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Abstract

The inverse eigenvalue problem for T -alternating matrix polynomials over arbi-
trary algebraically closed fields of characteristic different from two is considered. The
main result shows that the necessary conditions obtained in [10] for a matrix poly-
nomial to be the Smith form of a T -alternating matrix polynomial are under mild
conditions also sufficient to be the Smith form of a T -alternating matrix polyno-
mial with invertible leading coefficient which is additionally in anti-triangular form..
In particular, this result implies that any T -alternating matrix polynomial with in-
vertible leading coefficient is equivalent to a T -alternating matrix polynomial in anti-
triangular form that has the same finite and infinite elementary divisors as the original
matrix polynomial. Finally, the inverse eigenvalue problem for T -palindromic matrix
polynomials is considered excluding the case that both +1 and −1 are eigenvalues.
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1 Introduction

Matrix polynomials and polynomial eigenvalue problems have been studied intensively in
the last few decades. Recently, two particular topics have gained considerable interest:
inverse polynomial eigenvalue problems and the triangularization of matrix polynomials.
The aim of this paper is to combine these two topics with special emphasis on T -alternating
matrix polynomials..

A matrix polynomial of degree k, where k is a positive integer, is an expression
P (λ) =

∑k
j=0 λ

jAj with coefficient matrices Aj ∈ Fn×n over an arbitrary field F. If the

characteristic of F is different from two, such a P (λ) is called T -even if P (−λ) = P (λ)T ,
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and it is called T -odd if P (−λ) = −P (λ)T . Observe that these definitions are equivalent
to the fact that the sequence of coefficient matrices (A0, A1, . . . , Ak) alternates between
symmetric and skew-symmetric matrices, starting with a symmetric A0 in the T -even case
and with a skew-symmetric A0 in the T -odd case. Therefore, the term T -alternating has
been introduced in [15] as a hypernym for T -even and T -odd matrix polynomials.

In [9] it was observed that there exist T -alternating matrix polynomials that do not
allow a T -alternating strong linearization and a detailed explanation of this effect was
presented in [10] by characterizing the possible Smith forms of T -alternating matrix poly-
nomials in terms of pairing properties of elementary divisors (see Section 2 for details). In
particular, it was shown that those paring conditions for the elementary divisors of a given
matrix polynomial S(λ) in Smith form were necessary and sufficient for the existence of a
T -alternating matrix polynomial P (λ) having S(λ) as its Smith form, but the constructed
P (λ) may have a rather high degree resulting in a high number of infinite elementary di-
visors. Thus, the following question cannot be answered based on the results obtained in
[10]:

Problem 1.1 Let S(λ) = diag
(
d1(λ), . . . , dn(λ)

)
be a matrix polynomial in Smith form

that satisfies the necessary conditions for being a Smith form of a T -even matrix polynomial,
and assume that

∑n
j=1 deg(dj) = nk. Does there exist a T -even n × n matrix polynomial

P (λ) of degree k with invertible leading coefficient that has the Smith form S(λ)?

An important application for inverse quadratic eigenvalue problems is the design of feed-
back controllers for second order systems, see [1, 16]. Since in many cases the coefficient
matrices of the second order system are symmetric, the inverse symmetric quadratic eigen-
value problem has been studied intensively. Important contributions to its solution have
been made in [4, 5, 7] under the additional assumption that the eigenvalues of the designed
systems are semisimple. While this limitation may not be of importance in applications,
it turns out to be a restriction to the solution of Problem 1.1, where the eigenvalues of the
given Smith form need not be semisimple. Other techniques to tackle inverse quadratic
eigenvalue problems include solvents [6] and the construction of quasi-canonical forms [8],
but it is not clear if these techniques can easily be generalized to inverse polynomial eigen-
value problems of higher degree.

A different approach to the solution of inverse polynomial eigenvalue problems involves
the triangularization of matrix polynomials : in [19], the authors raised the question whether
any regular, complex, quadratic matrix polynomial can be transformed to a quadratic
matrix polynomial in triangular form with the same finite and infinite elementary divisors.
Here, triangular form means that all coefficient matrices of the matrix polynomial are
upper triangular. The question was motivated by the lack of existence of a generalized
Schur form for matrix polynomials of degree greater than one: in general, it is not possible
to transform a given matrix polynomial to triangular form under strict equivalence, let
alone under strict unitary equivalence.

On the other hand, it was shown in the proof of [2, Theorem 1.7] that any complex
matrix polynomial P (λ) of degree k with nonsingular leading coefficient is unimodularly
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equivalent to a monic upper triangular matrix polynomial T (λ) of degree k. Thus, in
particular P (λ) and T (λ) have the same elementary divisors. Recently, the result hidden
in the proof of [2, Theorem 1.7] has been generalized in [19] in the case of quadratic
matrix polynomials by relaxing the condition of nonsingularity of the leading coefficient
and allowing regular matrix polynomials. Finally, it was shown in [17] that any rectangular
n ×m matrix polynomial over an algebraically closed field is unimodularly equivalent to
a matrix polynomial in triangular form if n ≤ m. In particular, those results solve an
inverse eigenvalue problem as it was highlighted in [17, Lemma 3.2]: If d1(λ), . . . , dn(λ)
are monic polynomials with entries in an algebraically closed field F such that dj(λ) divides
dj+1(λ) for j = 1, . . . , n− 1, then there exists a monic, triangular n×n matrix polynomial
P (λ) of degree k over F with d1(λ), . . . , dn(λ) as invariant polynomials if and only if∑n

j=1 deg(dj) = nk.
In the case of T -alternating polynomials, triangular forms turn out to be too restrictive.

Indeed, if P (λ) is a T -alternating matrix polynomial in triangular form, then all symmet-
ric coefficient matrices are diagonal and all skew-symmetric coefficient matrices are zero.
Instead, we aim to construct anti-triangular forms. Recall that a matrix A = [aij] ∈ Fn×n
is called anti-triangular if aij = 0 for all (i, j) satisfying i+ j ≤ n, see, e.g., [14].

The remainder of the paper is organized as follows. In Section 2, we compile some
preliminary results that will be needed in the following. In Section 3, we state and prove the
main result Theorem 3.1 which gives an affirmative answer to Problem 1.1 by constructing a
T -even, anti-triangular matrix polynomial whose Smith form is the given matrix polynomial
S(λ). This result is generalized in Section 4 to related structures of matrix polynomials.

Throughout the paper, F denotes an arbitrary field of characteristic different from two.
By F[λ]n×n, we will denote the set of n×n matrix polynomials over F. Finally, Rn denotes
the n× n reverse identity

Rn =

 0 1

. .
.

1 0

 .
2 Preliminaries

Recall that P (λ), Q(λ) ∈ F[λ]n×n are called unimodularly equivalent (short: equivalent)
if there exist E(λ), F (λ) ∈ F[λ]n×n that are unimodular (i.e., having constant nonzero
determinant) such that

Q(λ) = E(λ)P (λ)F (λ).

We will also denote equivalence of matrix polynomials by P (λ) ∼ Q(λ).. In some of our
results, we will need a more restrictive equivalence relation than equivalence, the so-called
unimodular alternating-congruence.

Definition 2.1 P (λ), Q(λ) ∈ F[λ]n×n are called unimodularly alternatingly-congruent
(short: congruent) if there exists a unimodular E(λ) ∈ F[λ]n×n such that

Q(λ) = E(λ)P (λ)ET (−λ).
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It is straightforward to check that the T -alternating structure of matrix polynomials is
preserved under unimodular alternating-congruence: If P (λ) and E(λ) are n × n matrix
polynomials and P (λ) is T -even or T -odd, then also E(λ)P (λ)ET (−λ) is T -even or T -odd,
respectively.

Due to this feature, we added the prefix “alternating-” in order to distinguish it prop-
erly from unimodular congruence transformations of the form P (λ) 7→ E(λ)P (λ)ET (λ)
introduced in [13] for the sake of preserving the structure of skew-symmetric matrix poly-
nomials. For simplicity, we will use the term congruence instead of unimodular alternating-
congruence as there will be no ambiguity in this paper.

Unfortunately, a canonical form for matrix polynomials under congruence seems not to
be available yet, and hence, we will mainly use (unimodular) equivalence transformations
and the Smith form which is the corresponding canonical form, see, e.g., [2] for details.

Theorem 2.2 (Smith form) Let P (λ) ∈ F[λ]n×n. Then there exists a nonnegative inte-
ger r and unimodular E(λ), F (λ) ∈ F[λ]n×n such that

E(λ)P (λ)F (λ) =

[
D(λ) 0

0 0

]
, D(λ) = diag

(
d1(λ), . . . , dr(λ)

)
,

where d1(λ), . . . , dr(λ) are monic and dj(λ) | dj+1(λ) for j = 1, . . . , r − 1. Moreover, D(λ)
and r are unique.

The polynomials d1(λ), . . . , dr(λ) are called the invariant polynomials of P (λ). They
can be characterized as ratios of greatest common divisors (short: gcd’s) of minors of
P (λ). We recall that a minor of order j of P (λ) is defined to be the determinant of a j× j
submatrix of P (λ) that is obtained by extracting j rows and j columns of P (λ).

Theorem 2.3 Let P (λ) ∈ F[λ]n×n have the Smith form

S(λ) = diag
(
p1(λ), . . . , pr(λ), 0, . . . , 0

)
.

Set p0(λ) ≡ 1 and define pj(λ) ≡ 0 if all minors of P (λ) of order j are zero, otherwise let
pj(λ) be the greatest common divisor (gcd) of all minors of P (λ) of order j. Then r is the
largest integer j such that pj(λ) 6≡ 0 and the invariant polynomials of P (λ) are given by

dj(λ) =
pj(λ)

pj−1(λ)
, j = 1, . . . , r.

In order to apply this result, we will need a few lemmas involving gcd’s. The first one
is well-known; a proof can be found, e.g., in [3].

Lemma 2.4 (Lemma of Bézout) Let p(λ), q(λ) ∈ F[λ], then there exist polynomials
z1(λ), z2(λ) ∈ F[λ] such that

z1(λ)p(λ) + z2(λ)q(λ) = gcd
{
p(λ), q(λ)

}
.
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Since the matrix polynomials focused on in this paper are T -alternating, we will fre-
quently make use of the following properties of alternating scalar polynomials. The parity
ε(p) of an alternating p(λ) ∈ F[λ] is then defined to be ε(p) := +1 if p(λ) = p(−λ) is even,
and ε(p) := −1 if p(λ) = −p(−λ) is odd. The proofs of the following two lemmas can be
found in [10].

Lemma 2.5 Let p(λ) ∈ F[λ], then gcd
{
p(λ), p(−λ)

}
is an alternating polynomial.

Lemma 2.6 Let p(λ) ∈ F[λ] be divided by d(λ) ∈ F[λ] \ {0} with deg(d) ≤ deg(p) to get

p(λ) = d(λ)q(λ) + r(λ), deg(r) < deg(d).

If p(λ) and d(λ) are alternating (not necessarily with the same parity), then q(λ) and r(λ)
are alternating as well. Moreover, p(λ), r(λ), and d(λ)q(λ) all three have the same parity.

A key lemma in our constructions will be the following factorization result for even
scalar polynomials.

Lemma 2.7 Let s(λ) ∈ F[λ] be even and of degree 2k, where k is a nonnegative integer,
and let the field F be algebraically closed. Then there exists a monic x(λ) ∈ F[λ] of degree
k such that

s(λ) = c x(λ)x(−λ),

where c ∈ F \ {0}. If s(λ) itself is monic, then c = (−1)k and if s(0) 6= 0, then x(λ) can
be chosen such that

gcd
{
x(λ), x(−λ)

}
= 1.

Proof. By [10, Lemma 4.1], s(λ) admits the factorization

s(λ) = c λα0 [(λ− λ1)(λ+ λ1)]
α1 · · · · · [(λ− λr)(λ+ λr)]

αr ,

where α0 ∈ N is even, c ∈ F \ {0}, α1, . . . , αr ∈ N \ {0}, and λ1, . . . , λr,−λ1, . . . ,−λr are
pairwise distinct. The result then follows easily by setting

x(λ) := λα0/2

r∏
j=1

(λ− λj)αj . �

The following theorems are the main results from [10]; they completely characterize the
possible Smith forms of T -alternating matrix polynomials.

Theorem 2.8 (E-Smith form) Suppose that

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαrpr(λ), 0, . . . , 0

)
∈ F[λ]n×n,

where 0 ≤ α1 ≤ · · · ≤ αr are nonnegative integers, all pj(λ) are monic with pj(0) 6= 0, and
pj(λ)|pj+1(λ) for j = 1, . . . , r − 1. Then S(λ) is the Smith form of some T -even n × n
matrix polynomial if and only if:

5



1) pj(λ) is even for j = 1, . . . , r.

2) If ν is the number of odd exponents among α1, . . . , αr, then ν is an even integer.
Letting k1 < k2 < · · · < kν be the positions on the diagonal of S(λ), where these odd
exponents αkj occur, the following properties hold:

(a) adjacency-pairing of positions:

k2 = k1 + 1, k4 = k3 + 1, . . . , kν = kν−1 + 1,

(b) equality-pairing of odd exponents:

αk2 = αk1 , αk4 = αk3 , . . . , αkν = αkν−1 . (2.1)

Theorem 2.9 (O-Smith form) Suppose that

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαrpr(λ), 0, . . . , 0

)
∈ F[λ]n×n,

where 0 ≤ α1 ≤ · · · ≤ αr are nonnegative integers, all pj(λ) are monic with pj(0) 6= 0,
and pj(λ)|pj+1(λ) for j = 1, . . . , r− 1. Then S(λ) is the Smith form of some T -odd n× n
matrix polynomial if and only if:

1) pj(λ) is even for j = 1, . . . , r.

2) If ν is the number of even exponents among α1, . . . , αr, then ν is an even integer.
Letting k1 < k2 < · · · < kν be the positions on the diagonal of S(λ) where these even
exponents αkj occur, the following properties hold:

(a) adjacency-pairing of positions:

k2 = k1 + 1, k4 = k3 + 1, . . . , kν = kν−1 + 1,

(b) equality-pairing of even exponents:

αk2 = αk1 , αk4 = αk3 , . . . , αkν = αkν−1 . (2.2)

We will further need the following lemma that was proved in [13].

Lemma 2.10 (Exchange lemma) Let f(λ), g(λ), h(λ) ∈ F[λ] have the property that
f(λ) is relatively prime to both g(λ) and h(λ). Then:

1)

[
f(λ)g(λ) 0

0 h(λ)

]
∼
[
g(λ) 0

0 f(λ)h(λ)

]
;

2) for any `,m ∈ N, it is:

[
f(λ)`g(λ) 0

0 f(λ)mh(λ)

]
∼
[
f(λ)mg(λ) 0

0 f(λ)`h(λ)

]
.
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Finally, we review the result that was obtained in the proof of [2, Theorem 1.7] for the
case F = C, but the proof easily generalizes to arbitrary algebraically closed fields. For
this and for the remainder of the paper, let k always denote a positive integer.

Theorem 2.11 Let P (λ) ∈ F[λ]n×n satisfy deg
(

detP (λ)
)

= nk and assume the field F to
be algebraically closed. Then P (λ) is equivalent to an upper triangular matrix polynomial,
whose diagonal elements have degree k.

We note that the matrix polynomial P (λ) in Theorem 2.11 may have off-diagonal
entries of arbitrary degree, which can by a simple procedure be reduced to degree k− 1 or
less, which is shown in [17]. However, for our purpose the statement in Theorem 2.11 is
sufficient.

3 The inverse T -even polynomial eigenvalue problem

In this section, we will prove our main theorem.

Theorem 3.1 Let the field F be algebraically closed and let S(λ) ∈ F[λ]n×n be in E-Smith
form as in Theorem 2.8. If deg

(
detS(λ)

)
= nk, then S(λ) is equivalent to a T -even,

lower anti-triangular n× n matrix polynomial of degree k.

The proof of Theorem 3.1 will be carried out in the following subsections and proceed
in two main steps:

I) Construct a T -even, lower anti-triangular matrix polynomial such that all entries on
the anti-diagonal have degree k. (The entries below the main anti-diagonal may have
arbitrary degree.)

II) Reduce the degrees of the entries in the strict lower anti-triangular part so that the
resulting matrix polynomial has degree k.

We will begin by describing the procedure that will be used to carry out Step II in Sub-
section 3.1. In the following subsections, we will then prove Theorem 3.1 by executing
Step I in special cases: in the case n = 2 in Subsection 3.2, in the general case of even n
in Subsection 3.3 and in the case of odd n in Subsection 3.4. This covers all possible cases
for n and thus completes the proof of Theorem 3.1.

3.1 Reducing the degree

In the following result, the field F need not be algebraically closed.

Theorem 3.2 Let P (λ) =
[
pij(λ)

]n
i,j=1

∈ F[λ]n×n be T -even and lower anti-triangular,

and let its anti-diagonal elements all have degree k. Then P (λ) is congruent to a T -even,
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lower anti-triangular matrix polynomial of degree k with anti-diagonal leading coefficient.
More precisely, there exists a unimodular E(λ) ∈ F[λ]n×n such that

E(λ)P (λ)E(−λ)T =: P̆ (λ) =
[
p̆ij(λ)

]n
i,j=1

is lower anti-triangular and has the same anti-diagonal elements as P (λ) and all other
elements have degrees not exceeding k − 1, i.e.,

p̆i,n+1−i(λ) = pi,n+1−i(λ) and deg(p̆ij) ≤ k − 1 for i+ j > n+ 1, i, j = 1, . . . , n.

Proof. Let

κ :=

{
n/2 if n is even,

(n− 1)/2 if n is odd.

We will construct P̆ (λ) in two steps. In the first step, the degree of the elements in the
diagonal positions (n− κ+ 1, n− κ+ 1), . . . , (n, n) will be reduced to k − 1 or less, in the
second step, all other elements in the strict lower anti-triangular part will be considered.

Step 1: reducing the diagonal elements. For each i = n − κ + 1, . . . , n we aim to
reduce the degree of the element in the (i, i) position to k − 1 or less. We proceed by an
induction argument and assume that the degrees of the diagonal elements in the positions
(n − κ + 1, n − κ + 1), . . . , (i − 1, i − 1) have already been reduced resulting in a matrix
polynomial with anti-diagonal elements identical to those of P (λ). For simplicity, we will
again denote this matrix polynomial by P (λ). Let p̃ (λ) := pi,n−i+1(λ) be the anti-diagonal
element in the same row as pii(λ). Since P (λ) is T -even, we obtain that

g(λ) := gcd
{
pi,n−i+1(λ), pn−i+1,i(λ)

}
= gcd

{
p̃ (λ), p̃ (−λ)

}
is alternating by Lemma 2.5 and clearly deg(g) ≤ k. Assume deg(pii) ≥ k (otherwise
there is nothing to do) and let pii(λ) = g(λ)q(λ) + r(λ), where deg(r) < deg(g) ≤ k. By
Lemma 2.6, the polynomial q(λ) is alternating and of the same parity as g(λ), and r(λ) is
even. By Lemma 2.4, there exist polynomials z1(λ), z2(λ) such that

z1(λ)p̃(λ) + z2(λ)p̃(−λ) = g(λ).

Setting z(λ) := −q(λ)
(
z1(λ) + ε(q)z2(−λ)

)
/2, we obtain

z(λ)p̃(λ) + z(−λ)p̃(−λ) = −1

2
q(λ)g(λ)− 1

2
q(−λ)g(−λ) = −q(λ)g(λ).

Thus, adding the z(λ)-multiple of the (n + i − 1)st column to the ith column and then
the z(−λ)-multiple of the (n+ i− 1)st row to the ith row (note that this is a congruence
transformation), the element in the (i, i) position is changed to

pii(λ) + z(λ)p̃(λ) + z(−λ)p̃(−λ) = r(λ),

which is even and of degree k − 1 or less. Observe that no anti-diagonal elements and no
diagonal elements other than pii(λ) have been changed. Thus, after κ steps, we obtain a
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matrix polynomial again denoted by P (λ), which is T -even, lower anti-triangular, and its
diagonal elements pii(λ) for i = n− κ+ 1, . . . , n have degree k − 1 or less.

Step 2: reducing the off-diagonal elements. Similar to Step 1, we will use an induction
argument and reduce the degree of the elements in the (i, j) and (j, i) positions simultane-
ously for j = n−i+2, . . . , i−1 and for i = κ+2, . . . , n.. Thus, assume that we are currently
considering the elements in the (i, j) and (j, i) positions and denote the matrix polynomial
resulting from the previous steps again by P (λ). For simplicity, set p̂ (λ) := pij(λ) and
p̃ (λ) := pi,n−i+1(λ). Since P (λ) is T -even, we obtain

pji(λ) = p̂ (−λ) and pn−i+1,i(λ) = p̃ (−λ).

If deg(p̂ ) ≥ k (otherwise there is nothing to do), let p̂ (λ) = p̃ (λ)q(λ) + r(λ), where
deg(r) < deg(p̃) = k. Adding the

(
− q(−λ)

)
-multiple of the (n − i + 1)st row to the jth

row and the
(
−q(λ)

)
-multiple of the (n− i+1)st column to the jth column (note that this

is a congruence transformation), we obtain a matrix polynomial again denoted by P (λ)
with elements in the (i, j) and (j, i) positions now given by

p̂(λ)− q(λ)p̃ (λ) = r(λ) and p̂(−λ)− q(−λ)p̃ (−λ) = r(−λ),

respectively. These polynomials have degrees less than or equal to k − 1. Furthermore,
P (λ) is T -even and lower anti-triangular and all elements on the anti-diagonal, as well
as those on the diagonal and those previously reduced are unchanged. Completing the
induction, we finally obtain a matrix polynomial in the desired form that is congruent to
the matrix polynomial we started with.

3.2 The 2× 2 case

For the remainder of this paper we will assume the additional condition that the field F is
algebraically closed.

Let S(λ) = diag
(
λαp1(λ), λβp2(λ)

)
be a possible Smith form of a T -even matrix poly-

nomial, where p1(0), p2(0) 6= 0. Then by Theorem 2.8, both p1(λ) and p2(λ) are even poly-
nomials, and the exponents α and β are either both even (including the case α = β = 0)
or they are both odd and equal. Furthermore, since p1(λ) divides p2(λ), the latter can
be factorized as p2(λ) = p1(λ)s(λ), where by Lemma 2.6 also s(λ) is even. The following
lemma therefore covers Theorem 3.1 in the case n = 2.

Lemma 3.3 Let S(λ) ∈ F[λ]2×2 be in Smith form

S(λ) = diag
(
λαp(λ), λβp(λ)s(λ)

)
,

where 0 ≤ α ≤ β and where p(λ) and s(λ) are monic, even polynomials with p(0), s(0) 6= 0,
and assume deg

(
det S(λ)

)
= 2k.
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1) If β 6= α, but β−α is even, then S(λ) is equivalent to a lower anti-triangular matrix
polynomial of degree k of the form[

0 (−λ)(α+β)/2p(λ)x(−λ)
λ(α+β)/2p(λ)x(λ) λαp(λ)

]
, (3.1)

where x(λ)x(−λ)(−1)deg(x) = s(λ). Moreover, the matrix polynomial (3.1) is T -even
if α (and therefore also β) is even.

2) If β = α, then S(λ) is equivalent to a T -even, lower anti-diagonal matrix polynomial
of degree k of the form [

0 (−λ)αp(λ)x(−λ)
λαp(λ)x(λ) 0

]
, (3.2)

where x(λ)x(−λ)(−1)deg(x) = s(λ).

Proof. Since s(λ) is even and monic with s(0) 6= 0, it follows from Lemma 2.7 that
it can be factorized as s(λ) = x(λ)x(−λ)(−1)deg(x) for some polynomial x(λ) satisfying
gcd{x(λ), x(−λ)} = 1.

We will first prove 1). Observe that[
λαp(λ) 0

0 λβp(λ)s(λ)

]
∼

[
λαp(λ) 0

λ(α+β)/2p(λ)x(−λ)(−1)deg(x)+1 λβp(λ)s(λ)

]
∼

[
λαp(λ) λ(α+β)/2p(λ)x(λ)

λ(α+β)/2p(λ)x(−λ)(−1)deg(x)+1 0

]
.

Indeed, the first equivalence follows by adding the
(
λ(β−α)/2x(−λ)(−1)deg(x)+1

)
-multiple

of the first row of S(λ) to its second row, and the second equivalence follows by adding
the

(
λ(β−α)/2x(λ)

)
-multiple of the first column of the resulting matrix polynomial to its

second column. The latter matrix polynomial is easily seen to be equivalent to the desired
shape (3.1) by multiplying the second row with a suitable power of −1 followed by a row
and column permutation. It is now straightforward to check that the constructed matrix
polynomial has degree k and that it is T -even if α is even.

Next let us prove 2), thus assuming that β = α. As in 1), it follows that S(λ) is
equivalent to [

0 (−λ)αp(λ)x(−λ)
λαp(λ)x(λ) λαp(λ)

]
.

Since gcd{x(λ), x(−λ)} = 1, it follows from Lemma 2.4 that there exist polynomials
z1(λ), z2(λ) with

z1(λ)λαp(λ)x(λ) + z2(λ) (−λ)αp(λ)x(−λ) = λαp(λ).

Subtracting the z1(λ)-multiple of the first column from the second column and the z2(λ)-
multiple of the first row from the second row we obtain the desired form (3.2).
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3.3 The case of even n

In this subsection, we prove Theorem 3.1 in the case that n is even but greater than two.

Lemma 3.4 Let n ∈ N be even and let S(λ) ∈ F[λ]n×n be in E-Smith form as in The-
orem 2.8 satisfying deg

(
detS(λ)

)
= nk. Then S(λ) is equivalent to a T -even, lower

anti-triangular matrix polynomial of degree k.

Proof. We will proceed with the proof in two steps. In the first step we will transform
S(λ) to a lower anti-triangular matrix polynomial that is T -even, and in the second step
we will reduce its degree to k.

Step 1: reduction to anti-triangular form. Let

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαnpn(λ)

)
,

where pj(0) 6= 0 for j = 1, . . . , n. Further, let k1 < · · · < kν denote the indices j for
which αj is odd and let l1 < · · · < lµ denote the indices j for which αj is even. Then by
Theorem 2.8, the integer ν is even and thus with n also µ must be even. Set κ := n/2 and
let (m1,m2, . . . ,mn) be a permutation of {1, 2, . . . , n} with the following two properties:

(a) either (m2j−1,m2j) = (k2i−1, k2i) for an i ∈ {1, . . . , ν/2}, or (m2j−1,m2j) = (`2i−1, `2i)
for an i ∈ {1, . . . , µ/2} for j = 1, . . . , κ;

(b) αm2j−3
+ αm2j−2

≤ αm2j−1
+ αm2j

for j = 2, . . . , κ.

Such a permutation exists, since it can be obtained by ordering the pairs (k2i−1, k2i)
and (`2i−1, `2i) with respect to the arithmetic mean of the corresponding exponents. By
Lemma 2.10, S(λ) is equivalent to the matrix polynomial

diag
(
λαm1p1(λ), λαm2p2(λ), . . . , λαmnpn(λ)

)
. (3.3)

This step has permuted the αj’s on the diagonal of S(λ) in such a way that a partition
of (3.3) into diagonal 2×2 blocks groups together adjacent pairs of odd exponents that are
equal by Theorem 2.8. The ascending order of the αj’s as in the Smith form is no longer
in place, but we do have an ascending ordering of the 2 × 2 blocks on the diagonal with
respect to their exponents’ arithmetic mean (αm2j−1

+ αm2j
)/2. Thus, a 2 × 2 block from

such a partitioning of (3.3) has the form

diag
(
λαm2j−1p2j−1(λ), λαm2j p2j(λ)

)
, (3.4)

where αm2j−1
and αm2j

are either both even or they are odd and equal. Moreover, p2j−1(λ)
and p2j(λ) are monic, even polynomials with p2j−1(λ) | p2j(λ) and p2j−1(0), p2j(0) 6= 0.
Hence, applying Lemma 3.3 we find that each 2 × 2 block (3.4) is equivalent to a T -even
matrix polynomial of the form (3.1) or (3.2), respectively, so that S(λ) is equivalent to a
T -even matrix polynomial of the form[

0 q1(−λ)
q1(λ) r1(λ)

]
⊕
[

0 q2(−λ)
q2(λ) r2(λ)

]
⊕ · · · ⊕

[
0 qκ(−λ)

qκ(λ) rκ(λ)

]
.
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Applying a row and column permutation, we obtain the T -even matrix polynomial

[
0 T (−λ)T

T (λ) R(λ)

]
, where T (λ) =

 0 qκ(λ)

. .
.

q1(λ) 0

 (3.5)

is anti-diagonal and R(λ) = diag
(
r1(λ), . . . , rκ(λ)

)
is diagonal. Observe that by construc-

tion (property (b) of the permutation), we have qj(λ) | qj+1(λ) for j = 1, . . . , κ− 1.
Step 2: reduction to degree k. Since the polynomials qj(λ) are monic and form a

divisibility chain, we find that RκT (λ) is in Smith form. Further, we have deg
(

detS(λ)
)

=
deg

(
detT (λ)

)
·deg

(
detT (−λ)T

)
and therefore deg

(
detT (λ)

)
= κk. Then Theorem 2.11

applied to RκT (λ) implies that there are unimodular κ×κ matrix polynomials E(λ), F (λ)
such that E(λ)RκT (λ)F (λ) is an upper triangular matrix polynomial of degree k. Hence,

setting Ẽ(λ) := RκE(λ)Rκ and M(λ) := Ẽ(λ)T (λ)F (λ), we obtain that[
F (−λ)T 0

0 Ẽ(λ)

] [
0 T (−λ)T

T (λ) R(λ)

] [
F (λ) 0

0 Ẽ(−λ)T

]
=

[
0 M(−λ)T

M(λ) Ẽ(λ)R(λ)Ẽ(−λ)T

]
is a T -even, lower anti-triangular matrix polynomial that is equivalent to S(λ). Moreover,
its anti-diagonal entries all have degree k. Thus, by Theorem 3.2, it is congruent to a
T -even, lower anti-triangular matrix polynomial of degree k.

3.4 The case of odd n

The proof in the case that n is odd is more involved and needs the two technical Lemmas 6.1
and 6.2 as prerequisites. We will defer the statements and proofs of these lemmas to the
appendix.

Lemma 3.5 Let n ∈ N be odd and let S(λ) ∈ F[λ]n×n be in E-Smith form as in The-
orem 2.8 satisfying deg

(
detS(λ)

)
= nk. Then S(λ) is equivalent to a T -even, lower

anti-triangular matrix polynomial of degree k.

Proof. We first highlight that k is even because by [10, Lemma 3.4] the determinant of a
T -even matrix polynomial is an even scalar polynomial, so it has even degree. Thus, as n
is odd, k must be even. Similar to the proof of Lemma 3.4, we will then proceed in two
steps.

Step 1: reduction to anti-triangular form. Again, let

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαnpn(λ)

)
,

where pj(0) 6= 0 for j = 1, . . . , n. Further, let k1 < · · · < kν denote the indices j for
which αj is odd and let `1 < · · · < `µ denote the indices j for which αj is even. Then, by
Theorem 2.8 the integer ν is even and thus with n also µ is odd. Therefore, µ ≥ 1. By
row and column permutations, S(λ) is equivalent to

diag
(
λα`1p`1(λ), λα1p1(λ), . . . , λα`1−1p`1−1(λ), λα`1+1p`1+1(λ), . . . , λαnpn(λ)

)
.
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Set κ := (n− 1)/2 and let (m1,m2, . . . ,mn−1) be a permutation of {1, 2, . . . , n} \ {`1} with
the following two properties:

(a) either (m2j−1,m2j) = (k2i−1, k2i) for an i ∈ {1, . . . , ν/2}, or (m2j−1,m2j) = (`2i, `2i+1)
for an i ∈ {1, . . . , (µ− 1)/2} for j = 1, . . . , κ;

(b) αm2j−3
+ αm2j−2

≤ αm2j−1
+ αm2j

for j = 2, . . . , κ.

Again, such a permutation can be obtained by ordering the pairs (k2i−1, k2i) and (`2i, `2i+1)
with respect to the arithmetic mean of the corresponding exponents. By Lemma 2.10,
S(λ) is equivalent to the matrix polynomial

diag
(
q(λ), λαm1 p̂1(λ), λαm2 p̂2(λ), . . . , λαmn−1 p̂n−1(λ)

)
, (3.6)

where we defined q(λ) := λα`1p`1(λ) and for each j = 1, . . . , n− 1

p̂j(λ) :=

{
pj(λ) if j < `1,

pj+1(λ) if j ≥ `1.

Thus, we can partition the lower (n−1)×(n−1) principal submatrix of (3.6) into diagonal
2× 2 blocks of the form

diag
(
λαm2j−1 p̂2j−1(λ), λαm2j p̂2j(λ)

)
, (3.7)

where αm2j−1
and αm2j

are either both even or they are odd and equal. Further, the 2× 2
blocks are ordered ascendingly with respect to the arithmetic mean (αm2j−1

+ αm2j
)/2.

Moreover, p̂2j−1(λ) and p̂2j(λ) are monic, even polynomials with p̂2j−1(λ) | p̂2j(λ) and
p̂2j−1(0), p̂2j(0) 6= 0. Thus, we can apply Lemma 3.3 and find that each 2× 2 block (3.7) is
equivalent to a T -even matrix polynomial of the form (3.1) or (3.2), respectively, so that
S(λ) is equivalent to the T -even matrix polynomial

Ŝ(λ) :=
[
q(λ)

]
⊕
[

0 q1(−λ)
q1(λ) r1(λ)

]
⊕
[

0 q2(−λ)
q2(λ) r2(λ)

]
⊕ · · · ⊕

[
0 qκ(−λ)

qκ(λ) rκ(λ)

]
.

We now claim that the matrix polynomial Ŝ(λ) is equivalent to a T -even matrix polynomial
of the form

P̂ (λ) =

 0 0 T (−λ)T

0 q̂(λ) a(−λ)T

T (λ) a(λ) X(λ)

 , (3.8)

where deg(q̂ ) = k. If this is indeed true, then the proof can be finished similarly to the case
of even n: clearly, the determinant of (3.8) has degree nk. Since q̂ has degree k, it follows
that detT (λ) has degree κk. Thus, Theorem 2.11 implies that there are unimodular κ× κ
matrix polynomials E(λ), F (λ) such that E(λ)RκT (λ)F (λ) is an upper triangular matrix

13



polynomial of degree k. Hence, setting Ẽ(λ) := RκE(λ)Rκ and M(λ) := Ẽ(λ)T (λ)F (λ),
we obtain thatF (−λ)T 0 0

0 1 0

0 0 Ẽ(λ)

 0 0 T (−λ)T

0 q̂(λ) a(−λ)T

T (λ) a(λ) X(λ)

F (λ) 0 0
0 1 0

0 0 Ẽ(−λ)T


=

 0 0 M(−λ)T

0 q̂(λ) a(−λ)T Ẽ(−λ)T

M(λ) E(λ)a(λ) Ẽ(λ)X(λ)Ẽ(−λ)T

 =: P (λ)

is a lower anti-triangular matrix polynomial that is equivalent to S(λ). Further, all its anti-
diagonal entries have degree k and since P (λ) is congruent to the T -even matrix polynomial

P̂ (λ), it is T -even itself. Hence, by Theorem 3.2, S(λ) is equivalent to a T -even, lower
anti-triangular matrix polynomial of degree k, whose anti-diagonal entries have degree k.

Thus, it remains to prove the claim that Ŝ(λ) is equivalent to a T -even matrix polyno-
mial of the form (3.8). We distinguish three subcases depending on the degree of the first
entry q(λ).

Subcase 1a): deg(q) = k.

By row and column permutations, Ŝ(λ) is equivalent to 0 0 T (−λ)T

0 q(λ) 0
T (λ) 0 X(λ)

 ,
where RκT (λ) = diag

(
q1(λ), . . . , qκ(λ)

)
and where X(λ) = diag

(
rκ(λ), . . . , r1(λ)

)
is T -

even. This matrix polynomial is of the desired form (3.8).
Subcase 1b): deg(q) < k.

By row and column permutations, Ŝ(λ) is equivalent to

Q(λ) :=


0 0 0 0 T̂ (−λ)
0 q(λ) 0 0 0
0 0 0 qκ(−λ) 0
0 0 qκ(λ) rκ(λ) 0

T̂ (λ) 0 0 0 X̂(λ),

 .
where Rκ−1T̂ (λ) = diag

(
q1(λ), . . . , qκ−1(λ)

)
and where X̂(λ) = diag

(
rκ−1(λ), . . . , r1(λ)

)
Note that Q(λ) is T -even and lower anti-triangular except for the middle 3 × 3 block.
Undoing the transformations on the lower principal 2 × 2 submatrix of that block, we
obtain([

q(λ)
]
⊕
[

0 qκ(−λ)
qκ(λ) rκ(λ)

])
∼ diag

(
λα`1p`1(λ), λαmn−2 p̂n−2(λ), λαmn−1 p̂n−1(λ)

)
. (3.9)

We claim that the latter matrix polynomial is in Smith form. Indeed, all its entries are
monic and we observe that `1 < n because otherwise

k > deg(q) = α`1 + deg(p`1) = αn + deg(pαn) ≥ · · · ≥ α1 + deg(p1)
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in contradiction to deg
(

detQ(λ)
)

= nk. Thus `1 < n and therefore α`1 ≤ αn. If αn is
odd, then α`1 < αn−1 = αn and thus clearly (mn−2,mn−1) = (n − 1, n) and `1 < n − 1.
But then p̂n−2(λ) = pn−1(λ) and p̂n−1(λ) = pn(λ) so that the diagonal entries in the right
hand side of (3.9) form a divisibility chain. If on the other hand αn is even, then µ ≥ 3 as
µ is odd, so `1 < · · · < `µ−1 < `µ = n implies `1 < n− 1. Consequently p̂n−2(λ) = pn−1(λ)
and p̂n−1(λ) = pn(λ) and thus p`1(λ) | p̂n−2(λ) | p̂n−1(λ) holds. Moreover, we have

α`1 ≤
α`µ−1 − α`µ

2
=
αmn−2 − αmn−1

2

as (mn−2,mn−1) = (`µ−1, `µ), so again the diagonal entries of the right hand side of (3.9)
form a divisibility chain. Hence, writing

λα`1p`1(λ) = λαp(λ), λαmn−2 p̂n−2(λ) = λβp(λ)s(λ), λαmn−1 p̂n−1(λ) = λγp(λ)s(λ)t(λ),

we can observe that α + deg(p) = α`1 + deg(p`1) = deg(q) < k and

k < deg(p) + deg(s) +
β + γ + deg(t)

2

because otherwise

k ≥ deg(p) + deg(s) +
β + γ + deg(t)

2
=
αmn−2 + αmn−1 + deg(p̂n−2) + deg(p̂n−1)

2
= deg(qκ) ≥ deg(qκ−1) ≥ · · · ≥ deg(q1)

would with k > deg(q) contradict deg
(

detQ(λ)
)

= nk. Moreover, k and α = α`1 are both
even. Therefore, we can apply Lemma 6.1 from the appendix, which implies that there are
unimodular 3× 3 matrix polynomials Ê(λ), F̂ (λ) such that

Ê(λ)

 0 0 qκ(−λ)
0 q(λ) 0

qκ(λ) 0 rκ(λ)

 F̂ (λ) =

 0 0 q̃(−λ)
0 q̂(λ) a(−λ)

q̃(λ) a(λ) r̂(λ)


is a T -even matrix polynomial where q̂(λ) has degree k. Thus,(

Iκ−1 ⊕ Ê(λ)⊕ Iκ−1

)
Q(λ)

(
Iκ−1 ⊕ F̂ (λ)⊕ Iκ−1

)
has the desired form (3.8).

Subcase 1c): deg(q) > k.

By row and column permutations, Ŝ(λ) is equivalent to

Q(λ) :=


0 0 0 0 T̂ (−λ)
0 0 q1(−λ) 0 0
0 q1(λ) r1(λ) 0 0
0 0 0 q(λ) 0

T̂ (λ) 0 0 0 X̂(λ)

 .
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where Rκ−1T̂ (λ) = diag
(
q2(λ), . . . , qκ(λ)

)
and where X̂(λ) = diag

(
rκ(λ), . . . , r2(λ)

)
. Sim-

ilarly to the previous case, Q(λ) is T -even and lower anti-triangular except for the middle
3× 3 block. Also([

0 q1(−λ)
q1(λ) r1(λ)

]
⊕
[
q(λ)

])
∼ diag

(
λαm1 p̂1(λ), λαm2 p̂2(λ), λα`1p`1(λ)

)
, (3.10)

where the latter matrix polynomial is in Smith form. Indeed, deg q(λ) > k implies `1 > 1
(otherwise contradicting deg

(
detQ(λ)

)
= nk). Hence, α1 is odd and we obtain α1 = α2

which implies m1 = 1, m2 = 2, and `1 > 2. Thus, the diagonal entries in the right hand
side of (3.10) form a divisibility chain and they are clearly monic. Therefore, writing

λαm1 p̂1(λ) = λαp(λ), λαm2 p̂2(λ) = λαp(λ)s(λ), λα`1p`1(λ) = λβp(λ)s(λ)t(λ),

where α is odd and β is even, we observe that

β + deg(p) + deg(s) + deg(t) = αl1 + deg(pl1) = deg(q) > k.

Furthermore, we have

k > α + deg(p) +
deg(s)

2
because otherwise

k ≤ α + deg(p) +
deg(s)

2
= αm1 +

deg(p̂1) + deg(p̂2)

2
= deg(q1) ≤ deg(q2) ≤ · · · ≤ deg(qκ)

would with k < deg(q) contradict deg
(
detQ(λ)

)
= nk. Thus, the hypotheses of Lemma 6.2

from the appendix are satisfied and so there exist unimodular 3 × 3 matrix polynomials
Ê(λ), F̂ (λ) such that

Ê(λ)

 0 0 qκ(−λ)
0 q(λ) 0

qκ(λ) 0 rκ(λ)

 F̂ (λ) =

 0 0 q̃(−λ)
0 q̂(λ) a(−λ)

q̃(λ) a(λ) r̂(λ)


is T -even, where q̂(λ) has degree k. Hence,(

Iκ−1 ⊕ Ê(λ)⊕ Iκ−1

)
Q(λ)

(
Iκ−1 ⊕ F̂ (λ)⊕ Iκ−1

)
has the desired form (3.8), which concludes the remaining part of the proof.

4 Inverse polynomial eigenvalue problems for related

structures

It is straightforward to generalize the results derived in the last section to T -odd matrix
polynomials.
Theorem 4.1 Let S(λ) ∈ F[λ]n×n be in O-Smith form as in Theorem 2.9 satisfying
deg

(
detS(λ)

)
= nk. Then S(λ) is equivalent to a T -odd, lower anti-triangular matrix

polynomial of degree k.
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Proof. Comparing the conditions of Theorems 2.8 and 2.9, we observe that if S(λ) is in

Smith form satisfying the conditions of Theorem 2.9, then Ŝ(λ) := λS(λ) is also in Smith

form and satisfies the conditions of Theorem 2.8. Moreover, deg
(
Ŝ(λ)

)
= n(k+1). Hence,

by Theorem 3.1, there exist unimodular matrix polynomials E(λ), F (λ) such that

E(λ)Ŝ(λ)F (λ) = λE(λ)S(λ)F (λ)

is a T -even, lower anti-triangular matrix polynomial of degree k + 1. Then E(λ)S(λ)F (λ)
is the desired T -odd, lower anti-triangular matrix polynomial of degree k.

It turns out that Theorem 3.1 and Theorem 4.1 do not only provide a solution to
the inverse T -alternating polynomial eigenvalue problem, but they also show that any
T -alternating matrix polynomial with invertible leading coefficient is equivalent to a T -
alternating matrix polynomial in a particular form.

Corollary 4.2 Let P (λ) ∈ F[λ]n×n be a T -alternating matrix polynomial of degree k with
invertible leading coefficient. Then P (λ) is equivalent to a T -alternating matrix polynomial
of degree k that is in lower anti-triangular form and has either the leading coefficient Rn

or [
0 Rn/2

−Rn/2 0

]
.

Proof. By [10], the Smith form of P (λ) satisfies the hypotheses of Theorem 3.1 or The-
orem 4.1 and it follows P (λ) is equivalent to a T -alternating matrix polynomial T (λ) of
degree k (also with invertible leading coefficient), which is in lower anti-triangular form.
From the statement of Theorem 3.2, we observe that we can assume its leading coef-
ficient to be anti-diagonal. Then, applying an appropriate congruence transformation
T (λ) 7→MTT (λ)M , the leading coefficient can be reduced to either Rn or[

0 Rn/2

−Rn/2 0

]
,

depending on it being symmetric or skew-symmetric.

Next, let us turn to palindromic matrix polynomials. Recall that a matrix polynomial
P (λ) =

∑k
j=0 λ

jAj (where leading coefficients Ak, Ak−1, . . . are allowed to be zero) is called

T -palindromic (or T -palindromic of type +1) if revP (λ) = P (λ)T and that it is called T -
anti-palindromic (or T -palindromic of type −1) if revP (λ) = −P (λ)T , where

revP (λ) =
k∑
j=0

λjAk−j

is the reversal of P (λ). We will further call P (λ) palindromic if it is either T -palindromic or
T -anti-palindromic. In [11, Theorem 7.6] necessary conditions for a Smith form to be that
of a palindromic matrix polynomial were presented consisting of pairing conditions for the
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elementary divisors associated with +1 and −1 that are parallel to the pairing conditions
for the elementary divisors associated with zero in Theorem 2.8 and Theorem 2.9. However,
these conditions were not sufficient. In particular, it was highlighted that the problem of
finding conditions that are both necessary and sufficient for a matrix polynomial in Smith
form to be the Smith form of a palindromic matrix polynomial remains an open problem.
Based on Theorem 3.1, we are able to get one step closer to solving this open problem.

As a tool, we will consider the Cayley transformations of matrix polynomials that were
used in [9] to relate palindromic and T -alternating matrix polynomials. Recall that for a
matrix polynomial P (λ) the two Cayley transformations with pole at −1 and +1 are given
by

C−1(P )(µ) := (µ+ 1)kP

(
µ− 1

µ+ 1

)
and C+1(P )(µ) := (1− µ)kP

(
1 + µ

1− µ

)
, (4.1)

respectively. The following table is extracted from [9] and adapted to our focus. It dis-
plays the correspondence in the structures of the matrix polynomial P (λ) and its Cayley
transforms.

Table 4.1: Cayley transforms of structured matrix polynomials.

C−1(P )(µ) C+1(P )(µ)

P (λ) k even k odd k even k odd

T -palindromic T -even T -odd T -even

T -anti-palindromic T -odd T -even T -odd

T -even T -palindromic T -palindromic T -anti-palindromic

T -odd T -anti-palindromic T -anti-palindromic T -palindromic

In order to keep the discussion short, we do not review in detail the necessary conditions
for a matrix polynomial to be in P-Smith form, instead we refer the reader to [11, Theorem
7.6]. Then, we obtain the following result parallel to Theorem 3.1.

Theorem 4.3 Let S(λ) ∈ F[λ]n×n be regular and in P-Smith form as in [11, Theorem 7.6],
i.e., it is the possible Smith form of a T -palindromic or T -anti-palindromic matrix polyno-
mial. Further, assume deg

(
detS(λ)

)
= nk −m, where m is the algebraic multiplicity of

the eigenvalue λ0 = 0.
If +1 and −1 are not both eigenvalues of S(λ), then S(λ) is equivalent to a lower anti-
triangular matrix polynomial of degree k which is T -palindromic or T -anti-palindromic,
respectively.

Proof. We will only prove the theorem in the case that S(λ) is the possible Smith form of
a T -palindromic matrix polynomial and that −1 is not an eigenvalue of S(λ). The other
cases, i.e., S(λ) is the possible Smith form of a T -anti-palindromic matrix polynomial
and/or +1 is not an eigenvalue of S(λ) can be shown analogously.
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Then, by [11, Theorem 7.6] we have

S(λ) = diag
(
λα1(λ− 1)β1p1(λ), . . . , λαn(λ− 1)βnpn(λ)

)
, (4.2)

where 0 ≤ α1 ≤ · · · ≤ αn, 0 ≤ β1 ≤ · · · ≤ βn, and pj(−1), pj(0), pj(1) 6= 0 for j = 1, . . . , n.
Furthermore, all pj(λ) are palindromic (of type +1) and all odd exponents βj occur in
equal pairs in adjacent diagonal positions.

Now, consider the list of all elementary divisors of S(λ) including infinite elementary
divisors of degrees α1, . . . , αn. (More precisely, the degrees of the infinite elementary divi-
sors in this list are exactly the nonzero entries of (α1, . . . , αn) as elementary divisors have
positive degree.) Then, because of

∑n
j=1 αj = m, the sum of the degrees of all (finite

and infinite) elementary divisors in this list is nk. Hence, by [17, Section 5] this list of
elementary divisors is realizable by an n× n matrix polynomial Q(λ) of degree k, i.e., the
Smith form of Q(λ) is S(λ) and its infinite elementary divisors have the degrees α1, . . . , αn.

Then, the Cayley transformation C+1 transformsQ(λ) to the matrix polynomial Q̂(λ) :=
C+1(Q)(λ) of degree k that does not have infinity as an eigenvalue, in particular its leading
coefficient is invertible. Let

Ŝ(λ) = diag
(
λβ̃1 p̃1(λ), . . . , λβ̃n p̃n(λ)

)
be the Smith form of Q̂(λ), where 0 ≤ β̃1 ≤ · · · ≤ β̃n and p̃j(0) 6= 0 for j = 1, . . . , n. Then

Ŝ(λ) is in E-Smith form as in Theorem 2.8.
Indeed, since all pj(λ) from (4.2) are palindromic, it follows from [11, Corollary 5.9]

that for any λ0 ∈ F \ {−1, 0, 1}, the elementary divisors of Q(λ) associated with λ0 and
λ−1
0 occur in pairs, i.e., if (λ− λ0)γ1 , . . . , (λ− λ0)γν are the elementary divisors associated

with λ0, then (λ− λ−1
0 )γ1 , . . . , (λ− λ−1

0 )γν are the elementary divisors associated with λ−1
0 .

Further, by construction the elementary divisors of Q(λ) at λ0 = 0 are paired to those at
∞ both having the degrees α1, . . . , αn.

By [18, Theorem 3.4] (see also [12]), the Cayley transform C+1 transports this pairing to
pairs (µ0,−µ0), where µ0 = (λ0− 1)/(λ0 + 1) ∈ F \ {0}, i.e., the degrees of the elementary

divisors of Ŝ(λ) associated with µ0 and −µ0 are given by γ1, . . . , γν if λ0 6= 0 and by
α1, . . . , αn otherwise. Hence, it is straightforward that p̃1(λ), . . . , p̃n(λ) are necessarily

even. Finally, it follows from [18, Theorem 3.4] that β̃j = βj for j = 1, . . . , n, of which

all odd exponents occur in equal pairs in adjacent diagonal positions. Therefore, Ŝ(λ) is
indeed in E-Smith form as in Theorem 2.8.

Moreover, deg
(

det Ŝ(λ)
)

= deg
(

det Q̂(λ)
)

= nk as Q̂(λ) is regular and does not
have the eigenvalue ∞. Thus, by Theorem 3.1 there exist unimodular matrix polynomials
E(λ), F (λ) such that P̂ (λ) := E(λ)Q̂(λ)F (λ) is a T -even, lower anti-triangular matrix
polynomial of degree k. Now applying the inverse Cayley transform C−1, we obtain that
P (λ) := C−1(P̂ )(λ) is a T -palindromic matrix polynomial, which is in anti-triangular form.
Clearly, the Smith form of P (λ) is S(λ) (using again [18, Theorem 3.4]) which concludes
the proof.
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5 Conclusion

We have studied the inverse T -alternating and T -palindromic polynomial eigenvalue prob-
lem over arbitrary algebraically closed fields of characteristic different from two. In partic-
ular, we have developed sufficient conditions under which an n×n matrix polynomial is the
Smith form of a T -alternating n×n matrix polynomial with nonsingular leading coefficient
of degree k. The analogous problem for T -palindromic matrix polynomials was considered
in the case that not both +1 and −1 are eigenvalues. Additionally, the constructed matrix
polynomials are in lower anti-triangular form. It remains an open problem to consider the
inverse T -alternating eigenvalue problem for the case that not only finite elementary divi-
sors, but also infinite elementary divisors are prescribed − then the techniques developed
in this paper cannot be applied. Similarly, the inverse T -palindromic eigenvalue problem
remains unsolved if both +1 and −1 are prescribed eigenvalues.
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Appendix

In the appendix, we will state and prove two technical lemmas that are needed in the proof
of Theorem 3.5. We recall that F is an algebraically closed field of characteristic different
from two.

Lemma 6.1 Let S(λ) ∈ F[λ]3×3 be in Smith form

S(λ) = diag
(
λαp(λ), λβp(λ)s(λ), λγp(λ)s(λ)t(λ)

)
,

where 0 ≤ α ≤ β ≤ γ and where p(λ), s(λ), t(λ) are monic, even polynomials with
p(0), s(0), t(0) 6= 0. Assume that α is even and that either both β and γ are even or
both are odd and equal. If k ∈ N is even such that

α + deg(p) < k < deg(p) + deg(s) +
β + γ + deg(t)

2
, (6.1)

then S(λ) is equivalent to a T -even, lower anti-triangular matrix polynomial, whose middle
anti-diagonal entry has degree k.
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Proof. By hypothesis, k − α− deg(p) is even and by (6.1) it is bounded by

k − α− deg(p) ≤ γ − α + deg(s) + deg(t).

Thus, let `, ̂̀, ˜̀∈ N satisfy

k − α− deg(p) = 2(`+ ̂̀+ ˜̀) and 2` ≤ γ − α, 2̂̀≤ deg(s), 2˜̀ ≤ deg(t). (6.2)

Since F is algebraically closed, we can choose two monic and even polynomials ŝ (λ) of

degree (deg(s) − 2̂̀) and t̂ (λ) of degree 2˜̀ such that ŝ (λ) | s(λ) and t̂ (λ) | t(λ). Then by
Lemmas 2.6 and 2.7 there exist polynomials x(λ), y(λ) and constants cx, cy ∈ F \ {0} such
that

s(λ) = cx ŝ(λ)x(λ)x(−λ) and t(λ) = cy t̂(λ)y(λ)y(−λ). (6.3)

Note that deg(x) = ̂̀and that

n :=
β + γ

2
− α− ` ≥ β + γ

2
− α− γ − α

2
=
β − α

2
≥ 0. (6.4)

Moreover, let

β̂ := 2
⌈
β/2

⌉
, m := min{2`, β̂ − α}, and M := max{2`, β̂ − α} −m.

Thus, β̂ = β + 1 if β is odd and β̂ = β if β is even, additionally m and M are both even.
We further define

w1(λ) :=

{
t̂ (λ) if m = β̂ − α,
−cx ŝ (λ) else,

and w2(λ) :=

{
−cx ŝ (λ) if m = β̂ − α,
t̂ (λ) else,

which implies

λ2`t̂ (λ)− cx λβ̂−αŝ (λ) = λm
(
λMw1(λ) + w2(λ)

)
. (6.5)

By construction λMw1(λ) + w2(λ) is an even polynomial, and hence by Lemma 2.7 there
exists a polynomial b(λ) and a constant c ∈ F \ {0} such that

λMw1(λ) + w2(λ) = c b(λ)b(−λ). (6.6)

We go on to show that S(λ) is equivalent to the matrix polynomial 0 0 (−λ)α+np(λ)ŝ (λ)x(−λ)y(−λ)

0 λα+2`p(λ)t̂ (λ)x(λ)x(−λ) (−λ)α+m/2p(λ)x(−λ)b(λ)
λα+np(λ)ŝ (λ)x(λ)y(λ) λα+m/2p(λ)x(λ)b(−λ) λαc−1(−1)m/2p(λ)


(6.7)

by proving that the Smith form of (6.7) is S(λ), which is computed using Theorem 2.3. We
immediately find p1(λ) = λαp(λ); to compute p2(λ) in particular the minor corresponding
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to the lower right 2× 2 submatrix of (6.7) is needed. Using (6.6), (6.5), and (6.3), and we
compute that it is given by

d(λ) := c−1cx (−1)m/2λα+β̂p(λ)2s(λ).

We can now obtain p2(λ) as follows, where the 2 × 2 minors of (6.7) are ordered lexico-
graphically and powers of −1 are ignored:

p2(λ) = gcd
{

0, 0, λ2α+2`+np(λ)2t̂(λ)x(λ)x(−λ)2ŝ(λ)y(−λ),

0, λ2α+2np(λ)2ŝ(λ)2x(λ)y(λ)x(−λ)y(−λ),

λ2α+n+m/2p(λ)2x(λ)b(−λ)ŝ(λ)x(−λ)y(−λ),

λ2α+2`+np(λ)2ŝ(λ)x(λ)2y(λ)t̂(λ)x(−λ),

λ2α+n+m/2p(λ)2ŝ(λ)x(λ)y(λ)x(−λ)b(λ), d(λ)
}
. (6.8)

In order to show p2(λ) = λα+βp(λ)2s(λ), observe that all polynomials in (6.8) are divisible

by p(λ)2s(λ) because of (6.3). Since d(λ) is equal to λα+β̂p(λ)2s(λ) up to a scalar factor
and powers of λ and the polynomial p(λ)2s(λ) are relatively prime, it only remains to
investigate the occurring exponents of λ. Hence, we show that 2α+ n+m/2, 2α+ 2`+ n,
and 2α + 2n are greater than or equal to α + β. By the choice of ` and n it follows that

2α + 2`+ n = α + `+
β + γ

2
≥ α +

β + γ

2
≥ α + β.

Next, we observe

` ≤ γ − α
2

⇒ β + γ

2
− α− n ≤ γ − α

2
⇒ β − α

2
≤ n,

which implies 2α+2n ≥ α+β. To achieve the estimate 2α+n+m/2 ≥ α+β, we consider

both possible cases for m. If m = β̂ − α, then

2α + n+
m

2
≥ 2α +

β − α
2

+
β̂ − α

2
≥ α + β,

else we have m = 2` and:

2α + n+
m

2
= 2α + n+ ` = 2α +

β + γ

2
− α ≥ α + β.

In the case that β is even, this proves the desired form of p2(λ) since then d(λ) contains

the factor λα+β̂ = λα+β. Otherwise, we still have to show that λα+β+1 does not divide all
2× 2 minors in (6.8). But if β is odd, by hypothesis β = γ holds and we obtain

` ≤ γ − α
2

=
β − α

2
<
β̂ − α

2
.
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Hence, in this case m = 2` always holds true and it is

2α + n+
m

2
= 2α + n+ ` = 2α +

γ + β

2
− α = α + β,

from which the desired form of p2(λ) follows as well. Finally, p3(λ) is the normalized
determinant of (6.7):

p3(λ) = gcd
{
λ3α+2n+2`p(λ)3ŝ(λ)2t̂(λ)x(λ)2x(−λ)2y(λ)y(−λ)

}
= λα+β+γp(λ)3s(λ)2t(λ),

where we used (6.4) and (6.3) to achieve the last equality. The invariant polynomials
of (6.7) are thus given by:

d1(λ) = λαp(λ), d2(λ) = λβp(λ)s(λ), d3(λ) = λγp(λ)s(λ)t(λ).

and hence S(λ) is the Smith form of (6.7). Furthermore, (6.7) is T -even and its middle
anti-diagonal element is of the degree

α + 2`+ deg(p) + deg(t̂ ) + 2 deg(x) = α + deg(p) + 2(`+ ̂̀+ ˜̀) = k,

where we used deg(t̂ ) = 2˜̀, deg(x) = ̂̀, and (6.2).

Lemma 6.2 Let S(λ) ∈ F[λ]3×3 be in Smith form

S(λ) = diag
(
λαp(λ), λαp(λ)s(λ), λβp(λ)s(λ)t(λ)

)
,

with 0 < α < β, where α is odd and β is even, and where p(λ), s(λ), t(λ) are monic, even
polynomials with p(0), s(0), t(0) 6= 0. If k ∈ N is even such that

α + deg(p) +
deg(s)

2
< k < β + deg(p) + deg(s) + deg(t), (6.9)

then S(λ) is equivalent to a T -even, lower anti-triangular matrix polynomial, whose middle
anti-diagonal entry has degree k.

Proof. The proof proceeds similar to the one of Lemma 6.1. By hypothesis, the integer
β + deg(p) + deg(s) + deg(t)− k is even and by (6.9) it is bounded by

β + deg(p) + deg(s) + deg(t)− k

≤ β + deg(p) + deg(s) + deg(t)− α− deg(p)− deg(s)

2
− 1

≤ β − α− 1 + deg(s) + deg(t).

Thus, let `, ̂̀, ˜̀∈ N satisfy

β + deg(p) + deg(s) + deg(t)− k = 2(`+ ̂̀+ ˜̀) (6.10)
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and 2` ≤ β − α − 1, 2̂̀≤ deg(s), 2˜̀ ≤ deg(t). Since F is algebraically closed, we can

choose two monic and even polynomials ŝ (λ) of degree 2̂̀and t̂ (λ) of degree (deg(t)−2˜̀),
such that ŝ (λ) | s(λ) and t̂ (λ) | t(λ). Then by Lemmas 2.6 and 2.7 there exist polynomials
x(λ), y(λ) and constants cx, cy ∈ F \ {0} such that

s(λ) = cx ŝ(λ)x(λ)x(−λ) and t(λ) = cy t̂(λ)y(λ)y(−λ). (6.11)

Note that deg(y) = ˜̀and that

n := β − α− 2` ≥ 0 (6.12)

is odd. We now consider the even polynomial −λn+1t̂(λ) + cx ŝ(λ), by Lemma 2.7 there
exists a polynomial b(λ) and a constant c ∈ F\{0} such that

−λn+1t̂(λ) + cx ŝ(λ) = c b(λ)b(−λ). (6.13)

We will now show that S(λ) is equivalent to the matrix polynomial 0 0 (−λ)α+`p(λ)ŝ (λ)x(−λ)y(−λ)

0 λα+np(λ)t̂ (λ)x(λ)x(−λ) −λαp(λ)x(−λ)b(λ)
λα+`p(λ)ŝ (λ)x(λ)y(λ) λαp(λ)x(λ)b(−λ) c−1λα+1p(λ)

 ,
(6.14)

and again applying Theorem 2.3, we immediately find p1(λ) = λαp(λ). Moreover,

p2(λ) = gcd
{

0, 0, λ2α+`+np(λ)2t̂ (λ)x(λ)x(−λ)2ŝ(λ)y(−λ),

0, λ2α+2`p(λ)2ŝ (λ)2x(λ)y(λ)x(−λ)y(−λ),

λ2α+`p(λ)2x(λ)b(−λ)ŝ(λ)x(−λ)y(−λ),

λ2α+`+np(λ)2ŝ(λ)x(λ)2y(λ)t̂(λ)x(−λ),

λ2α+`p(λ)2ŝ(λ)x(λ)y(λ)x(−λ)b(λ), c−1λ2αp(λ)2s(λ)
}
,

where again the 2 × 2 minors of (6.14) are given in lexicographical order, powers of −1
are ignored, and the latter minor (the determinant of the lower principal 2× 2 submatrix)
has been simplified using (6.13) and (6.11). Because of (6.11), clearly all above minors
are divisible by λ2αp(λ)2s(λ), hence we obtain p2(λ) = λ2αp(λ)2s(λ). Finally, p3(λ) is the
normalized determinant of (6.14):

p3(λ) = gcd
{
λ3α+2`+np(λ)3ŝ(λ)2t̂(λ)x(λ)2x(−λ)2y(λ)y(−λ)

}
= λ2α+βp(λ)3s(λ)2t(λ),

where the last equality follows from (6.12) and (6.11). The invariant polynomials of the
matrix polynomial (6.14) are thus given by:

d1(λ) = λαp(λ), d2(λ) = λαp(λ)s(λ), d3(λ) = λβp(λ)s(λ)t(λ),

i.e., S(λ) is the Smith form of (6.14). Furthermore, (6.14) is T -even and its middle anti-
diagonal element has the degree

α + n+ deg(p) + deg(t̂) + 2 deg(x) = β − 2`+ deg(p) + deg(t)− 2˜̀+ deg(s)− 2̂̀= k,

where we inserted the degrees of t̂(λ) and x(λ), as well as (6.12) and (6.10).
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