S; = §, fori = 1,2, 3 we have shown
that (u,v) = (u,lna) is a weak solution of the continuous problem (P) in the sense of (2.6).

Strong convergence of the gradient: Now we prove the strong convergence of the gradient. Since we
know that (u,9) = (u,In@) is a weak solution of the continuous problem (P) and by testing (P) with

@€ L2(S,X) we find S 4+ S5 = S with

§1 = /5 <iL\/,ZL\>X dt = §11 — §12,
5 —~ [ U(tn) 5 — [ U
511 = ;/g ﬁdl’, 512 = ;/g Qﬂy d:E,

S5 ;:Z/ D, |Vay,|? dt dz, Ss ;:Z/ R, (@)ay dt dz.
v=1 Q v=1 Q

Testing the discrete problem (Pp) with the discrete vector a € RMm (defining the quantities aj, and a;)
we find analogously to the continuous problem S; + Sy = S3 with

Sl = Z/Q (KDuu,h(t))/ au,h(t) dx dta 52 = Z /Q Dl/,h(a‘h)HV7h‘vaV71|2 dx dta
v=1 v=1

53 = Z/ Ry7h(ah)ay7h dx dt.
v=1 Q
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Time derivative: Using (v — y)x > %(CL’Q — %)V, y € R we estimate

S = izNj " /Q <u”’h(t”) — u”’h(t”‘l)) ayp(tn) dz dt

tn - tnfl

m N t 2 2
n 1 us, (t us o (tn—1
>§ E / / V’h( ) ”’h(n ) dx dt
tn_1 4 2uzz,h ty —th—1

where
2 m 2
uZ ) (ty) uy, 1,(0)
Sll = E / ﬁdl’, 512 = E /S;2uuhd$
v=1 ’

Using weak strong convergence for u;,(0) = (Kpuy)(0) — 4(0) and also for up(ty) = (Kpup)(ty) —
u(ty) in L*(2)™ together with 1/7;, — 1/uin Y we get S1o — S12 and Sy; — Si1 as size(D) — 0.

Reactions: By Cauchy-Schwarz inequality we obtain for the reaction term S3 = S3; + S32,

m
Sp =Y /Q an (B (an) — Ry (@) da dt
v=1

< ZHCLV,}L’

v=1
Szg 1= Z/QRV(ZL\)CL,,JL dx dt.
v=1

Due to (4.24) and Theorem 3.5 we find S3; — 0 and by aj, — @in L?(S,Y’) we obtain S35 — §3, hence
S3 — S3 as size(D) — 0.

L2(S,L?) HRll,h(ah) - RV(a)HLQ(S,L2)7

Diffusion: By S11 — S12 < S1 = —S2 + Ss leading to S11 + S2 < S3 + S12 we find
§11 + lim sup Sy = limsup(S11 + S2) < limsup(S3 + S12) = §3 + §12

size D—0 size D—0 size D—0
and by S3 = 511 — S12 + S2 we obtain

lim sup S < §2. (4.26)
size D—0
Exploiting (4.24) and using D, 4,5, — D,u, for a.a. (x,t) € Q and the boundedness of the diffusion
coefficients and the reference densities (see (Al)) we find /D, puy hpr — VDU, in L?(Q) for all
¢ € L*(S,Y) and \/Dy 1y, — VD, foraa. (z,t) € Q. Therefore using Va; — Va in L*(S,Y?)
we obtain

3 / (VDusn Vv, = /Do, Va, ) o du dt
v=1 Q
=> / Dyl (Vay, — Va,) ¢, dx dt
v=1 Q

+ Z / <\/ Dy = v/ Dyﬂy) Vay,p, dzdt — 0
v=1 Q

16



forall o € L?(S,Y) as size(D) — 0. This weak convergence gives us

|
[\e}

size D—0 size D—0

m 2 s 2
liminf Sy = liminf 3 H,/Dy,hamhww > 3 H\/Dm,,vay o)
=1 v=1

Together with (4.26) it follows
lim 52 SQ (4.27)

size D—0

Now we prove [la; —@l| ;2(g x) —> 0 as size(D) — 0. Using (A1) we calculate with some constant ¢ > 0
uu h
IVa; = Val[72(5y2) = Z/ Do |Vayl—Va,,] dz dt

< CZ / Dy n(an)ty n|Vay, — Va,|* dz dt
Q
= ¢(S21 — 2592 + S23)
with
521 = Z/ Dy,h(ah)ﬂy7h\VaV7l\2 dx dt
v=1 Q

S =Y / Dy n(ap)@, 1 Vay,, - Va, dz dt
mrife)

Sog := Z/QD,,7h(ah)uy7h|V&\,j2dl'dt.
=1

Using Cauchy-Schwarz inequality we find Sa2 = S221 + Sa22 with
So991 1= ij: /Q(D,jvh(ah)uy,h — Dy (a)u,)Va,,; - Va, dxdt
< llall L2 (s,x) i (D p(an)tyn — Dy(a)un,)Vay |l 12 g 12);
v=1
S99 1= i /Q D, (a)u,Va, - Va,,dx dt.

By (4.24) we obtain the pointwise convergence of D, n(an)ty,, — D,(a)u, and by dominated con-
Vergence theorem we find S99; — 0 and Sz — Sg as size(D) — 0. By the weak . convergence of

a; — ain L?(S, X) we get Sogp — SQ, hence Sy — 82 From (4.27) we have Sy — Sg and therefore
S91 — 28599 + So3 — 0 as 31ze(D) — 0. O

Corollary 4.3. Let (A1) be fulfilled and let D = (M, (t})2_,) be a sequence of discretizations fulfilling
(A2). Moreover, let (u, V) be a weak solution of the continuous problem (P). Then there exists a subsequence
of solutions (up,, vy) to (Pp) with the convergence properties stated in Theorem 4.2 such that

[ Fn(un) = F () 12(s) — 0 as size(D) — 0.
Moreover, for the relative free energy Wy (up) := Fp(up) — Fp,(u}) holds

[Wh(un) — ¥ (@)| 125y — Oas size(D) — 0. (4.28)
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Proof. Let c be a positive constant with varying meaning. Thanks to Theorem 3.5 we get

[In(un/un) — In(w/u)||2(5y) = [Inan = Inal| ;2 gy

llan —all 125,y
~ miny—y._;, essinfyecq @, (2)

— 0

and together with Lemma A.3 and u;, — @ in L?(S,Y") we obtain the following estimate

St = || Fu(un) — F(@)|72(s)

< cllin(un/Tn) — n(@/) |25,y + clun = Ullz2(s,y) + e Tllan —ally =0,

as size(D) — 0.
Since uj = %hu* and aj = a* holds (see [15, Corollary 3.1]) and by Lemma A.3, we find

1En(uh) = F(u)| 725y < eT Y llaj(nag — 1) + 1 e gy 1@n = Tollq) — 0,

v=1
from which the second assertion follows. O

Remark 4.4. In the case where, the diffusion coefficients only depend on the space variable and not on
the state variable we have uniqueness of the weak solution (u, v) of the continuous problem (P) as proven
in [19, Theorem 5.6]. Assume by contradiction that there exist two converging subsequences, then one
can repeat the proof of Theorem 3.6 and Section 4 and use [19, Theorem 5.6] to conclude that there exists
only one limit point. Therefore not only a subsequence converges, but so does the whole sequence.

5. Numerical example

We close the paper by a numerical simulation of the Michaelis-Menten-Henri mechanism (MMH), from
an initial value until thermodynamic equilibrium. This reaction system is well-known in biology and
chemistry, see [22, 25, 31]. For an example occurring in the simulation of the post-exposure-bake step in
optical lithography we refer to [24, 9, 10].

The MMH-mechanism is the reaction system

X1+ Xo = X3 = Xo + Xy4.

Here an enzyme X; reacts with the substrate X5 to form a complex X3 which then decays to the product
X4 and releases the substrate X5. Correspondingly, the set R consists of two pairs of vectors, namely c¢; =
(1,1,0,0) and B; = (0,0, 1,0) for the first reaction as well as ay = (0,0,1,0) and 3, = (0,1,0, 1) for
the second reaction.

Due to the definition of the reaction term (1.3), the net production rates of the species are given by

Ri(a) = —kz(alﬂl)(alag —as),

Ra(a) = —k(a, g,)(a1a2 — a3) +k(a2,@2)(a3 — asay),
R3(a) = +k(a, g,)(a1a2 — a3) —k(as,8,) (a3 — azaq),
Ry(a) = +K(s,8,) (a3 — a2a4).

The stoichiometric subspace S and its orthogonal complement S+ are spanned by

S = span{(1,1,-1,0), (0,-1,1,-1)}, S+ =span{(1,0,1,1), (0,1,1,0)}.
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Every element of S L creates one invariant of the system, i.e., Ry + R3 + R4 = 0 and Ry + R3 = 0 hold,
and hence

/(U1 + ug + uq)(t) doe = /(U1 + Us + Uy) dx, (5.29)
Q Q
/(ug + usz)(t) de = /(Ug +Us)dz Yt >0 (5.30)
Q Q

are conserved during the time evolution (use the homogeneous Neumann boundary conditions and in-
tegration over the entire domain). At thermodynamic equilibrium the chemical activities are constant
over all control volumes K € V), therefore the solution can be obtained by solving

0= Ry(a") = aja; — a3, 0 = Ry(a™) = azay — a3

together with (5.29), (5.30). In the model that we have in mind [10, 9], the diffusion coefficient of Xy is
given by

_ 1 — oVa
Da(ar, as) = Dag exp <—<p3 pruar + ( @1)“404) ’

patrar + (1 — p2)usaq
where @1, 2, @3 are so-called lumped constants, see [10]. All other diffusion coefficients are assumed to
be piecewise constant and independent of the concentration.

Time integration is done using the fully implicit Euler discretization, where the initial guess of the New-
ton iteration is predicted by a linear extrapolation in time of the last two previous accepted solutions for
the chemical potentials.

The time step of the method is adapted to the variation of the free energy, the dissipation rate of the sys-
tem, and the number of necessary iterations for Newton’s method. If possible, the time step is incremented
by a fixed constant (in the simulations by 1.6).

The nonlinear systems are solved by Newton’s method and the resulting linear systems are solved by the
sparse direct solver PARDISO [29, 30]. Due to roundoff errors the invariants can be driven away during
the time evolution. The same behavior is known in the context of solving numerically ODEs with linear
constraints, see [4]. Therefore we introduce two Lagrange multipliers to stay on the manifold spanned by
(5.29)-(5.30). The Newton iteration stops if ||,/ ; < €, where 8, is the Newton update of chemical
potentials and ¢, is a given tolerance [13] and if the relative mass invariant error is less than a given
tolerance.

We are interested in the behavior of the method using different discretizations for Q = S x (), ie,
using different meshes and different adaptive time-steppings. For 2 C R?, we choose a circular domain
consisting of three different materials, see Figure 3. The material boundaries are aligned to the edges of
the triangles and every subdomain fulfills the boundary conforming Delaunay property. The Delaunay
meshes are created by TRIANGLE [32] and have a different number of nodes, see Table 1. In the fourth
column, we compute the ratio of mesh M;,7 = 1...,4, related to Mj5. The materials are represented by

X
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Figure 3: Mesh Mo: One half of the grid is shown. The different colors represent different materials
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Mesh | #P #7 | ratio
My 465 861 | 0.01
Mo | 2264 | 4360 | 0.05
Ms | 4454 | 8687 | 0.1
My | 22085 | 43666 | 0.5
Ms | 43973 | 87233 1

Table 1: Characterization of the different meshes

red region green region blue region
(w1, u2) (1016, 10) (1,1) (10-20.1)
(w3, s) (10,10'2) (1,1) (1071, 1)
(U1, Us) (1,1071%) (1,1) (10720,10716)
(Us, Us) (10715, 10716) (1,1) (1,10727)
(D1, D) (10719, 200) (10719,0.02) | (1071°,250)
(D3, Dy) (1071°10712) | (1075,10712) | (10719, 10712)
(¢35 01, P2) (3.37,0.65,0.95) | (10,0.01,0.95) | (0,0.65,0.95)
(K(a,8))1 K(az,8,)) (107%,10°) (10%19,10) (107%%,0.1)

Table 2: Material parameter for the three different regions. Note the large differences in the diffusion and
reaction coeflicients

different colors in the mesh and the used parameters are collected in Table 2. The simulation parameters
in the blue region are chosen in such a way that the catalyst X5 is created by the intermediate X3. In the red
region the forward direction of the MMH mechanism dominates. We expect that the catalyst X5 from the
green region diffuses and creates together with X; the intermediate X3 which quickly degrades into X4 by
releasing Xo. On the slow timescales the created structures dissolve by diffusion and the thermodynamic
equilibrium solution is attained. The parameters in the green region are chosen in such a way that the
reaction is in steady state. Due to changes in the blue region the steady state is violated and the reaction
and diffusion processes start.

At thermodynamic equilibrium, the chemical activities are given in Table 3. Since we are interested

Mesh ajp, Ay, azp, ap,

M; | 1.626-10711 | 0.643 | 1.044- 10711 | 1.626- 10~
My | 1.549 1071 | 0.624 | 9.670- 10712 | 1.549 - 10~
Ms | 1.534-1071 | 0.620 | 9.517-10712 | 1.534 - 101"
My | 1.515-1071 | 0.615 | 9.319-10712 | 1.515- 10~
Ms | 1.510-1071 | 0.614 | 9.273-10712 | 1.510- 10~

Table 3: Thermodynamic equilibrium of the system on different meshes. Note that the equilibrium solu-
tion is constant for all K € V. Moreover, it depends slightly on the geometric approximation of
the curved boundaries of the domain by the triangulations

in the long time behavior of the method, we run the simulation on a time interval S = [0,10%"]. The
number of executed (excluding rejections) time steps, the number of rejections, and the squared ratio of
used time steps related to discretization D5 are tabulated in Table 4. In addition, the L?(.S)-norm of the
relative free energy functional and the dissipation rate are summarized. The ratio of the mesh nodes and
the squared ratio of the executed time steps are close together. In Figure 4, we plot the increase of the
time step over the time. The time step grows linearly in the log-log scale, except when a new time scale
is reached. The first deviation from linear growth in log-log-scale is due to the fast reaction in the blue
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Discret. | # times.rej | ratiosq | || ¥y, HLQ(S) | Dp, ||L2(S)
D, 834;4 0.027 | 1.835-10% | 3.082-10"
D, 1104;5 0.047 | 1.886-10% | 3.294-107
Ds 1693; 4 0.11 | 1.890-10% | 3.339-107
Dy 3513;3 0.48 | 1.893-10% | 3.397-107
Ds 5084; 3 1 1.894 - 10% | 3.414-107

Table 4: Characterization of the time discretizations: Shown are the total number of time steps (without
rejections) that are needed by the program in order to solve the problem on S = [0, 102], the
squared ratio of the necessary time steps w.r.t. the finest discretization Dj, and the L?(.S)-norm
of the relative free energy and the dissipation rate

region. During the movement of the front of X4, the time step is limited by the number of Newton steps.
The second deviation is less pronounced on the coarse mesh, due to a faster discrete diffusion on coarse
meshes. The next deviation is due to the growth of the concentration on the boundary between the green
and red region. The finer mesh resolves more effects of the solution, therefore the necessary time steps for
D5 are smaller compared to the time steps of D;.

le+20

Timestep ovell time for D_1

Timestep over time for D_5
rel invariant err m134 D_1
rel invariant err m134 D_S . ) fl

le+10 | rel invariant err m23 D_1 "_v,,/‘

rel invariant err m23 D_5

macheps 2.22e-16 ——

e

le-10 |- i

le-20 |- -

le-30 |= -
I I I I

1e-30 le-20 le-10 1 le+10 1e+20

Figure 4: Evolution of the time step over the time for the discretizations D; and Ds. Relative error of the
conservation of invariants (5.29) and (5.30) during time evolution

Since the problem is nonlinear and an analytical solution is only available at thermodynamic equilib-
rium we study the convergence of the method by exploiting the difference of the relative free energy, and
the reaction and diffusion part of the dissipation rate, see Corollary 4.3. In a first step the system forms X»
in the blue region. Due to the strongly spatially varying diffusivity of X4 the concentration creates a wall
on the boundary of two materials. Then the movement of X, into the red region starts. On the coarsest
mesh the diffusion is larger, therefore the front moves faster and the dissipation rate disappears earlier
in time. After the species X4 fully fills up the red region, the wall on the boundary of the red and green
region starts to growth. The growth is driven by reaction and diffusion and will become flatter on the area
where the distance of the red and blue region is minimal. The species X4 can not penetrate into the red
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Figure 5: Evolution of the relative free energy functional ¥}, for different discretizations D;, ¢ = 1,. .., 5.

The function values are scaled by 1720

region due to its very small diffusivity. After the system is evolving on the slow time scale, the barrier
dissolves and the concentration of species X4 raises in the red region and the system approximates the
thermodynamic equilibrium. In Figure 6 we depict the evolution of concentration of the for species on
the mesh M and M at various times. Every column in Figure 6 corresponds to a vertical straight line
in the relative free energy plots in Figure 5.

The evolution of the relative free energy functional Uy, is plotted in Figure 5. The evolution of the
relative free energy and the dissipation rate reflects the different timescales of the system. Since the initial
value is differently resolved by the meshes, the relative free energy varies on different meshes at the initial
time. After the first fast reaction the curve of the relative free energy steps down. Since the reaction is
faster than all other diffusion timescales the curves nearly coincide. Coarse grids add numeric diffusion,
hence the front movement is slower on fine grids and the energy curves decay accordingly. Then further
diffusion is blocked by the already described wall and this causes the synchronization of all free energy
curves. The fill up of the red region by X, is diffusion dominated and depends on the refinement of
the mesh. Therefore we see a time shift in the free energy curves. Finally the system approximates the
thermodynamic equilibrium, which depends on the initial species masses, hence weakly on the spatial
discretization. This is reflected in nearly coinciding energy curves.

In Figure 7 we plot the evolution of the absolute difference of the relative free energy curve associated
to D;, i = 1,...,4, and the relative free energy curve belonging to Ds. In Table 5 the relative L?(.S)-
error of the relative free energy and the dissipation rate is presented. Since the continuous solution of the
reaction-diffusion system is not known, a reference solution for the finest discretization D5 is computed,
and errors are measured against this discrete solution. From these errors convergence rates are estimated
by fitting. We investigate only the convergence behavior w.r.t. the spatial error, since in our scheme the
time step adaptation is intimately coupled to the space discretization. The error norms are given by

H\T’hzj 12(5) = H\Ilhi(uhi) — Wy, (“hj)Hm(S)H\Ijhj(uhj)H;(S)’

Hﬁhij e [ Dn, (un,) = Dhj(uhj)HH(S)HDhj(uhj)H;;(S)'

L2(

For the estimate of the convergence order, only the results from the first three discretizations Dy, D2 and
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Figure 6: Concentrations of the four species at different times for discretizations D; and D5. Note the
similarities of the coarse and fine solutions, e.g., at t = 1.26- 10~'? and t = 5.05 - 10°. Be aware
that differences are mainly caused by faster diffusion on coarse grids
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+6.47e-06
+9.56e08
+1.41e-08
+2.09e-11
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D5 are taken into account. The results from discretization D, are too close to the results of discretization
Ds, and therefore higher-order components of the true error can spoil the error H\Ilhij H . Thisis a

L2(S)
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Figure 7: Evolution of the difference of the relative free energy functional ¥, of the discretization D;,
i =1,...,4, relative to the relative free energy curve of discretization Ds

typical phenomenon, when an error norm is computed against a fine-grid reference solution, and not the

true reference solution. Defining h = \/%73’ one can recognize from Table 5 that the L2(S)-errors of the

relative free energy and the dissipation rate decay as h? and h'-3. Note that the used number of time steps
is proportional to %, as can be seen from the ratios of Table 1 and 4. Therefore, we observe that our scheme
allows by doubling the number of time steps and quadrupling the number of mesh points to divide the
error of the discrete relative free energy by a factor of four.

#P | #time step H \TJ;%

HDhi5

L2(S) L2(S)
Dy | 465 834 3.222-1072 | 9.7169 - 102
Dy | 2264 1104 5.551-1073 | 3.5055 - 102
Ds | 4454 1693 3.171-1073 | 2.2047 - 1072
Dy | 22085 3513 4.561-1073 | 4.8920- 1073

Table 5: L?(S)-norm of the relative free energy ¥}, and the dissipation rate Dy, of discretization D;,
i=1,...,4,related to discretization D; and scaled by the L?(S)-norm of the relative free energy
and dissipation rate of Dy

We emphasize that our method can approximate the thermodynamic equilibrium and it shows the ex-
pected decay of the relative free energy and the expected nonnegativity of the dissipation rate on all con-
sidered discretizations. All timescales of the system can be resolved by the method, even if the front
movement or the strong gradients in the direct neighborhood of interfaces are only roughly resolved —
still on the very coarse mesh M the different energetic states of the system are present, of course with
time shifts of their begin and end points (compare Figures 5, 6, 7). In general, diffusion is faster on coarse
grids due to the added numerical diffusion. Whenever a quasi steady state at a time scale is reached, or the
system is ‘waiting’ before evolving on the next slower time scale, the free energy curves are synchronized.
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A. Appendix

LemmaA.l. 1. Let be supp |lail| 25 g1 (q)) < 00 and the assumptions of Theorem 4.2 be fulfilled.
Then
lla; — ah||L2(s7L2) —0 (1.31)

assizeD — 0.

Proof. We decompose the integral over the whole domain into the intersected area of the control volume
K and the kite D, (see Subsection 3.2) over the edge 0 = K|L

7)o flas - ahuiz(s,m(m) — [ | @)~ ante)? do

/S - /de(al(x) —ag)? dz dt.

Using Taylor expansion of a; around x i and the boundedness of the gradient we get

KeV LeN,

Ty < (size M)? / \Vay(x)|? da dt
SKeVLe/\/ (k) V KNDo

< (size M)*|lai 25,11 () — O
as size(D) — 0. O
We introduce the weak gradient reconstruction operator V., : Xy,(M) — L?(Q)? by

Vwa(x) = 2%7%150 forx € D,, 0 = K|L.

The vector n,, denotes a unit normal vector of the face 0 = K|L € &, the direction is arbitrary, but
fixed. Then, the vector ¢, denotes the unit tangent vector of the straight line Tr, =7, which is a —7/2
rotation of n,.

Lemma A.2. Assuming a sequence (a;); in L*(S, H*(Q)) with an a priori bound lall 25,10y < G
then we can extract a subsequence (also called a;) converging toa € L*(S, H'(2)) in the following senses

a; — ain L*(S, HY(Q)), Vwa; — Vain L*(S, L*(Q)?).

Proof. Since ||ai|| ;2(g 1) is uniformly bounded, the weak gradient reconstruction of a, is also uniformly

bounded in L?(S, L?(2)?). Therefore there exist a subsequence and a g € L?(S, L?(2)?) such that
Vwa; — gin L?(S, L?(2)?). We show that § = Va holds.
For this we use arbitrary test functions y € C§°(S) and w € C5°(2)2. The set

{9:9= inwiwith w; € CF°(N)?, xi € C5°(S)}
i=1
is dense in L2(S, L?(2)?). According to the Helmholtz decomposition, the set
{w:w =V, + curl p, with ¢, ¢, € C5°(Q)}

is dense in L%(Q)2.
Forall ¢ € C3°(2) we denote by v; the Lagrange interpolant of ¢ consisting in a continuous piecewise
affine function such that for all nodes zx in the mesh one obtains ¢;(zx) = ¥ (zx). Due to regularity
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of the mesh, one gets from classical FEM theory v, — 1 in H'(Q). Moreover, we introduce a strong
gradient interpolation operator by
ql}(mToK) — w(mTo'L)

(o) ; Ql)(xK)t(7 + n, forx e D,, o0=K|L,
o Mg

V() :=

where 7, and &7, denote the circumcenters of the triangles to the left and to the right of 7, 77
Furthermore the continuous curl operator is defined by a (—% ) rotation of the gradient, i.e., one has

2
curly = (_qu > =—

L
%) L
=—(Vy)—.
(45) =-cww)
Therefore, the strong curl interpolator is defined by

() = - NE), Var) Vo)

t, forx e D,, 0= K]|L.

Using Helmholtz decomposition we obtain

G(t) = Vg, (t) + curl go(t) gr(t), ge(t) € H'(Q)faa. t € S.

Irrotational part:  First we show that the irrotational part of g in the sense of Helmholtz decomposition
equals Va. Due to the orthogonality of ¢, and n, we have

S:/x/Val‘chT,lda:dt

/ Z %(GK —ar)(er(zK) — @r(vr)) dt

o=K|LEEn: °*

Lo e (s zete)

0=K|LEEn;

:/X/Vwayvsgonl dx dt.
S Q

By weak-strong convergence, we obtain in the first and the last integral

/ / Va-Vo,dxdt = / /g Ve, drdt

and therefore Vg, (t,z) = Va(t,z) faa. (t,z) € Q.

Divergence-free part: Now, it remains to show that the divergence-free part of g vanishes. In [27] it
is shown that covolume discretizations on Delaunay-Voronoi grids fulfill the continuous property V -
curly = 0 in a discrete sense, which will be used in the following. For the sake of completeness, we
present the necessary arguments. Obviously, we obtain for the strong curl interpolator on regular meshes
curlg ¢ — curlp in L?(2)%. Now we compute

/ xVway - curlg . dx dt
Q

/ S D, |< > (%(iBT[,K)T;U%(wTGL)> gt

K|L651nt
/ Z ( ar — CZK) (Spc(mTaK) - @C(ngL)) dt
o= K|L€51nt
/ ) 2 L(pel@n,y) — el@r,,) di
LeV KeNy(L
x ¢0Q

=0.
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The last integral is always identically 0, since we add the same term ¢.(7,, ) one times positively, and
one times negatively. By weak-strong convergence of the first integral, we finally obtain

/ X9 - curl p. dx dt = 0,
Q

i.e., the divergence-free part of g vanishes, and we have indeed g(¢, ) = Va(t, x) faa. (t,z) € Q. O

Lemma A.3. Let ) be an open, bounded, polyhedral subset of R™Y. Moreover, let { M} be a series of Voronoi
finite volume meshes with size (M) — 0. Let be u € L*(Q2). Then the piecewise constant functions uy,
with up(z) = uk ifr € K,

al
ug = — [ u(x)dr VK €V,
K|k
converge to w in LP(S2) for all p € [1, 00) as size (M) — 0.
Proof. We show the result for p = 1, the assertion for p € (1, 0o) then results from

p—1 1
lun — ull o < @l o) 7 fJu— w7

Let be ¢ > 0. Luzin’s theorem guarantees the existence of a closed set M. C €2 such that

u|ps.  is continuous and mes (2 \ M) < R
81[ul| Lo

Since M. is compact there exists a § > 0 such that

€
2 mes (2

u(z) = u(y)| < Va,y € M, |z —y| <0
Let size (M) < 0 which implies |z — y| < ¢. Introducing the set
K\M.:={zeRY: 2z e K, z¢ M.}

we estimate the integral in the L!-norm by considering integrals on subsets

fu—wnlls < 3 ‘}ﬂ /K /K () — u(y)|dy da

Kevy
1
= Z |K|/ / lu(z) — u(y)| dy dz
Pt KNM. J K\M.
oo ),
+ ) == u(z) — u(y)| dy dx
Kzev \K| Jrnm. KA\M;
oo )
+ — lu(z) — u(y)| dy dx
KZG; K| Jrm. Jie
€ € €
< mes Q + 2||ul| poo o + 2|l poo o =€
2 mes () L 8wl oo L 8||ull oo

O]

Lemma A.4. We assume (A2) for Q). LetD = (M, ( gn))ﬁy:l) be a sequence of discretizations of Q = S x 2
anday, — ain L*(S,Y) assize(D) — 0 with lanll oo (s, o0 (rm)) < R. Moreover, let f : QxR™ — Ry
satisfy Carathéodory condition and there exist 0 < ¢, ¢ < oo such that ¢ < f(z,y) < G fa.a. © € Q,
Vy € R™. Additionaly, there exists a constant vy € (0, 1] such that flo, € C%7(Q x Brm (0, R)) for all

I € Z, where Brm (0, R)) denotes a ball in R™ centered at 0 with radius R. Then

| fn(an) — f(a)HLl(Q) — 0 as size(D) — 0.
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Proof. For any given discretization D, let
E={reQ:zeKeVwith|KNQ#0A|KNQy|#0forl #J,1,JeT}

with |Z| < 26 size(M) for all discretizations D (see also (A2)). In order to estimate
. 1 N
1= atan) — 1@y = X [ |5 [ Smana dy = e ao
KK Jk
Key
< Z / Sa(x) dx
K

Key

with

1 ~
5a(a) = /K @ an(@)) — f(ea(z))| dy

we consider the cases:

e Onz € Q\ =, we obtain
Sa(z) < ’KC‘/ lap(z) —a(z)|" + |z — y|” dy < clap(z) — a(x)|” + csize(M)7.
K

e On z € =, we find by using the bound ¢ of f the estimate Sa(x) < 2¢.

Therefore we deduce with some constant c; the following estimate

/Sldt</< S2d$+/52d$> dt
S S Q\E =

m
< ¢y size(M)Y + 1 Z/ lay,p, — ay|” dx dt.
v=1 Q

1]

Since v € (0, 1], we apply Holder’s inequality with ¢ = 2/ and p = 2/(2 — ) and conclude
1fn(an) = F@ 1) < e size(M) + el (TIQD' 7 |lap — @l 125y = 0,

as size(D) — 0.
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