
A DUALITY-BASED
PATH-FOLLOWING SEMISMOOTH NEWTON METHOD

FOR ELASTO-PLASTIC CONTACT PROBLEMS

M. HINTERMÜLLER AND S. RÖSEL

Abstract. A Fenchel dualization scheme for the one-step time-discretized
contact problem of quasi-static elasto-plasticity with kinematic or isotropic
hardening is considered. The associated path is induced by a combined Moreau-
Yosida / Tichonov regularization of the dual problem. The sequence of solu-
tions to the regularized problems is shown to converge strongly to the optimal
displacement-stress-strain triple of the original elasto-plastic contact problem
in the space-continuous setting. This property relies on the density of the in-
tersection of certain convex sets which is shown as well. It is also argued that
the mappings associated with the resulting problems are Newton- or slantly
differentiable. Consequently, each regularized subsystem can be solved mesh-
independently at a local superlinear rate of convergence. For efficiency pur-
poses, an inexact path-following approach is proposed and a numerical valida-
tion of the theoretical results is given.

1. Introduction

In this paper we consider the quasi-static elasto-plasticity model with an as-
sociative flow law (sometimes called Prandtl-Reuss normality law) and von Mises
hardening under the small strain assumption set forth in [21]. First investigations
of the elasto-plastic problem from a mathematical point of view can be found in
[15, 31], where [31] includes existence for the fully continuous case. Numerical
analysis of the semi-discrete and fully-discrete versions can be found, for example,
in [2, 21]. Appropriate discretization schemes for plasticity problems with harden-
ing have been investigated extensively in the recent past. Here we only mention
[3, 9, 10] for adaptive finite element methods. Concerning numerical solution meth-
ods, we refer to the multigrid approach in [45], various generalized Newton methods
in finite dimensions [12, 19, 40, 45, 46], the algorithm in [42] as well as interior point
strategies, cf. e.g. [35].

A general introduction to elastic contact problems including corresponding nu-
merical approaches can be found in the monographs [29, 39], and multigrid methods
for elastic contact are analyzed, e.g., in [33] and [34, 36], where the latter references
are devoted to two-body contact. For the treatment of elastic friction problems
we refer to [13, 36] as well as to the efficient active set algorithm proposed in [30],
to mention only two. Subspace correction methods for variational inequalities of
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the second kind with application to frictional contact have been investigated in
[6]. In [12, 20] plastic material behavior is incorporated in addition to the contact
constraints. In the latter references the elasto-plastic friction problem is refor-
mulated utilizing a nonlinear complementarity problem (NCP) function yielding a
nonsmooth system which can be solved efficiently by applying a generalized Newton
method in a discrete framework.

While some attention has been paid to infinite-dimensional methods in linear
elasticity with (frictional) contact [37, 43], elasto-plastic problems are still less re-
searched. Among the few available references we mention [8] for domain decompo-
sition methods leading to a linear rate of convergence. The approach to plasticity
problems without contact constraints in [19], however, turns out to be problematic
as far as function space convergence of the employed semismooth Newton (SSN)
solver is concerned. In fact, due to the lack of a sufficient norm gap between domain
and image space of the mapping involved in the underlying nonsmooth system, gen-
eralized differentiability in the sense of [24] does not hold true. The resulting lack
of a well-defined infinite-dimensional generalized Newton iteration usually results
in a mesh-dependent solver.

In the present paper, we introduce a path-following semismooth Newton method
which admits a rigorous convergence analysis in the continuous setting. For this
purpose, we study a regularized version of the Fenchel-dual problem of the under-
lying elasto-plastic contact problem with the regularization parameter inducing a
dual path to the solution of the original problem. Each path-problem can be solved
at a local superlinear rate and in a mesh-independent way upon discretization.

2. Problem formulation

The starting point of our analysis is a time-discretized elasto-plastic contact
problem in the displacement u, the plastic strain p and the hardening parameter
α (sometimes called conjugate force) which model the evolution of a body subject
to given applied forces. Further, in the elasto-plasticity literature the pair (σ, α)
is called generalized stress. The body is represented by a bounded domain Ω ⊂
RN , N = 2, 3, with N0,1-property [47] and it adheres to a fixed part Γd ⊂ ∂Ω with
positive surface measure. We further denote by Γn ⊂ ∂Ω \ Γd some relatively open
part of the boundary where a given surface load g ∈ L2(Γn) is applied. A given
volume force density is denoted by f ∈ L2(Ω). The elasto-plastic behavior at a
material point x ∈ Ω is determined by the von Mises yield criterion leading to a
dissipation functional which typically is nonsmooth, lower semicontinuous (l.s.c.)
and convex [21].

Often, the displacement of the body is restricted by a given rigid obstacle giving
rise to an elasto-plastic contact problem. Therefore we fix a set Γc ⊂ ∂Ω which
potentially contains the contact region with the obstacle. We emphasize here that
the approach presented in this work does not hinge on Γc 6= ∅. To measure the gap
between Ω and the obstacle we use a given function

ψ ∈ Z := H1/2(Γc) with ψ ≥ 0 almost everywhere (a.e.) on Γc;

see [39]. For the time being we neglect frictional forces such that in terms of the
variational formulation, we incorporate the contact constraint by a kinematic non-
penetration condition on the displacement u:

(2.1) τnu ≤ ψ on Γc,
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where τn : [H1
0,Γd

(Ω)]N → Z, u 7→ (τ |Γc(u)) · n denotes the normal trace mapping
restricted to Γc. For analytical reasons we assume that Γc is relatively open with
N1,1-property and C∞-boundary ∂Γc.

For simplicity and without loss of generality we further stipulate

Γc ⊂ Σ,(2.2)

where Σ denotes the interior of ∂Ω \ Γd in ∂Ω, to avoid working with the space
H

1/2
00 (Γc). Concerning the splitting of the boundary we further assume

∂Ω = Γc ∪ Γn ∪ Γd, Γc ∩ Γn ∩ Γd = ∅, ∂Σ ∈ C∞.

Denoting a given time step by δt = t1 − t0 > 0, the time-discrete elasto-plastic
contact problem in variational form [8, 39] reads

(2.3)

{
min J̃(u, p, α) over (u, p, α) ∈ X ×Q× L2(Ω)m

subject to (s.t.) τnu ≤ ψ on Γc,

with

J̃(u, p, α) := 1
2

∫
Ω

C(ε(u)− p) : (ε(u)− p) + α : H−1α dx

+ δt

∫
Ω

ϕ∗((p− p0)/δt,H−1(α0 − α)/δt) dx

−
∫

Ω

f · udx−
∫

Γn

g · udx,

where ϕ∗ denotes the convex conjugate of a given l.s.c., convex and proper function
ϕ which is defined as the characteristic function χK of the convex set K which in
turn is defined by a given yield function φ, cf. (2.8) below. Here, α0, p0 ∈ L2(Ω)m

denote the given hardening and plastic strain at the preceding time instance, re-
spectively. We endow the Hilbert spaces

X := [H1
0,Γd

(Ω)]N , Q := [L2(Ω)]N×Nsym

with the usual scalar products. In this context, C(x) ∈ RN×N×N×N ,Cijkl ∈ L∞(Ω),
denotes the fourth-order elasticity tensor which is assumed to be symmetric, i.e.
Cijkl = Cklij = Cjikl and pointwise stable, i.e. ∃C > 0 with

C(x)σ : σ ≥ C|σ|2F ∀σ ∈ RN×Nsym and a.e. x ∈ Ω,

where A : B =
∑
i,j=1...N aij · bij for A,B ∈ RN×N . Analogous properties are

supposed to be fulfilled by the hardening modulus H. The symmetric part of the
displacement gradient is denoted by ε(u), i.e.,

ε(u)(x) = 1
2 (∇u(x) +∇u(x)>).

Further, tr(σ) :=
∑N
i=1σii stands for the matrix trace operator.

Time-continuous problem. Given some material-dependent l.s.c., convex and
proper yield functional φ : RN×Nsym × Rm → R∪ {+∞}, the underlying elasto-plastic
time-continuous problem consists of seeking (u, p, σ, α)(t) ∈ X×Q×Q×L2(Ω)m, t ∈
(0, T ), with (u, p, σ, α)(0) = 0 such that
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u = 0 on Γd,(2.4)
σn = g on Γn,(2.5)

div σ = −f,(2.6)

ε(u) = C−1σ + p,(2.7)
(σ, α) ∈ K := {(τ, β) : φ(τ, β) ≤ 0},(2.8)

(ṗ,−H−1α̇) ∈ NK(σ, α),(2.9)
τTσ = 0,(2.10)
τnnσ ≤ 0,(2.11)

τnnσ(τnu− ψ) = 0,(2.12)
τnu ≤ ψ(2.13)

for a.e. t ∈ (0, T ), where NK(σ, α) denotes the normal cone to the convex set
K at (σ, α). Furthermore, τnnσ := (τnσ)>n, and τTσ := τnσ − (τnnσ)n denotes
the tangential trace on Γc; cf. [39]. Note that (2.7)-(2.9) determine the plasticity
behavior and (2.10)-(2.13) represent the complementarity conditions of contact.
Moreover, (2.3) represents the weak formulation of one time step of a time-discrete
version of (2.4)-(2.13) obtained from an implicit Euler time-discretization of the
associative flow law (2.9). We refer to [8, 39] for details.

Elimination of α. Employing the von Mises yield criterion for combined
isotropic-kinematic hardening to model the plastic straining, i.e.,

φ(σ, α) = |dev σ − devα2|F − σy(1 +Hα1) + χR+
0

(α1), α = (α1, α2),

where dev σ := σ − tr(σ)
N · I, one may compute the convex conjugate ϕ∗ of ϕ for

relevant hardening profiles including isotropic or kinematic hardening. In the latter
cases, the hardening parameter α can be eliminated from the optimization problem
[8]. The resulting trace condition on p will be incorporated into the space Q which
gives

Q0 := {q ∈ [L2(Ω)]N×Nsym : tr(q) = 0 a.e. in Ω}.

We note that Q0 inherits the scalar product of Q, such that (2.3) may be recast
into the form

(2.14)

{
min J(u, p) over (u, p) ∈ X ×Q0

s.t. τnu ≤ ψ on Γc

with

J(u, p) := 1
2

∫
Ω

C(ε(u)− p) : (ε(u)− p) + H̃p : pdx +

∫
Ω

β|p|F dx +l(u, p),

where β ∈ L2(Ω) with β ≥ σy a.e. in Ω, l ∈ (X × Q0)∗, the topological dual
space to X × Q0, and the fourth-order tensor H̃ can be derived depending on the
given hardening law; see (2.15) and (2.16) below. Here the material-dependent
yield stress is denoted by σy > 0 and the modulus of hardening by H > 0. In the
case of isotropic hardening, i.e.,

φ(σ, α) = |dev σ|F − σy(1 +Hα) + χR+
0

(α),
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we obtain m = 1,H = (k1), k1 > 0, H̃ = (Hσy)2k1I, β = σy(1 +Hα0) and

l(u, p) = −
∫

Γn

guds−
∫

Ω

fudx−
∫

Ω

C(ε(u)− p) : p0.(2.15)

In the kinematic hardening case, i.e.,

φ(σ, α) = |dev σ − devα|F − σy,

it holds that m = n(n+1)
2 , H̃ = H, β = σy and

l(u, p) = −
∫

Γn

guds−
∫

Ω

fudx +

∫
Ω

α0 : p dx−
∫

Ω

C(ε(u)− p) : p0.(2.16)

Note that (2.14) is equivalent to an elliptic variational inequality problem of the
mixed (i.e. first and second) kind. Writing

y := (u, p) ∈ Y := X ×Q0,

p =: ΠQ0
(u, p), ΠQ0

∈ L(Y,Q0),

D([u, p], [v, r]) :=

∫
Ω

C(ε(u)− p) : (ε(v)− r) + H̃p : r dx,

yields a more compact form of J : Y → R:

J(y) = 1
2 〈Dy, y〉(Y ∗,Y ) + l(y) +

∫
Ω

β · |ΠQ0
y|F dx,(EP)

where D ∈ L(Y, Y ∗), i.e. it is a linear and continuous operator from Y to its
topological dual Y ∗. We note that the bilinear form associated with D is Y -elliptic
under mild assumptions on H which are fulfilled for isotropic or kinematic hardening
[21]. Consequently, F is strongly convex.

Existence. Owing to the coercivity of F , standard arguments show that (2.14)
admits a unique solution ȳ = (ū, p̄) ∈ Y .

Remark. Using Moreau’s theorem, (EP) can be further reduced to a (Fréchet)
differentiable problem in the displacement only, cf. [19]. However, the resulting
optimality condition is not eligible to Newton differentiation (in the sense of [24])
in infinite dimensions which may result in mesh-dependent convergence of an asso-
ciated generalized Newton scheme. While the Newton differentiability of the sta-
tionarity system is always given in finite dimensions, the spatially continuous case
requires a certain norm gap which is indispensable for the Newton differentiation
of the involved composed max-function, cf. [26, 27] or section 6 for related issues.
Such an integrability gap can never be achieved without further regularization.

3. Fenchel duality for
the elasto-plastic contact problem

For numerical purposes it turns out that the Fenchel dual problem to (2.14)
is favorable in the sense that, upon regularization, it can be solved efficiently by
semismooth Newton techniques.

In order to establish a compact set-up for the application of the Fenchel duality
theory, the elasto-plastic contact problem (2.14) will be rewritten in the form

minF (y) +G(Λy), over y ∈ Y,(EPC)
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with a Gâteaux-differentiable function F , a l.s.c., proper, and convex function G
and a linear and continuous operator Λ. In fact, we define F : Y → R by

F (y) := 1
2 〈Dy, y〉(Y ∗,Y ) + l(y).

Further, we denote the convex cone associated to the constraint (2.1) by

K1 := {z ∈ Z : z ≤ 0 a.e. on Γc}

and define G : Z × L2(Ω)d → R ∪ {+∞} by

G(z, q) := G1(z) +G2(q) := χψ+K1
(z) +

∫
Ω

β|q|2 dx .

Moreover, we set

Λ :=

[
τn 0
0 M1/2P−1

]
∈ L(Y,Z × L2(Ω)d),

where χψ+K1
is the indicator function of the set ψ +K1, and

P : (L2(Ω)d, ‖ . ‖L2(Ω)d)→ (Q0, ‖ . ‖Q0
)

denotes the canonical parametrization

[q1, . . . , qd]
P7→



q1 qN . . . qd−(N−1)

qN q2
. . .

...
...

. . .
qN−1 qd

qd−(N−1) . . . qd −
∑N−1
i=1 qi

(3.1)

with d = N(N+1)
2 − 1. The symmetric positive definite matrix M is defined by

Pp : Pq = Mp · q ∀ p, q ∈ Rd.

This setting differs from the one presented in [43] mainly by the choice of the
operator Λ which entails a slightly different interpretation of the dual variable q,
cf. (3.9).

We next compute and analyze the dual problem to (EPC).
Computation of the Fenchel conjugates. The convex conjugate F ∗ : Y ∗ →

R of F : Y → R is given by

F ∗(y∗) = 1
2 〈y
∗ − l,D−1(y∗ − l)〉(Y ∗,Y ).

For the nondifferentiable part G we obtain

G∗ : Z∗ × L2(Ω)d → R ∪ {+∞}, G∗(z∗, q) = G∗1(z∗) +G∗2(q),

with
G∗2 : L2(Ω)d → R ∪ {+∞}, G∗2(q) = χK2

(q),

where K2 := {q ∈ L2(Ω)d : |q|2 ≤ β a.e. in Ω}, and
G∗1 : Z∗ → R ∪ {+∞}, G∗1(z∗) = sup

z∈K1+ψ
〈z∗, z〉 = χK∗

1
(z∗) + 〈z∗, ψ〉,

where it is understood that

K∗1 := Z∗+ = {z∗ ∈ Z∗ : z∗ ≥ 0}
= {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0 ∀ z ∈ Z with z ≥ 0 a.e. on Γc}.(3.2)
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The dual problem to (EPC) is given by

(D) sup −F ∗(−Λ∗[z∗, q])−G∗(z∗, q) over [z∗, q] ∈ Z∗ × L2(Ω)d,

which can be equivalently expressed as
− inf F ∗(Λ∗[z∗, q])− 〈z∗, ψ〉 over [z∗, q] ∈ Z∗ × L2(Ω)d

s.t. z∗ ≤ 0,

|q|2 ≤ β a.e. in Ω.

Note the sign change in the dual variables and that the first inequality constraint
has to be understood in the sense of (3.2).

Since K1 + ψ has empty interior, a generalized Slater condition fails to hold.
Hence the Fenchel duality theorem in its usual version [16] is not applicable. How-
ever, in our special situation we are still able to preclude the presence of a duality
gap.

Proposition 3.1 (Duality). There is no duality gap, i.e. it holds that

inf (EPC) = sup (D).

Moreover, there exists a unique solution (z̄, q̄) ∈ Z∗ × L2(Ω)d to the dual problem.

Proof. We make use of [4, Theorem 1, Chapter 4.6], and need to show that

(3.3) 0 ∈ int (Λ∗ domG∗ + domF ∗) .

As F ∗ is finite everywhere, we have domF ∗ = Y ∗. Further, domG∗ 6= ∅ implies
Λ∗ domG∗ + domF ∗ = Y ∗ such that (3.3) is always satisfied. It follows that no
duality gap occurs.
Regarding existence and uniqueness of a solution to (D) we notice that the objective
function is continuous and strictly convex since F ∗ is strongly convex and Λ∗ is
injective by the surjectivity of τn, cf. (2.2). Moreover, coercivity of the objective
function follows from ellipticity of the bilinear form associated to D−1. Indeed,
with κ > 0 denoting the corresponding ellipticity constant, it follows that

F ∗(Λ∗[z∗, q])− 〈z∗, ψ〉
= 1

2 〈Λ
∗[z∗, q]− l,D−1(Λ∗[z∗, q]− l)〉(Y ∗,Y ) − 〈z∗, ψ〉

≥ κ
2 ‖Λ

∗[z∗, q]‖2Z∗×Q − ‖ΛD−1l + [ψ, 0]‖‖[z∗, q]‖Z∗×Q + κ
2 ‖l‖

2

≥ κ
2‖Λ−∗‖‖[z

∗, q]‖2Z∗×Q − ‖ΛD−1l + [ψ, 0]‖‖[z∗, q]‖Z∗×Q + κ
2 ‖l‖

2,

where the last estimate follows from the fact that Λ∗ has a bounded inverse on its
(closed) range owing to the closed range theorem.

�

Optimality conditions. By the absence of a duality gap (Proposition 3.1), the
solution ȳ = [ū, p̄] of the primal problem (EPC) can be recovered from the solution
[z̄, q̄] of (D) from

Λ∗[z̄, q̄] = Dȳ + l,(P-D)
−[z̄, q̄] ∈ ∂G(Λȳ).
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Due to (3.3), we may characterize the solution [z̄, q̄] ∈ Z∗ × L2(Ω)d by the
existence of λ̄ = [µ̄, ν̄] ∈ Z × L2(Ω)d satisfying

ΛD−1Λ∗[z̄, q̄]− ΛD−1l − [ψ, 0] + λ̄ = 0,(OC1)
z̄ ≤ 0, |q̄|2 ≤ β a.e. in Ω,(OC2)
〈µ̄, z∗ − z̄〉 ≤ 0, (ν̄, q − q̄) ≤ 0 ∀ z∗ ≤ 0, ∀ |q|2 ≤ β a.e. in Ω,(OC3)

where the (OC3) expresses that λ̄ is an element of the normal cone to −K∗1 ×K2

at [z̄, q̄]. Equivalently, there exists [µ̄, ζ̄] ∈ Z × L2(Ω) with

ΛD−1Λ∗[z̄, q̄]− ΛD−1l − [ψ, 0] + [µ̄, ζ̄ q̄] = 0,(3.4)

ζ̄ −max(0, ζ̄ + c(|q̄|2 − β)) = 0, c > 0,(3.5)
z̄ ≤ 0,(3.6)
〈µ̄, z∗ − z̄〉 ≤ 0 ∀ z∗ ≤ 0.(3.7)

In general, these conditions are not directly eligible to the semismooth Newton
method in the sense of [24]: Firstly, for generalized differentiation of the mapping
associated with the left hand side of (3.5) in infinite dimensions, the setting lacks
a suitable norm gap, see [26, 27] and section 6. Note that these issues are absent
if a direct discretization is applied which may, however, be at the cost of mesh
dependent convergence rates.

Secondly, (3.7) cannot be reformulated with the help of a pointwise NCP-function,
i.e., a function φ : R2 → R with the property

a ≥ 0, b ≥ 0, ab = 0⇐⇒ φ(a, b) = 0.

This is due to the fact that elements of Z∗ in general do not allow for a pointwise
interpretation. For these reasons we employ a penalization-regularization approach
in the next sections.

Interpretation of the dual variables. Considering the second component
in (P-D) and using P ∗ = MP−1, we obtain a direct relation between q̄ and the
optimal stress σ̄ := C(ε(ū)− p̄):

P (M−1/2q̄) = −σ̄ + H̃p̄ in Q∗0,

assuming α0 = p0 ≡ 0. Thus it holds that

P (M−1/2q̄) = dev H̃p̄− dev σ̄ in Q0.(3.8)

In the case of the kinematic hardening law it can be shown that ᾱ = Hp̄, cf. [8].
Together with (3.8), this induces

(3.9) |q̄|2 − σy = |dev σ̄ − dev ᾱ|F − σy,

which corresponds to the von Mises yield function value. In this way, the norm
of q̄ determines the elasto-plastic material behavior. An analogous relation can
be shown in the case of isotropic hardening. Moreover, by multiplying (P-D) by
[u, 0], u ∈ X, it may be shown, analogously to the elastic case [39, 43], that z̄
corresponds to the normal stress (σ̄n) · n ∈ Z∗ at the contact boundary.
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4. Regularization

In order to render the optimality conditions (OC1-3) amenable to the semismooth
Newton method we now choose a Hilbert subspace H = H1×H2 ⊂ L2(Γc)×L2(Ω)d

with dense embedding

H = H1 ×H2 ↪→ Z∗ × L2(Ω)d.

To obtain a consistent regularization,H1 andH2 are required to satisfy the following
properties.

Assumption 4.1 (Density of convex intersections). The following density asser-
tions are supposed to hold:

ι∗1({z ∈ H1 : z ≤ 0 a.e. on Γc})
Z∗

= Z∗−,

{q ∈ H2 : |q|2 ≤ β a.e. in Ω}
L2(Ω)d

= {q ∈ L2(Ω)d : |q|2 ≤ β a.e. in Ω},
where Z∗− := {z∗ ∈ Z∗ : 〈z∗, z〉(Z∗,Z) ≤ 0 ∀ z ≥ 0} and ι∗1 is given by (4.1).

We further define W := L2(Γc)× L2(Ω)d and denote by

ι∗ = [ι∗1, ι
∗
2] : W ↪→ [Z × L2(Ω)d]∗ ' Z∗ × L2(Ω)d

the canonical injection

(4.1) [z, q] 7→ [(z, .)L2(Γc) |Z , q] ∈ [Z × L2(Ω)d]∗.

Moreover, in the following illustration (see Figure 1) of the embedding framework
including two Gelfand triples, we also specify the canonical injection

ι̃ : H →W, [z, q]
ι̃7→ [z, q].

In this section only ι and ι∗ will be mentioned explicitly whereas the other injections

Z × L2(Ω)d � x
ι
++

[Z × L2(Ω)d]∗

W = L2(Γc)× L2(Ω)d
& �

ι∗ 33

� y

ι̃∗

++
H = H1 ×H2

% �
ι̃ 33

H∗

Figure 1. Gelfand triple framework for the regularization

are employed tacitly.
Suitable choices for H1 and H2 with regard to Assumption 4.1, possibly depend-

ing on the smoothness of Γc, can be made using Lemmas 5.3 and 5.4 as well as
Lemma 5.5 of the subsequent section. For specific examples, we refer to section 7
below.

For algorithmic reasons it may be advantageous to include a non-negative shift
parameter

(µ̂, ν̂) ∈ H1/2
+ (Γc)× L∞+ (Ω),

see [25]. Finally we replace β by an L∞-approximation βγ which shall satisfy

σy ≤ βγ ≤ β a.e., ||βγ − β||L2(Ω) ≤ 1
γ

for all γ.
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Regularized problem. Following [14] we consider the regularized problem:

min J∗γ (z, q) over [z, q] ∈ H(Dγ)

with

J∗γ (z, q) := F ∗(Λ∗ι∗[z, q])− (z, ψ)L2(Γc) +M1
γ (z) +M2

γ (q) + Tγ(z, q),

where we employ the following Moreau-Yosida-type regularizations of the indicator
function associated with the inequality constraints in (D):

M1
γ (z) := 1

2γ ‖[µ̂+ γz]+‖2L2(Γc)
,

M2
γ (q) := 1

2γ ‖[ν̂ + γ(|q|2 − βγ)]+‖2L2(Ω),

as well as a regularization term of Tichonov type:

Tγ([z, q]) := 1
2γ b([z, q], [z, q]),(4.2)

where b : H ×H → R is a continuous and coercive bilinear form represented by the
operator B ∈ L(H,H∗) with ellipticity constant κb > 0.

Optimality condition. Note that (Dγ) has a unique solution vγ = [zγ , qγ ] ∈ H
which is characterized by

0 = Nγvγ − ιŵ + ([µγ , νγ ], . )W in H∗(OC1γ)

with

(OC2γ)


ŵ = [ẑ, q̂] = ΛD−1l + [ψ, 0],

µγ = [µ̂+ γzγ ]+ ∈ L2(Γc),

νγ = [ν̂ + γ(|qγ |2 − βγ)]
+
q(qγ) ∈ L2(Ω)d,

where we define q( . ) : L2(Ω)d → L2(Ω)d by

q(v) :=

{
v
|v|2 if |v|2 > 0,

0 else.

Furthermore, the homeomorphism Nγ ∈ L(H,H∗) is defined as

Nγ := ιΛD−1Λ∗ι∗ + 1
γB.

We close this section with an important consistency result concerning γ → +∞.
This result suggests a path-following-type approach, where the associated primal-
dual-path is induced by a sequence (γk) with γk > 0.

Theorem 4.2 (Convergence of regularized dual solutions). Let (γ) ⊂ R+, γ →∞.
Under Assumption 4.1 it holds that

(i) vγ = [zγ , qγ ] ⇀ [z̄, q̄] in Z∗ × L2(Ω)d,
(ii) λγ = [µγ , νγ ] ⇀ [µ̄, ν̄] in H∗1 ×H∗2 ,

and
Λ∗ι∗vγ → Λ∗[z̄, q̄] in Y ∗.

Proof. See appendix B. �

As a simple consequence of the previous theorem, the sequence of approximations
of the optimal displacement-strain pair and the sequence of trial stresses converge
strongly to the corresponding solution of the original elasto-plastic contact problem
(EPC). It may further by inferred that the sequence (qγ) converges even with
respect to the norm topology in L2(Ω)d.
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Corollary 4.3 (Convergence of primal solutions). Under Assumption 4.1, the fol-
lowing assertions hold true:

(i) For yγ := D−1(Λ∗ι∗[zγ , qγ ]− l) it holds that yγ → ȳ in Y .
(ii) For σγ := C(ε(uγ)− pγ) it holds that σγ → σ̄ in Q.
(iii) It holds that qγ → q̄ in L2(Ω)d.

Proof.
(i) The statement follows from the continuity of the operator D.
(ii) The assertion follows from (i).
(iii) The assertion follows from (i) and the fact that Λ∗2 is a topological isomor-

phism.
�

5. Auxiliary results on
density-invariant convex intersections

In this section we discuss several conditions which lead to suitable options for
the regularization space H with regard to Assumption 4.1. In general, for a Banach
space V , an arbitrary dense subset U ⊂ V as well as a convex and closed subset
K ⊂ V the inclusion

(5.1) K ∩ U ⊂ K ∩ V

is not necessarily dense even for linear subspacesK and U . Therefore we investigate
several situations relevant for our application in which the density of inclusion (5.1)
is guaranteed. Readers who are merely interested in numerical aspects may as well
directly consult the options for H specified in section 7 and take the Assumption 4.1
for granted.

Lemma 5.1 (intersection-invariant dense embedding). Let V be a Hilbert space
and U a dense subset U ⊂ V . Let K ⊂ V be nonempty, convex and closed. If the
projection mapping PK : V → K is U -invariant, i.e.

PK(U) ⊂ U,

then U ∩KV
= K, i.e. U ∩K is dense in K with respect to the norm in V .

Proof. For v ∈ K there exists a sequence (un) ⊂ U with un → v. Now, PK(un) ∈ U
for all n by assumption, such that

‖PK(un)− v‖V = ‖PK(un)− PK(v)‖V ≤ ‖un − v‖V → 0.

�

Lemma 5.2 (superposition and trace). Let θ : R→ R be Lipschitz continuous and
assume that θ′(t) exists except for finitely many points t ∈ R. Further let Ω be a
Lipschitz domain. Assume that µ(Ω) < +∞ or θ(0) = 0. For the trace operator
τ : H1(Ω)→ H1/2(∂Ω) it holds that

(5.2) (θ ◦ τ)(u) = (τ ◦ θ)(u) in L2(∂Ω)

for all u ∈ H1(Ω).
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Proof. Under the above conditions, the superposition

θ1 = θ : L2(∂Ω)→ L2(∂Ω)

is well-defined and continuous. Further, it is well known that the superposition

θ2 = θ : H1(Ω)→ H1(Ω)

is also well-defined [32] and continuous, cf. [38]. Since (5.2) holds for any u ∈
C(Ω) ∩H1(Ω), a density argument completes the proof. �

Lemma 5.3. For L2
−(Γc) := {z ∈ L2(Γc) : z ≤ 0 a.e. on Γc} it holds that

ι∗1(L2
−(Γc))

Z∗

= Z∗−.

Proof. Define the closed, convex and nonempty set M ⊂ Z∗ by

M := ι∗1(L2
−(Γc))

Z∗

⊂ Z∗−
and assume Z∗− \M 6= ∅. For 0 6= z∗ ∈ Z∗− \M it holds that αz∗ ∈ Z∗− \M for all
α > 0. Furthermore, there exists a sequence (vn) ⊂ L2(Γc) with

(5.3) vn → z∗ in Z∗.

We first assume that ||vn||L2(Γc) → +∞ as n→ +∞. The Hahn-Banach Separa-
tion Theorem implies that for all n ∈ N there exists zn ∈ Z with

〈zn, 1
||vn||2

L2(Γc)

z∗〉(Z,Z∗) > 1 and(5.4)

〈zn, v〉(Z,Z∗) ≤ 1 for all v ∈M.(5.5)

We decompose zn = z+
n + z−n into a positive part z+

n := max(0, z) and a negative
part z−n := min(0, z), where it is easy to see that {z+

n , z
−
n } ⊂ Z. Indeed, recall (cf.

e.g. [18, p.20]) that Z = H1/2(Γc) is defined by the set of all z ∈ L2(Γc) with finite
s-seminorm, s ∈ (0, 1), i.e.

|z|2Γc,s :=

∫
Γc

∫
Γc

|z(x)−z(y)|2
|x−y|(n−1)+2s dx dy < +∞.

Further observe that max(0, z) ∈ L2(Γc) and superposition with Lipschitz func-
tions preserves the finiteness of the s-seminorm. Alternatively one may invoke
Lemma 5.2. From (5.4) and z∗ ∈ Z∗− it follows that

〈z−n , 1
||vn||2

L2(Γc)

z∗〉(Z,Z∗) > 1,

in particular z−n 6= 0. Setting v = ι∗1(z−n )||z−n ||Z ||z−n ||−2
L2(Γc)

in (5.5), where v ∈M by
definition, one obtains

(5.6) 〈zn, v〉(Z,Z∗) = ||z−n ||Z ≤ 1.

On the other hand, for vn according to (5.3) and for sufficiently large n ∈ N it holds
that

||z−n ||L2(Γc) = sup
v∈L2(Γc)

(z−n ,v)
L2(Γc)

||v||
L2(Γc)

≥
(z−n ,vn)

L2(Γc)

||vn||L2(Γc)

=
〈z−n ,z

∗〉(Z,Z∗)
||vn||L2(Γc)

− 〈z
−
n ,z
∗−ι∗1vn〉(Z,Z∗)
||vn||L2(Γc)

≥ ||vn||L2(Γc) −
||z−n ||Z ||z

∗−ι∗1vn||Z∗
||vn||L2(Γc)

→ +∞ for n→ +∞,
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due to (5.3) and (5.6). This clearly contradicts (5.6).
If (vn) is bounded in L2(Γc), it converges weakly (along a subsequence) in L2(Γc)

to an element u ∈ L2(Γc), such that z∗ = u by (5.3). This in turn implies z∗ ∈
L2(Γc) ∩ Z∗− = L2

−(Γc). The latter equation relies on the density of Z+ in L2
+(Γc)

with respect to the norm topology in L2(Γc), which holds as a consequence of
Lemma 5.1. Thus it holds that z∗ ∈M , which contradicts the initial hypothesis.

�

Lemma 5.4. Let Ω ⊂ Rn be open, µ(Ω) < +∞, d ∈ N and β : Ω→ R measurable
with β(x) ≥ σ > 0 a.e. in Ω. For

K := {u ∈ L2(Ω)d : |u|2 ≤ β a.e. in Ω}

it holds that K∞ := K ∩ [C∞0 (Ω)]d is densely contained in K, i.e. K∞
L2(Ω)d

= K.

Proof. Let u ∈ K and ε > 0.
Part I. We first choose a function g ∈ C0

0 (Ω)d, g = [g1, . . . , gd], with the following
properties: {

|gj(x)| ≤ |uj(x)| a.e. in Ω,

||gj − uj ||L2(Ω) < ε√
d
,

(5.7)

for j = 1, . . . , d. A suitable choice can be made using Lusin’s Theorem: In fact,
there exist for all δ > 0

Kj ⊂ Ω compact , µ(Ω \Kj) < δ, j = 1, . . . , d,

with uj |Kj continuous. We define the C0
0 (Ω)-functions

gj(x) :=
min(δ,dist(x,Ω\Kj))

δ uj(x)

which fulfill (5.7) for sufficiently small δ.
Therefore g ∈ C0

0 (Ω)d is an element of K. Moreover,

‖g − u‖2L2(Ω)d =

d∑
j=1

||gj − uj ||2L2(Ω) < ε2.

We thus have shown that K0 := K ∩ C0
0 (Ω)d is densely contained in K.

Part II. To conclude the proof we take an arbitrary sequence (un)n∈N ⊂ K0

which fulfills
||un − u||L2(Ω)d → 0.

Further set ũn := n
n+1un ∈ C

0
0 (Ω)d.

By continuity and the hypothesis β(x) ≥ σ a.e. in Ω there exists δn > 0 with

|ũn|2(x) ≤ β(x)− δn for a.e. x ∈ Ω.(5.8)

Moreover, for every n a suitable mollification yields a sequence (vkn)k∈N ⊂ [C∞0 (Ω)]d

with

(5.9) lim
k
vkn → ũn in C(Ω̄).

Combining (5.8) and the uniform convergence property (5.9) one obtains that for
each n there exists k(n) such that vkn ∈ K∞ and ‖vkn−ũn‖L2(Ω)d <

ε
3 for all k ≥ k(n).

Finally choose n sufficiently large such that

‖u− un‖L2(Ω)d <
ε
3 , ‖un − ũn‖L2(Ω)d <

ε
3 .
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Applying the triangle inequality shows that (v
k(n)
n ) ⊂ K∞ satisfies

‖vk(n)
n − u‖L2(Ω)d < ε,

for sufficiently large n, which accomplishes the proof. �

The contact boundary as a Riemannian manifold. In order to allow for
a distribution theory on the manifold Γc similar to the Euclidean case, we need to
define the space of test functions C∞0 (Γc) on a manifold Γc which requires a smooth
structure. In connection with an associated Riemannian measure this leads to the
definition of Sobolev spaces on manifolds allowing for a complete calculus theory,
cf. [17]. For the alternative approach via the completion of smooth functions w.r.t.
the W k,p-norm see [22].

In the remaining part of this section we therefore assume that the contact
boundary Γc is smooth, i.e., a C∞-submanifold of Rn. More precisely, since ∂Ω
is assumed to have the N0,1-property [47], ∂Ω (possibly after an appropriate or-
thogonal coordinate transformation) is given locally by the graph of functions
αi ∈ C0,1

B , i = 1, . . . ,m. We assume that those αi whose graph has nonempty
intersection with Γc, are not only in C1,1

B but in C∞ ∩ C1,1
B on an appropriate

bounded domain in RN−1. Here, the space Ck,κB is defined as the set of k-times
continuously differentiable functions with bounded derivatives of order less than or
equal k and κ-Hölder-continuous k-th derivative [47].

In this way, Γc becomes an (N − 1)-dimensional C∞-submanifold of RN . We
further endow the Cartesian product of the tangent spaces of Γc with the usual
scalar product in RN . This canonical construction yields a Riemannian manifold
(Γc, 〈 . , . 〉RN ).

Lemma 5.5. Let Γc be a C∞-submanifold of RN and consider (Γc, g), g = 〈 . , . 〉RN ,
as a Riemannian manifold with associated Riemannian measure µ = µ(g). Then
for L2

−(Γc) := {u ∈ L2(Γc) : u ≤ 0 µ-a.e. on Γc},

K∞ := L2
−(Γc) ∩ [C∞0 (Γc)]

is densely contained in L2
−(Γc).

Proof. Let u ∈ L2
−(Γc). Since C∞0 (Γc) is dense in L2(Γc) [17] there exists a sequence

(vk) ⊂ C∞0 (Γc), such that vk → u in L2(Γc). We further denote by

ψk ∈ C0,1(R) ∩ C∞(R), k ∈ N,

non-positive functions with uniformly bounded Lipschitz modules Lk, i.e. supk Lk <
+∞, which satisfy

ψk(t)→ min(0, t) (pointwise).

Such a function can be easily constructed [17, Example 5.3]. Using the triangle
inequality we infer

||u− ψk(vk)||L2(Γc)

≤ ||min(0, u)− ψk(u)||L2(Γc)︸ ︷︷ ︸
→0

+ ||ψk(u)− ψk(vk)||L2(Γc)︸ ︷︷ ︸
≤Lk‖u−vk‖L2(Γc)

where the convergence of the left summand follows from the Dominated Conver-
gence Theorem. This completes the proof. �
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6. Semismooth Newton Method

Considering the necessary and sufficient optimality conditions (OC1γ) - (OC2γ)
of the regularized problem, the goal of this section is the application of the semis-
mooth Newton method applied to a suitable operator equation which equivalently
characterizes the optimality conditions. The notion of Newton differentiability
which is applied here can be found in [11, 24] and reads as follows.

Definition 6.1 (Newton differentiability). Let X,Y be Banach spaces and U ⊂ X
be an open set. A mapping F : U → Y is called Newton differentiable in U if there
exists a family of mappings GF : U → L(X,Y ) which satisfy

‖F (x+ h)− F (x)−GF (x+ h)h‖Y = o(‖h‖X), ‖h‖X → 0,

for all x ∈ U .

The corresponding generalized Newton method converges locally at a superlinear
rate [11]. Further, mesh independence results [23, 28] are available. We emphasize
that the semismooth Newton method has found considerable attention throughout
the last decade as it has proved to be a remarkably efficient method, notably for
the solution of various problems in PDE-constrained optimization [24, 25, 26] and
variational inequalities [14, 27, 37], to mention only a few.

We further rely on the following calculus rules related to the Newton differentia-
bility of several nonsmooth functions which can be found in [24] and [27].

For measurable subsets Ω̃ ⊂ Ω or Ω̃ ⊂ ∂Ω and 1 ≤ q ≤ p ≤ ∞, the operator
[ . ]+ defined by

[ . ]+ : Lp(Ω̃)d → Lq(Ω̃)d,

v 7→ (x 7→ max(0, v(x))),

from now on always denotes the pointwise max-operator.

Lemma 6.2 (Newton differentiability of the pointwise maximum). The pointwise
maximum function F ( . ) := [ . ]+

F : Lp(Ω̃)→ Lq(Ω̃),

is Newton differentiable for 1 ≤ q < p ≤ +∞. A corresponding Newton derivative
is given by

GF (u)h :=

{
0, on I(u),

h, on A(u),

where A(u) := {x ∈ Ω̃ : u(x) > 0} and I(u) := Ω̃ \ A(u).

Lemma 6.3 (Newton differentiability of a generalized maximum function). Let
β ∈ L∞(Ω) with β(x) ≥ c > 0 a.e. in Ω. Then the mapping

m : u 7→ [|u|2 − β]+q(u)

is Newton differentiable as a mapping from Lp(Ω)d → Ls(Ω)d for 3 ≤ 3s ≤ p <
+∞. A corresponding Newton derivative is given by

Gm(u) := χA(u) ·M(u)
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where

(6.1)


ρ(u) := [|u|2 − β]+ 1

|u|2 ,

M(u)( . ) := ρ(u)( . ) + (1− ρ(u))uu
>( . )
|u|22

,

A(u) := {x ∈ Ω : |u|2(x) > β(x)}.

Reformulation. We equivalently reformulate the optimality condition (OC1γ)
for vγ by the nonsmooth equation

(6.2) Ψγ(λγ) = 0

using the operator Ψγ : H∗ → H∗ defined by

Ψγ

[
µ
ν

]
:=

[
µ
ν

]
− ι̃∗

[
[µ̂+ γz(λ)]+

[ν̂ + γ(|q(λ)|2 − βγ)]+q(q(λ))

]
,

where v(λ) := (z(λ), q(λ)) := N−1
γ (ιŵ − λ) ∈ H denotes the solution to (OC1γ)

given some candidate λ for λγ . The superlinear convergence of the generalized
Newton method

(6.3) λj+1 = λj −GΨγ (λj)−1Ψγ(λj)

to solve (6.2) hinges, among others, on the Newton differentiability of Ψγ in the
sense of Definition 6.1. In view of the preceding calculus rules the latter relies on
the following assumption.

Assumption 6.4 (Norm gap). With regard to Lemma 6.2 and Lemma 6.3, the
Newton differentiability of Ψγ requires additional restrictions on the choice of the
spaces H1 and H2. For this purpose, imposing the conditions

H1 ⊂ L2+ε(Γc), ε > 0, and H2 ⊂ [L6(Ω)]d

is sufficient.

From now on, we assume that the regularization space H is chosen in such a
way that Assumption 6.4 is fulfilled. Thus, the operator Ψγ : H∗ → H∗ is Newton
differentiable. We proceed by computing a particular Newton derivative.

Using the chain rule for Newton derivatives with affine continuous functions,
GΨγ (λ) ∈ L(H∗, H∗) is given by

GΨγ (λ)( . ) = idH∗( . ) + γι̃∗
[
χZγ (z(λ)) 0

0 χQγ (q(λ))M(q(λ))

]
◦N−1

γ ( . ),

which includes the following quantities:

ρ(q) := [|q|2 + ν̂
γ − βγ ]+ 1

|q|2 ,

M(q(λ))( . ) = ρ(q(λ))( . ) + (1− ρ(q(λ))) q(λ)q(λ)>( . )
|q(λ)|22

,

Zγ(z) := {x ∈ Γc : (z + µ̂
γ )(x) > 0},

Qγ(q) := {x ∈ Ω : (|q|2 + ν̂
γ − βγ)(x) > 0}.

We start the analysis of the generalized Newton iteration (6.3) by the following
lemma.
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Lemma 6.5 (Uniform invertibility). The operator

GΨγ (λ) ∈ L(H∗, H∗)

is uniformly invertible, i.e., for all δ ∈ H∗ we have

‖δ‖H∗ ≤ c(γ)‖GΨγ (λ)δ‖H∗ , with c(γ) > 0.

Proof. Similarly to [14] we decompose

GΨγ (λ) = Ñγ(λ) ◦N−1
γ

with

Ñγ(λ) =

(
Nγ + γι̃∗

[
χZγ (z(λ)) 0

0 χQγ (q(λ))M(q(λ))

])
.

The operator Ñγ(λ) ∈ L(H,H∗) is uniformly invertible, i.e., independently of λ,
since

〈ι̃∗
[
χZγ (z(λ)) 0

0 χQγ (q(λ))M(q(λ))

] [
r
p

]
,

[
r
p

]
〉(H∗,H)

= (χZγ (z(λ))r, r)L2(Γc) + (χQγ (q(λ))M(q(λ))p, p)L2(Ω)d

≥
∫
Qγ(q(λ))

ρ(q(λ))
(
|p|22 −

(q(λ):p)2

|q(λ)|22

)
≥ 0.

The assertion follows from the ellipticity of the bilinear form associated to Nγ . �

Lemma 6.5 guarantees that step (ii) of the following semismooth Newton algo-
rithm is well-defined.

Algorithm 6.6 (SSN algorithm in λ).

(i) Initialize λ0 := (µ0, ν0) ∈ H∗ = H∗1 ×H∗2 ; set j := 0.
(ii) Unless some stopping rule is satisfied, compute the solution δjλ ∈ H∗ of

(6.4) GΨγ (λj)δjλ = −Ψγ(λj).

(iii) Set λj+1 := λj + δj , j := j + 1 and return to (ii).

We immediately infer local superlinear convergence.

Corollary 6.7 (Semismooth Newton algorithm). If λ0 ∈ H∗ is sufficiently close
to λγ , then the following assertions hold true:

(i) The Newton iterates (λj) ⊂ H∗ generated by Algorithm 6.6 converge su-
perlinearly to λγ ∈W .

(ii) The Newton iterates (vj) ⊂ H defined by vj = N−1
γ (ι(ŵ) − λj) generated

by the preceding algorithm converge superlinearly to vγ in H.
(iii) If λ0 ∈W , then (λj)j∈N ⊂W .

Proof.
(i) The assertion follows directly from [24, Theorem 1.1].
(ii) The assertion is a consequence of the fact that superlinear convergence is

preserved by the topological isomorphism Nγ .
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(iii) If λj ∈W , then we have Ψγ(λj) ∈W .
The definition of the Newton step (6.4) yields

GΨγ (λj)δjλ = −Ψγ(λj)⇐⇒

δjλ + γ ι̃∗
[
χZγ (z(λj)) 0

0 χQγ (q(λj))M(q(λj))

]
◦N−1

γ δjλ︸ ︷︷ ︸
∈W

= −Ψγ(λj)︸ ︷︷ ︸
∈W

which proves the assertion.
�

For completeness we also specify the SSN algorithm in v (rather than in λ) which
is analyzed in Corollary 6.7.

Algorithm 6.8 (SSN algorithm in v).

(i) Initialize λ0 ∈W , v0 := N−1
γ (ι(ŵ)− λ0); set j := 0.

(ii) Unless some stopping rule is satisfied, compute the solution δjv ∈ H of

(6.5) Ñγ(λj)(−δjv) = −Ψγ(λj).

(iii) Set vj+1 := vj + δjv, j := j + 1 and return to (ii).

For the globalization of our Newton-scheme one may use a line search procedure
[14]. For this purpose, we need to check whether the update direction, say δjv in
Algorithm 6.8, is related to the gradient of J∗γ . This is the content of the following
result.

Proposition 6.9 (Gradient-relatedness). The search directions (δjv) generated by
Algorithm 6.8 satisfy

〈J∗γ
′(vj), δjv〉(H∗,H) ≤ − κb

γC(γ)2 ‖J∗γ
′(vj)‖2H∗ ,

where C(γ) = supλ ‖Ñγ(λ)‖ ∈ (0,+∞).

Proof. Note that J∗γ
′(vj) = −Ψγ(λj). Using (6.5) we conclude that

〈J∗γ
′(vj), δjv〉(H∗,H) = 〈J∗γ

′(vj),−Ñγ(λj)
−1

(J∗γ
′(vj))〉(H∗,H)

≤ − κb
γ‖Ñγ(λj)‖‖J

∗
γ
′(vj)‖2H∗ ,

since it holds for arbitrary g = Ñγ(λ)v ∈ H∗ that

〈Ñγ(λ)
−1
g, g〉 = 〈Ñγ(λ)v, v〉

≥ κb
γ ‖v‖

2
H ≥ κb

γ
1

‖Ñγ(λ)‖2 ‖g‖
2
H∗ .

The definition of M, cf. (6.1), yields for v = [r, p] ∈ H that

‖Ñγ(λ)v‖H∗ ≤ ‖Nγv‖H∗ + γ
∥∥∥ι̃∗ [ χZγ (z(λ))r

χQγ (q(λ))M(q(λ))p

] ∥∥∥
H∗

≤ ‖Nγ‖‖v‖H + γC‖v‖W ≤ (‖Nγ‖+ γC)‖v‖H ,

where C > 0 may take different values on different occasions. This ends the proof.
�
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Remark 6.10 (Global convergence). We immediately infer that endowing the
search directions (δjv) with a line search method fulfilling the Armijo condition
yields global convergence of the generalized Newton method [7].

7. Numerical Validation

In this section we validate the theoretical algorithmic framework by numerical
tests. For this purpose, we specify the Tichonov regularization as well as the precise
discrete setting.

Regularization. We propose two choices for the Tichonov regularization pair
[H, b].

(R1) Setting H := H1/2(Γc)×H1
0 (Ω)d, we define

b1([z1, z2], [q1, q2]) := (z1, z2)H1/2(Γc) +

d∑
i=1

(∇q1,i,∇q2,i)L2(Ω)N .

(R2) If Γc is a C∞-submanifold of RN , we set H := H1
0 (Γc)×H1

0 (Ω)d and

b2([z1, z2], [q1, q2]) := (∇z1,∇z2)→
L2(Γc)

+

d∑
i=1

(∇q1,i,∇q2,i)L2(Ω)N ,

where the Hilbert space
→
L2(Γc) is defined by the set of (equivalence classes of)

vector fields u : Γc → TΓc, i.e. u(x) ∈ TxΓc for all x ∈ Γc, with integrable
Riemannian product 〈u, u〉RN on Γc equipped with the canonical surface measure.
Here, TΓc := ∪xTx(Γc) denotes the tangent bundle to Γc. For details see section 5.

Recalling the discussion in section 5, both choices fulfill Assumption 4.1. More-
over, the Sobolev Imbedding Theorem ensures that Assumption 6.4 is satisfied [1].
For the choice of the bilinear form on the boundary, ellipticity of b2 is ensured by
Theorem A.1. We emphasize that other choices like the [H1(Ω)]d-inner product
for the domain variable q are equally conceivable and may be preferred depending
on the application and the approximations of physical quantities derived from the
dual variables, cf. (3.9).

In view of Theorem 4.2 and Corollary 4.3, Algorithm 6.8 is embedded into an
update scheme for γ, i.e. once Algorithm 6.8 terminates successfully for a given γ,
the penalty parameter is increased and Algorithm 6.8 is restarted.

In order to avoid the inverseD−1 in (6.5) we explicitly involve the primal variable
y and solve the coupled elliptic second-order system

(7.1)
[
D −Λ∗ι∗

ιΛ 1
γB + γι̃∗GM (v)

] [
δy
δv

]
=

[
0

−ιΛy + ι[ψ, 0]− 1
γBv − ι̃

∗M(v)

]
,

where

M(z, q) =

[
[µ̂+ γz]+

[ν̂ + γ(|q|2 − βγ)]+q(q)

]
,

GM (z, q) =

[
χZγ (z) 0

0 χQγ (q)M(q)

]
.

In the following numerical examples Ω ⊂ R2 is polygonal and Γc is a line segment.
We are thus able to choose option (R2) for the Tichonov regularization.

Discretization. We employ a conforming finite element method to solve (7.1)
numerically. Let (Th) be a regular triangulation of Ω with mesh width h and (Shc)
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a partition of Γc into line segments with maximal length hc. Define for Γ ⊂ ∂Ω the
discrete function spaces

PΓ
1,h(Ω) = {u ∈ L∞(Ω) : u|T ∈ P1 ∀T ∈ Th, u|Γ = 0 a.e. } ∩ C0(Ω)

P0,h(Ω) = {u ∈ L∞(Ω) : u|T ∈ P0 ∀T ∈ Th}

P ∂Γc
1,hc

(Γc) = {u ∈ L∞(Γc) : u|S ∈ P1 ∀S ∈ Shc , u|∂Γc = 0} ∩ C0(Γc),

where Pk denotes the set of polynomials of total degree less than or equal k. We
omit the superscript Γ whenever Γ has vanishing surface measure.

Note that equation (7.1) is posed in [Y × (H1×H2)]∗. In the discrete setting we
test (7.1) in the space

Yh × (H1,hc ×H2,h) := ([PΓd
1,h(Ω)]2 × [P0,h(Ω)]2)× (P ∂Γc

1,hc
(Γc)× [P ∂Ω

1,h (Ω)]2)

and arrive at the following discrete algorithm:

Algorithm 7.1 (Globalized SSN).

(i) Fix γ,h,hc > 0 and tol > 0, set j := 0.
(ii) Initialize dual variables: v0 ∈ H1,hc ×H2,h.
(iii) Initialize primal variables: y0 ∈ Yh by solving Dy0 = Λ∗ι∗v0 − l.
(iv) While the stopping criterion ||Ψγ(λj)||H∗1,hc×H∗2,h < tol not fulfilled

(a) solve (7.1) in [Yh × (H1,hc ×H2,h)]∗,
(b) compute step size αj > 0 with Armijo line search based on

α 7→ J∗γ (vj + αδjv),

(c) update [yj+1, vj+1] := [yj + αjδjy, v
j + αjδjv].

(v) Set j := j + 1 and return to step (iv).

In virtue of the definition (R2) we compute the discrete norm || . ||H∗1,hc×H∗2,h
by solving the corresponding Poisson problems. For the implementation of the
operator D we incorporate the zero-trace condition in the definition of the space
Q0 using the parametrization P defined in (3.1).

Algorithmic details. The L2-scalar products involving the nonsmooth terms
m(q) and Gm(q) for q ∈ H2,h for the discrete version of the Newton system as well
as the right hand side of (7.1) are computed by using Gaussian quadrature. In
our numerical tests we observed that the iteration count typically decreases as the
number of quadrature points increases. The results described below are obtained
for a fixed number of 400 quadrature points per triangle regardless of the mesh
width, where numerical integration over the set of triangles is computed in parallel.
The stopping criterion for the semismooth Newton iteration in Algorithm 7.1 is set
to tol = 10−10.

We further verify the theoretical superlinear rate of convergence experimentally
by investigating the convergence quotients Qj ,

Qj =
||v(ω−5+j)
γ − v?γ ||H

||v(ω−6+j)
γ − v?γ ||H

,

for j = 1 . . . , 5, where ω denotes the iteration count for Algorithm 7.1 and v?γ
denotes the solution obtained by applying the same algorithm with higher precision
threshold tol = 10−14.
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Example (a) - L-shape. The geometry and material parameters of the first ex-
ample are taken from [41]. We consider an L-shaped domain Ω = (0, 0.5]×(0.5, 1)∪
(0.5, 1)× (0, 1) and assume that the elastic behavior of the material is described by
Cp = µ1 tr(p)I + 2µ2p with µ1 = µ2 = 1.0e03. It is further assumed that the mate-
rial obeys the kinematic hardening law. The plastic material parameters are given
as follows: σy = 1.25, H = 100 · I. The body shall be fixed at Γd = (0.5, 1) × {0}.
We set ψ ≡ 1.0e-01 on Γc = (0, 1)×{1} and apply a pressure g(x) = −1.0e01 ·n(x)
on Γn = (0, 0.5)× {0.5} which leads to a nonempty contact region at the solution.

We further admit zero initial conditions: α0 ≡ 0, p0 ≡ 0 and vanishing volume
force f ≡ 0. For each discretization level and fixed γ we use as starting point the
(prolongated) solution of the corresponding problem on a coarse uniform mesh with
417 nodes. To verify mesh-independent convergence of Algorithm 7.1, we compute
the solution for each fixed γ on meshes with decreasing mesh width, cf. Table 1,
using uniform mesh refinement. Thereby the partition Shc of Γc is defined by those
mesh nodes that lie on the contact boundary Γc. Considering Table 1 we clearly
observe a mesh-independent convergence behavior for fixed γ as the mesh width
tends to zero. Slight variations in the iterations count may occur due to errors
arising from numerical integration, the ill-conditioning of the system matrix for
high γ-values and a too coarse refinement of Γc. Mesh-independent convergence
can further be verified considering the convergence quotients Qj which stabilize
with increasing mesh width, cf. Figure 4. We further stress that in this example
the iterations count can be decreased considerably by applying nested iterations
using the solution as a starting point for the algorithm on the next finer mesh,
cf. the lower section of Table 1. As a result of applying a heuristic inexact path-
following approach with regard to the penalty parameter γ (cf. below), we display
in Figure 2 the approximate optimal plastic strain as well as the regions of extensive
plastic straining in the deformed configuration. Employing relation (3.9), we also
plot the approximate yield function in Figure 3.

Table 1. Algorithm 7.1, Example (a), tol=1.0e-10: no. of iterations w.r.t.
mesh size and γ, ∗ nested iterations

γ / no. of nodes 833 1601 3201 6273 12545 24833
1.0e00 1 1 1 1 1 1
1.0e01 1 1 1 1 1 1
1.0e02 1 1 1 1 1 1
1.0e03 8 7 9 9 10 11
1.0e04 17 21 19 22 23 26
1.0e05 73 80 86 77 80 83
1.0e05∗ 73 86 65 31 24 25
1.0e06∗ 193 223 224 272 226 180

Example (b) - Screw wrench. In this example we consider an elasto-plastic
screw wrench whose geometry can be extracted from Figure 5. The elastic behavior
is described by Cp = µ1 tr(p)I+2µ2p with µ1 = 1.15e01, µ2 = 7.69e00. The material
is assumed to satisfy the isotropic hardening law and the plasticity parameters
are given as follows: σy = 2e-01, H = 1.0e-03, k1 = 1.0e07. Moreover, Γd :=
(0, 1) × {2} ∪ (0, 1) × {3}, and Γc := (0, 1) × {4} with ψ ≡ 1.0e00, such that
the contact constraint can be expected to be inactive at the solution. We apply
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Figure 2. Example (a): |pγ |F for γ ≈ 1.2e09 (left), plastic zones (dark), i.e.
|pγ |F > 0.1 (right)
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Figure 3. Example (a):
yield functional for γ ≈
1.2e09
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Figure 4. Example
(a): Qj , j = 1, . . . , 5,
for γ = 1.0e05

a pressure g(x) := −6.0e-03 ·n(x) on Γn = conv({(5, 2.6), (8, 2)}). Further, we
admit zero initial conditions: α0 ≡ 0, p0 ≡ 0 and a vanishing volume force f ≡ 0.
The results obtained by Algorithm 7.1 are summarized in Table 2 and have been
computed by initializing trivially with v0 ≡ 0 and using uniform meshes as in
Example (a). As the iterations count stabilizes with decreasing mesh width we
observe a mesh-independent convergence behavior for each fixed γ as well as local
superlinear convergence.

Inexact Path-Following. In order to study convergence with regard to the
regularization-penalization-parameter γ we implement a heuristic version of the in-
exact path-following (IPF) approach designed for the obstacle problem [25] and
test it on Example (b). Starting from an increasing sequence (γk), each subprob-
lem (Dγk) is only solved approximately with increasing precision. The computed
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Figure 5. Example (b): initial configuration (left), |pγ |F for γ ≈ 8.24e06(right)

γ / no. of nodes 873 1641 3281 6353 12705 24927
1.0e01 2 2 2 2 2 2
1.0e02 7 7 7 7 7 7
1.0e03 12 12 13 11 13 14
1.0e04 25 22 26 22 20 21
1.0e05 43 41 49 39 36 34
1.0e06 56 61 75 69 68 70

Table 2. Algorithm 7.1, Example (b), tol=1.0e-10: no. of iterations w.r.t.
mesh size and γ
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Figure 6. Example (b): yield functional for γ ≈ 8.24e06 (left), plastic zones
(dark), i.e. |pγ |F > 1e-02 (right)

approximate solution ṽγk ≈ vγk is used as a starting point for the subsequent prob-
lem (Dγk+1

). In this way the effort of approximatively solving the subproblems
can be expected to be kept rather low. Differently from [25] we are testing a con-
stant augmentation of γ on fixed meshes. In order to account for the discretization
error in the residual ||Ψγ(λj)||H∗1,hc×H∗2,h for approximating the corresponding func-
tion space quantity, a mesh-dependent stopping criterion for the inner iteration is
used. To design a heuristic outer break criterion we keep track of the change in the
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primal-dual-path value functional

Vγ = J∗γ (z̃γ , q̃γ)

and stop the outer iteration whenever the relative change in Vγ drops below a
certain threshold.

Algorithm 7.2 (IPF).

(i) Fix γ0, h, hc, τout, τin > 0, θ > 1; set k := 0.
(ii) Initialize dual variables: v0 ∈ H1,hc ×H2,h.
(iii) Initialize primal variables: y0 ∈ Yh by solving Dy0 = Λ∗ι∗v0 − l.
(iv) While

|Vγk−1
−Vγk−2

|
|Vγk−2

| < τout · h is not fulfilled

(a) apply Algorithm 7.1 to find λ̃γk (and ṽγk ) with

||Ψz,γk(λ̃γk)||H∗1,hc < max(hc,
τin√
γk

) and

||Ψq,γk(λ̃γk)||H∗2,h < max(h, τin√γk ),

where Ψγk = [Ψz,γk ,Ψq,γk ],
(b) update γk+1 := γk · θ.

(v) Set k := k + 1 and return to step (ii) with v0 = ṽγk .

Table 3 shows the results for the application of Algorithm 7.2 to Example (b).
The initial value v0 for problem (Dγ0

) is simply v0 ≡ 0. We observe that the
number of outer iterations increases only slightly as the number of nodes increases,
whereas the average number of inner iterations for each fixed discretization level
appears to stay within reasonable bounds as γk tends to infinity. Algorithm 7.2 with
parameters specified in Table 3 applied to the finest discretization level is stopped
at γend ≈ 8.24e06. It should be pointed out that a straightforward application of
Algorithm 7.1 to (Dγend), requiring the same precision as in Algorithm 7.2 step
(iv),(a), requires more than double the iterations which shows the advantage of
our path-following approach. In Figure 5 (right), the approximate optimal plastic
strain in the deformed configuration is plotted. The corresponding yield function
as well as the regions of extensive plastic straining are shown in Figure 6.

no. of nodes 873 1641 3281 6353 12705 24927
iterations 6(21) 6(23) 7(25) 7(41) 8(48) 8(72)

Table 3. No. of outer(total inner) iterations for the Inexact Path-Following
Algorithm 7.2, γ0 = 1.0e01, θ = 7.0e00, τout = 7.0e-01 and τin = 1.0e01

While the stopping rule in the while-loop of step (iv) of Algorithm 7.2 is critical
in general, it seems to be consistent in that other choices of τin in conjunction with a
factor θ of the same order of magnitude leads to similar values for γend. The choice
of the different tolerances in Algorithm 7.2 was following suggestions from solving
variational inequalities of the first kind by inexact path-following strategies, cf.
[25, 43]. In general, one may safeguard this stopping rule by checking the residual
upon termination of the while-loop. In case an appropriate norm of the residual is
considered too large, then one reduces τout, e.g. by a multiplicative factor in (0, 1),
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and return to step (iv) of Algorithm 7.2. This is repeated until the residual norm
drops below a given tolerance.

Outlook. In both examples the number of inner iterations increases consider-
ably with the order of magnitude of γ. A suitable path-following strategy leading
to an automated regularization-discretization update procedure promises a higher
efficiency compared to the heuristic used in Algorithm 7.2. For variational inequal-
ities of the first kind these methods are already well established and prove to be
remarkably efficient; see e.g. [25]. In this regard alternative choices for the cou-
pling of the parameter γ for both Moreau-Yosida regularizations and the Tichonov
regularization may be preferable.

It should be pointed out that the approach presented in this paper can be ex-
tended to contact problems with Tresca friction. These problems are characterized
by an additional weighted L1(Γc)-norm functional resulting in an additional in-
equality in the dual problem.

Appendix A. Poincaré-Friedrichs-inequality on Riemannian manifolds

Theorem A.1. Let (M̄, g) be a compact smooth manifold with smooth boundary
∂M and M = M̄ \ ∂M a (boundaryless) smooth manifold with corresponding Rie-
mannian metric g and Riemannian measure µ=µ(g). Let p ≥ 1. Then there exists
a C > 0 such that:∫

M

|u|p dµ ≤ C
∫
M

|∇u|p dµ ∀u ∈W 1,p
0 (M),

where |∇u| := g(∇u,∇u)1/2 on the tangent bundle of M .

Proof. We propose a slight variation of [22, Theorem 2.10]. The result can be
proven analogously to the Euclidean case. By a scaling argument the proof reduces
to showing

inf
u∈U

∫
M

|∇u|p dµ > 0,

where U := {u ∈ W 1,p
0 (M) : ‖u‖Lp(M) = 1} is a closed subspace of W 1,p

0 (M). Now
assume that there exists a sequence (uk) ⊂ U with

(A.1) lim
k

∫
M

|∇uk|p dµ→ 0.

Consequently, the sequence (uk) is bounded in W 1,p
0 (M). The Rellich-Kondrakhov

Theorem for Sobolev spaces on Riemannian manifolds, cf. [5, chap. 2, Theorem
2.34] or [44, chap. 4, Proposition 4.4], ensures that (w.l.o.g. the entire sequence)
(uk) converges strongly (in Lp(M)) to an element u0 ∈ Lp(M). By (A.1) we even
have u0 ∈ W 1,p

0 (M), where ∇u0 ≡ 0. This implies ∇(u0 ◦ ϕ−1
α ) ≡ 0 on ϕα(Ωα)

where (Ωα, ϕα)α is an appropriate atlas of M = ∪αΩα. This in turn implies u0 ≡ 0
µ-a.e. on M. But since U is closed, it holds ||u0||Lp(M) = 1, a contradiction.

�

Appendix B. Proof of Theorem 4.2

Proof. Throughout the proof we use K > 0 as a constant which may take different
values on different occasions.

Step 1: (qγ) ⊂ L2(Ω)d is bounded.
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Multiplying (OC1γ) by vγ yields

〈Λ∗ι∗vγ , D−1Λ∗ι∗vγ〉(Y ∗,Y ) + 1
γ b(vγ , vγ)− (ŵ, vγ)W + (λγ , vγ)W = 0.

This induces

〈Λ∗ι∗vγ , D−1Λ∗ι∗vγ〉(Y ∗,Y ) + (λγ , vγ)W ,≤ ‖q̂‖L2(Ω)d‖qγ‖L2(Ω)d + ι∗1(zγ)(ẑ),

and thus

κ‖Λ∗ι∗vγ‖2Y ∗ + (µγ , zγ)L2(Γc) + (νγ , qγ)L2(Ω)d ≤ K(‖zγ‖Z∗ + ‖qγ‖L2(Ω)d).(B.1)

Using the domain decomposition approach for Ω from [14] we get

‖qγ‖2L2(Ω)d
+ 1

γκ‖Λ
∗ι∗vγ‖2Y ∗ + 1

γ (µγ , zγ)L2(Γc)

≤ K
γ (‖zγ‖Z∗ + ‖qγ‖L2(Ω)d) +K‖qγ‖L2(Ω)d ,

which implies

‖qγ‖2L2(Ω)d
+ κ

γ‖Λ−∗1 ‖
‖zγ‖2Z∗ + 1

γ (µγ , zγ)L2(Γc) ≤ K
γ ‖zγ‖Z∗ +K‖qγ‖L2(Ω)d .(B.2)

Next we consider the boundary term (µγ , zγ)L2(Γc):

(µγ , zγ)L2(Γc) = (µγ ,
1
γ µ̂+ zγ − 1

γ µ̂)L2(Γc)

= 1
γ ‖µγ‖

2
L2(Γc)

− 1
γ (µγ , µ̂)L2(Γc)

= 1
2γ ‖µγ − µ̂‖

2
L2(Γc)

+ 1
2γ ‖µγ‖

2
L2(Γc)

− 1
2γ ‖µ̂‖

2
L2(Γc)

≥ − 1
2γ ‖µ̂‖

2
L2(Γc)

.(B.3)

Consequently we obtain from (B.2)

‖qγ‖2L2(Ω)d
+ 1

γK ‖zγ‖
2
Z∗ ≤ K + K

γ (‖zγ‖Z∗) +K‖qγ‖L2(Ω)d ,

from which we conclude that (qγ) is bounded in L2(Ω)d, and ( 1√
γ zγ) is bounded in

Z∗.
Step 2: (zγ) ⊂ Z∗ is bounded.
Reconsidering (B.1) we have

κ‖Λ∗ι∗vγ‖2Y ∗ + (µγ , zγ)L2(Γc) + (νγ , qγ)L2(Ω)d︸ ︷︷ ︸
≥0

≤ K(‖zγ‖Z∗ + ‖qγ‖L2(Ω)d).

Similarly to the above estimates, we get
1
K ‖zγ‖

2
Z∗ ≤ K +K‖zγ‖Z∗ +K‖qγ‖L2(Ω)d ,

which yields that (zγ) is bounded in Z∗ according to step 1.
Step 3: [µγ , νγ ] ⊂ H∗1 ×H∗2 is bounded.
Using the results from step 1, we again multiply (OC1γ) by vγ to obtain

1
γ b(vγ , vγ) + ([µγ , νγ ], vγ)W︸ ︷︷ ︸

≥−K

≤ K‖qγ‖L2(Ω)d +K‖zγ‖Z∗︸ ︷︷ ︸
≤K

,

and thus

‖ 1√
γ vγ‖H ≤ K.(B.4)

Taking the ‖.‖H∗ -norm in (OC1γ) yields

‖[µγ , νγ ]‖H∗ ≤ ‖ιŵ‖H∗ + ‖ιΛD−1Λ∗ι∗vγ‖H∗ + 1
γ ‖Bvγ‖H∗

≤ K + ‖ιΛD−1Λ∗‖‖ι∗vγ‖Z∗×L2(Ω)d + 1
γ ‖B‖‖vγ‖H .
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Taking account of step 1 and 2 as well as (B.4), this proves the assertion.
We thus have

[zγ , qγ , µγ , νγ ] ⇀ [z̃, q̃, µ̃, ν̃] ∈ Z∗ × L2(Ω)d ×H∗1 ×H∗2 ,
for an appropriate subsequence [zγ , qγ , µγ , νγ ] ⊂ H1×H2×L2(Γc)×L2(Ω)d, sharing
the same indices by abuse of notation.

Step 4: ṽ := [z̃, q̃] is feasible, i.e. (OC2) holds.
With step 1 and 2 it is easily seen that

F ∗(Λ∗ι∗[zγ , qγ ]) + Tγ(qγ)︸ ︷︷ ︸
≥0

is bounded from below. Moreover, we have

J∗γ (zγ , qγ) ≤ J∗γ (z, q)

= F ∗(Λ∗ι∗[z, q]) + 1
2γ b([z, q], [z, q]) < K

for all [z, q] ∈ Z × L2(Ω)d with z ≤ − µ̂γ a.e. in Γc, and |q|2 ≤ σy − ν̂
γ a.e. in Ω,

with γ sufficiently large. Consequently, M1
γ (zγ) +M2

γ (qγ) is bounded.
In a similar fashion as in [14], we exploit the weak lower semicontinuity of

L2(Ω)d 3 q 7→ ‖[|q|2 − β]+‖2
L2(Γc)

∈ R

to conclude that

0 =

∫
Ω

(
[|q̃|2 − β]+

)2
dx ≤ lim inf

γ

∫
Ω

(
[|qγ |2 − β]+

)2
dx

≤ lim inf
γ

∫
Ω

(
[|qγ |2 − (βγ − ν̂

γ )]+
)2

dx −→ 0,

since M2
γ (qγ) = γ

2 ‖[|qγ |2 − (βγ − ν̂
γ )]+‖2

L2(Ω)
is bounded.

Furthermore for z ∈ Z, z ≥ 0, we obtain

〈[zγ + µ̂
γ ]+, z〉(Z∗,Z) = ([zγ + µ̂

γ ]+, z)L2(Γc)

≥ (zγ , z)L2(Γc) + 1
γ (µ̂, z)L2(Γc) → 〈z̃, z〉(Z∗,Z).

On the other hand

〈[zγ + µ̂
γ ]+, z〉(Z∗,Z) ≤ ‖[zγ + µ̂

γ ]+‖Z∗‖z‖Z
≤ K‖[zγ + µ̂

γ ]+‖L2(Γc)‖z‖Z → 0,

as L2(Γc)
ι∗1
↪→ Z∗ and by the boundedness of M1

γ (zγ). This accomplishes step 4.
Step 5: (OC1) is satisfied.
For v ∈ H, (OC1γ) reads

0 = 〈ι∗vγ ,ΛD−1Λ∗ι∗v〉(Z∗×L2(Ω)d,Z×L2(Ω)d) + 1
γ b(vγ , v)

− (ιŵ, v)W + ([µγ , νγ ], v)W .

Passing to the limit as γ → +∞ yields for v ∈ H
0 = 〈ΛD−1Λ∗[z̃, q̃], ι∗v〉(Z×L2(Ω)d,Z∗×L2(Ω)d) − (ιŵ, v)W + 〈[µ̃, ν̃], v〉(H∗,H)

= (ΛD−1Λ∗[z̃, q̃], v)W − (ιŵ, v)W + 〈[µ̃, ν̃], v〉(H∗,H).

From the density of H in W we infer

−[µ̃, ν̃] = ΛD−1Λ∗[z̃, q̃]− ΛD−1l − [ψ, 0],
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and thus (OC1).
Step 6: It holds that Λ∗ι∗vγ → Λ∗[z̃, q̃] in Y ∗.
By the weak lower semicontinuity of F ∗(Λ∗ . ) we have

lim inf
γ→+∞

F ∗(Λ∗ι∗[zγ , qγ ]) ≥ F ∗(Λ∗[z̃, q̃]).

On the other hand, exploiting the minimality of [zγ , qγ ], we obtain for any [z, q] ∈ H
with z ≤ 0, |q|2 ≤ β,

F ∗(Λ∗ι∗[zγ , qγ ]) ≤ F ∗(Λ∗ι∗[z, q]) + 1
2γ ‖[µ̂+ γz]+‖2

L2(Γc)

+ 1
2γ ‖[ν̂ + γ(|q|2 − βγ)]+‖2

L2(Ω)
+ 1

2γ b([z, q], [z, q]),

such that

lim sup
γ→+∞

F ∗(Λ∗ι∗[zγ , qγ ])

≤ F ∗(Λ∗ι∗[z, q]) + lim sup
γ→+∞

1
2γ ‖µ̂‖

2
L2(Γc)

+ lim sup
γ→+∞

1
2γ ‖ν̂ + γ(β − βγ)]+‖2L2(Ω)

= F ∗(Λ∗ι∗[z, q]) + lim sup
γ→+∞

1
2γ ‖ν̂‖

2
L2(Ω)

+ lim sup
γ→+∞

(ν̂, β − βγ)L2(Ω) + lim sup
γ→+∞

γ
2 ‖(β − βγ)‖2

L2(Ω)

= F ∗(Λ∗ι∗[z, q]),

since ‖β − βγ‖ ≤ 1
γ . By Assumption 4.1 we conclude

lim sup
γ→+∞

F ∗(Λ∗ι∗[zγ , qγ ]) ≤ F ∗(Λ∗[z̃, q̃]),

and thus

lim
γ→+∞

F ∗(Λ∗ι∗[zγ , qγ ]) = F ∗(Λ∗[z̃, q̃]).

The weak convergence ι∗[zγ , qγ ] ⇀ [z̃, q̃] and the ellipticity of the bilinear form
associated to D−1 yield the assertion.

Step 7: The normal cone property (OC3) is satisfied.
Owing to (OC1) and the results of the preceding steps we obtain for all v =

[z, q] ∈ H with z ≤ 0, |q|2 ≤ β,

〈λ̃, ι∗v − ṽ〉 = −〈ΛD−1Λ∗ṽ, ι∗v − ṽ〉+ 〈ŵ, ι∗v − ṽ〉
= lim
γ→+∞

(
−〈ιΛD−1Λ∗ι∗vγ , v − vγ〉+ 〈ιŵ, v − vγ〉

)
= lim
γ→+∞

(
1
γ 〈Bvγ , v − vγ〉+ ([µγ , νγ ], v − vγ)W

)
≤ lim sup

γ→+∞
1
γ ‖vγ‖H‖B‖‖v‖+ lim sup

γ→+∞
([µγ , νγ ], v − vγ)W

= lim sup
γ→+∞

([µγ , νγ ], v − vγ)W ,
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where the last equality follows from (B.4). We further verify that

(νγ , q − qγ)L2(Ω)d = γ

∫
Ω

[|qγ |2 − βγ + ν̂
γ ]+q(qγ)(q − qγ) dx

≤ γ
∫

Ω

[|qγ |2 − (βγ − ν̂
γ )]+(β − |qγ |2) dx

≤ γ
∫

Ω

[|qγ |2 − (βγ − ν̂
γ )]+(β − (βγ − ν̂

γ )) dx

≤ ||[|qγ |2 − (βγ − ν̂
γ )]+||L2(Ω)(γ||β − βγ ||L2(Ω) + ||ν̂||L2(Ω))

≤ K||[|qγ |2 − (βγ − ν̂
γ )]+||L2(Ω).

Now, the boundedness of M2
γ (qγ) implies that

lim
γ→+∞

||[|qγ |2 − (βγ − ν̂
γ )]+||L2(Ω) → 0.

Likewise, it holds that

(µγ , z − zγ)L2(Γc) ≤ −(µγ , zγ)L2(Γc) = −γ([zγ + µ̂
γ ]+, zγ + µ̂

γ )L2(Γc) + 1
γ (µγ , µ̂)L2(Γc)

≤ 1
γ ||µγ ||L2(Γc)||µ̂||L2(Γc) → 0 for γ → +∞,

by the boundedness of M1
γ (zγ). Consequently we obtain 〈λ̃, ι∗v − ṽ〉 ≤ 0 for all

v = [z, q] ∈ H with z ≤ 0, |q|2 ≤ β. In virtue of Assumption 4.1 a density argument
completes the proof.

�
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