Colouring Random Graphs in Expected
Polynomial Time

Amin Coja-Oghlan and Anusch Taraz

Humboldt-Universitdt zu Berlin, Institut fiir Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{coja,taraz}@informatik.hu-berlin.de

Abstract. We investigate the problem of colouring random graphs G €
G(n, p) in polynomial expected time. For the case p < 1.01/n, we present
an algorithm that finds an optimal colouring in linear expected time. For
sufficiently large values of p, we give algorithms which approximate the
chromatic number within a factor of O(,/np). As a by-product, we ob-
tain an O(,/np/ In(np))-approximation algorithm for the independence
number which runs in polynomial expected time provided p > In®n /n.

1 Introduction and Results

The problem of determining the minimum number of colours needed to colour
a graph G — denoted by the x(G), the chromatic number of G — was proven
to be NP-hard by Karp [19]. In fact, already deciding whether a given graph
is 3-colourable is NP-complete. These results have been completed in the last
decade by non-approximability theorems. Feige and Kilian [9] showed that, un-
less coRP = NP, no polynomial time algorithm with approximation ratio less
than n!—¢ exists.

However, these hardness results are deeply rooted in the worst—case paradigm
and thus the question arises whether algorithms can be designed and analyzed
that perform well on average or random instances. The binomial model for such
a random graph, usually denoted by G(n,p), is defined as follows. In a graph
with vertex set [n] = {1,...,n} every possible edge is present with probability
p independently of all others. Here p = p(n) can be a function in n. In the
particular case of G(n, %) this is exactly the uniform distribution on the set of all
graphs with vertex set [n]. Admittedly, the G(n, p)-model may not be appropriate
in every setting, but it is definitely the standard model of a random graph. We
shall only mention those results on random graphs here which are important for
our purposes and refer the interested reader to [4, 16, 13] for general background
information and to the survey [24] for a comprehensive overview on algorithmic
random graph colouring.

We say that G(n,p) has a certain property A almost surely or with high
probability, if the probability that G € G(n,p) has A tends to 1 as n — .
Let b = 1/(1 — p). Bollobds and Luczak (cf. [4,16]) proved that almost surely a

random graph G € G(n, p) satisfies

L for constant p 2log, n for constant p
~ J 2logyn ~ b
X(@) { P for % <p=o(1) o(G) { —21';)"” for % <p=o(1), e

2Innp

where C is a sufficiently large constant. For even smaller values of p, and constant
k, the situation is as follows. For any number k > 2, there are constants ¢, and
¢} such that for p < (1 —€)c; /n (and p > (1 + €)c}f /n respectively), G(n,p)
almost surely is (respectively is not) k-colourable. In fact, it is conjectured that
one can actually choose cj, = ¢ [1].

These structural issues are accompanied by the obvious algorithmic question:
are there good algorithms to compute a (near-) optimal colouring of G € G(n,p)?
The greedy colouring algorithm achieves good results in this setting. The algo-
rithm considers the vertices in an arbitrary order and assigns to each vertex
the smallest possible colour. Grimmett and McDiarmid [14] proved that almost
surely the number of colours used for G € G(n, 1) is asymptotic to n/log, n.
A slight improvement over the greedy algorithm using randomization has been
obtained by Krivelevich and Sudakov [25]. Still, to date the best known approx-
imation ratio is asymptotically 2.

It is worth emphasizing that for inputs from G(n,p) the greedy algorithm
always has polynomial running time (in fact, linear) and achieves a 2-approxi-
mation with high probability. Nevertheless, the algorithm itself does not find a
certificate for a lower bound on the chromatic number of the input graph G, and
thus it cannot guarantee a good approximation ratio. Indeed, there are input
instances for which the approximation ratio achieved by the greedy algorithm is
quite bad (i.e. close to n), even for almost all permutations of the vertices [26].
This motivates the following question by Karp [20]:

Is there an algorithm that for inputs from G(n,p) has expected polyno-)
mial running time and always uses the minimum number of colours?

Here the expected running time of an algorithm A is defined as), R4(G)P(G),
where the sum runs over all graph G with vertex set [n], R4(G) is the running
time needed by A for input G, and P(G) denotes the probability that G is chosen
according to the distribution G(n, p).

The obvious approach to design an algorithm that meets the requirements
of (2) is as follows. Typical inputs will have certain structural properties which
enable us to efficiently find an optimal solution. In the exceptional cases, we have
to invest more time, but this doesn’t affect the expected running time much as
it will happen only with small probability. However, the crucial point of this
approach is how to decide efficiently whether the input is typical or not.

Our first result answers question (2) in the affirmative for the case of small
edge probabilities p.

Theorem 1. For p < 1.01/n there exists a colouring algorithm which finds an
optimal colouring and, when applied to G(n,p), has linear expected running time.

We remark that the constant 1.01 is certainly not best possible. It merely
demonstrates that the algorithm can find optimal colourings even after G(n,p)
has passed the phase transition where it suddenly becomes much more complex.
Variants of question (2) have been addressed by several authors (see e.g. [5,7,12,
29]). They, too, give exact algorithms with expected polynomial running time,
but over a different probability distribution than G(n,p).

A new line of research has recently been initiated by Krivelevich and Vu [22],
relaxing question (2) in the following way. Is there an algorithm, that for inputs
from G(n,p) has expected polynomial running time and always approximation
ratio r? Here r may be a constant or a function in n (and p).

Krivelevich and Vu prove in [22] that for n=1/?*¢ < p < 0.99, there ex-
ists a colouring algorithm with approximation ratio O(,/np/Inn) and expected
polynomial running time over G(n,p). Moreover they ask [22,24] whether it is
possible to find similarly good approximation algorithms for smaller values of p.
Our next two results give positive answers to this question.

Theorem 2. For In(n)/n < p < 3/4 there exists a colouring algorithm with
approzimation ratio O(/np) and polynomial expected running time over G(n,p).

For smaller values of p, where the above theorem does not hold, we can prove
the following.

Theorem 3. Let p > 1/n. Then there ezists a colouring algorithm with approz-

imation ratio %np and linear expected running time over G(n,p).
Observe that in the range where p is too small for Theorem 2 to apply, Theorem 3
is almost as good: here both approximation ratios are of order poly(Inn).

Instead of considering algorithms that find (near-) optimal colourings for
a given graph, one also considers the problem of deciding, for some integer k,
whether the input graph is k-colourable or not. Krivelevich [23] has shown that
for every fixed k > 3 there exists a constant C' = C(k) so that k-colourability can
be decided in expected polynomial time over G(n, p), provided that p(n) > C/n.
Furthermore, he asks [24] whether it is possible to find such algorithms (i) for
the case where k = k(n) is a function growing in n and (ii) for any value of the
edge probability p = p(n). It turns out that the methods we have developed for
our colouring algorithms contribute to answering the above questions.

Our techniques also capture a more general semirandom situation. Semi-
random graph problems have been studied e.g. in [10, 5]. In contrast to G(n, p),
semirandom settings allow for an adversary to change the outcome of the random
experiment to a certain degree. In this way they capture a larger class of input
distributions and therefore require rather robust algorithmic techniques. Here
we introduce two semirandom models for the decision version of k-colouring,
G(n,p)* and G(n,p)~, and give algorithms for deciding k-colourability. In the
model G(n,p)t, instances are created in two steps as follows:

1. First, a random graph Go = G(n,p) is chosen.
2. Then, an adversary may add edges to Gy, in order to produce the input
instance G.

Note that the adversary can change the vertex degrees, the independence num-
ber, the chromatic number and even the spectrum of the random graph G.
Instances of the semirandom model G(n,p)~ are created similarly, but the adver-
sary is only allowed to remove edges instead of adding edges. Given Gy = G(n, p),
let Z(Go)* denote the set of all instances over Gy, i.e. the set of all graphs G
that can be produced by adding edges to Go. We define Z(Go)~ similarly. An
algorithm A is said to run in ezpected polynomial time applied to the semiran-
dom model G(n,p)T if there is a constant [such that for any map I that to each
graph Gy associates an element I(Gg) € Z(Gg)™T, we have

S RA(I(Go)) P(Go) = O(n),
Go

where R4(I(Gy)) denotes the running time of A on input I{Gy). We define a
similar notion for the model G(n,p)~.

Theorem 4. For any k = k(n) and p < k/(10n) there exists an algorithm which
decides whether a graph G is k-colourable, and, when applied to G(n,p)~, has
linear expected running time.

Theorem 5. Let k = k(n) and p = p(n) > max{ln(n)?/n,200k?/n}. There
exists an algorithm which decides whether a graph G is k-colourable, and, when
applied to G(n,p)T, has polynomial expected running time.

Observe that Theorem 4 deals with the range where G(n,p) is almost surely
k-colourable, while Theorem 5 concerns graphs which almost surely are not k—
colourable. The threshold for k-colourability has order k1n k/n, which lies in the
remaining gap for 2(k/n) < p < O(k?/n).

As an immediate by-product from our work on graph colouring, we obtain
the following approximation algorithm for the independent set problem.

Theorem 6. For In(n)®/n < p < 3/4 there exists an algorithm that approzi-
mates the independence number with approzimation ratio O(\/np/In(np)) and
has polynomial expected running time over G(n,p).

The remainder of the paper is organized as follows. After introducing the
necessary technical terminology, we shall first prove Theorem 3 in Section 2, as
this is the simplest algorithm. Section 3 deals with Theorem 1. The algorithms
for Theorems 2 and 6 can be found in Section 4. Finally, in Section 5 we give
the algorithms for Theorems 4 and 5.

The Euler constant will be denoted by e = exp(1). For a graph G = (V, E)
and a subset S C V we let G[S] be the subgraph of G induced by S. We write
H C G if H is a (weak) subgraph of G. Denote by |G| = |V| the order of G. For
a vertex v in G we let d(v) = dg(v) be the degree of v in G. Denote by §(G) the
minimal degree in G. In this paper we disregard rounding issues since these do
not affect our arguments.

2 A simple O(np)-approximation algorithm

Consider an integer k > 2. The k-core of a graph G is the unique subgraph
H C G of maximum cardinality such that §(H) > k. The following observation
is elementary but important for our algorithms: if G has no k-core, then a k-
colouring of G can be found in linear time. Indeed, consecutively push vertices of
degree at most k — 1 from the graph onto a stack until the graph is empty. Then,
while putting the vertices back into the graph in reverse order, assign to each
vertex the smallest colour possible, which is at most k since the vertex is (at that
point) connected to at most k — 1 other vertices. This procedure is known as the
smallest-last heuristic [2]. Observe that the order in which we remove vertices
from the graph does not matter, as long as they have degree at most k — 1 at
the time of removal.

Pittel, Spencer and Wormald [28] computed the constants ;, which determine
the precise threshold p = 7 /n for the appearance of the k-core in G(n,p). To
give an example, v3 = 3.35. By the preceding discussion, it is clear that this
marks a lower bound for the threshold of k-colourability. It was an open question
of Bollobds whether the appearance of the k-core in G(n,p) coincides with the
threshold of k-colourability. A few years ago, Achlioptas and Molloy [1] answered
this in the negative by showing that G(n, p) remains 3-colourable for at least as
long as p < 3.84/n.

Let & > 3. We emphasize that even though almost surely G(n,p) does not
contain a k-core of size, say, In'®(n) at p =1 /n, the probability for this event is
not exponentially small in n, and hence such an event is not sufficiently unlikely
to allow us to find the optimal colouring by brute force on the whole graph.
Instead, the following simple algorithm will only need to deal with the core.

Algorithm 7. CoreColour(G, k)
Input: A graph G = (V, E) and an integer k.
Output: A colouring of G.

1. Let G’ := G, set stack S := {.
2. While in G there exists a vertex v with de/(v) <k —1 do
push v onto S, G' := G —w.
3. Colour G' exactly by Lawler’s algorithm [27] in time O((1 4+ ¥/3)"), where
n' =|G'|.
4. Extend this to a colouring of G: while S # () do
pick the top vertex v from S, assign to v the least possible colour.

Proposition 8. For any graph G and any integer k > 2, CoreColour(G,k)
finds a colouring of G with at most max{x(G), k} colours.

Proof. Step 3 uses x(G') < x(G) colours. Let v be an arbitrary vertex. Since
dg: (v) < k—1 when v was removed, Step 4 will never need a colour greater than
k, since v has at most k—1 coloured neighbours at the moment it is coloured. O

Observe next that at the beginning of step 3, the vertices in G’ make up the
k-core. Therefore, in order to examine the expected running time of CoreColour,

we need an upper bound on the probability that G contains a k-core of a certain
size.

Lemma 9. Let p > 1/n and consider an integer k > €*np. Then

P(G(n,p) contains a k-core on v vertices) < e "

Proof. The probability that there exists a k-core on v vertices is bounded from
above by the probability that there exists a weak subgraph H on v vertices with
p = kv/2 edges. Let N = (3). Then the expected number of such subgraphs is
given by

() ()< (5 <[5BT <[] <o

where the last step used v < n and k > e?np > 4 because of p > 1/n. a0

Proof of Theorem 3. We can easily check whether x(G)
put an optimal colouring. So assume that x(G) > 2. Set
CoreColour(G(n,p), k).

Proposition 8 shows that the algorithm has approximation ratio at most
k/3 = (e?/3)np as claimed. Its running time is linear for step 2 and step 4. As
1+ /3 < 2.443 < e, Lemma 9 implies that the expected running time of step 3
can be bounded by 3°7_ (1 + ¥/3)” - P(|G'| = v) = O(n). O

< 2, and, if so, out-
k=

e?np and apply

3 Finding an optimal colouring

This section contains a sketch of the proof of Theorem 1. The underlying idea
is basically the same as in Section 2, but we need to refine both the algorithm
and the computations in order to achieve an approximation ratio 1.

We will employ an exact algorithm by Beigel and Eppstein [3] which decides
in time O(1.3447™) whether a given graph is 3-colourable or not. Suppose that it
answers this question in the affirmative, then it is obviously not hard to actually
find such a 3-colouring in O(n?1.3447") steps, simply by trying to add edges to
the graph as long as the graph remains 3-colourable. Thus in the end we have a
complete 3-partite graph and can read off the colouring.

The basic idea of our algorithm is as follows: having checked for 2-colourabi-
lity, we peal off vertices until we get to the 3-core. For the 3-core we merely
decide whether it is 3-colourable because applying the Beigel-Eppstein decision
algorithm is much cheaper than finding an optimal colouring via Lawler’s algo-
rithm. If yes, we are done. If not, then we know that x(G) > 4 and continue
shaving off vertices until we get to the 4-core, which will most probably be sub-
stantially smaller than the 3-core. Now we optimally colour the 4-core using
Lawler’s algorithm.

Algorithm 10. ExactColour(G)
Input: A graph G = (V, E)
Output: A colouring of G.

1. If x(G) < 2 then find an optimal colouring of G' and stop.
2. Let G' := G, set stack S := (.
While there exists a vertex v with dg: (v) < 2 do
push v onto S, let G' := G —v.
Check whether x(G') < 3 using Beigel and Eppstein’s algorithm.
If yes then find a 3-colouring of G’ in time O(n'21.3447™), where n' = |G|.
If no then run CoreColour(G',4).
Extend the obtained colouring of G’ to a colouring of G as follows:
while S # 0 do
pick the top vertex v from S, assign to v the least possible colour.

o Gk W

By similar arguments as in Section 2, it is clear that the algorithm produces an
optimal colouring.

In order to show that the expected running time remains indeed linear for
p as large as 1.01/n, one needs to sharpen the bound given in Lemma 9. Apart
from obvious room for improvements by using more careful technical estimates,
most of the gain is won by only counting those subgraphs which have indeed
minimum degree k and not just kv /2 edges.

4 O(4/np)-approximation via the ¥-function

Throughout this section we shall assume that p > In(n)®/n. Let w = np and
G € G(n,p) be a random graph. On input (G, 10np), the algorithm CoreColour
presented in Section 2 produces a colouring of G using at most max{x(G), 10np}
colours. Thus, CoreColour immediately gives an O(np)-approximation algo-
rithm for colouring G(n, p) within expected polynomial time. In order to improve
the approximation ratio O(np), it is crucial to develop techniques to compute
good lower bounds on the chromatic number of the input graph, since we need
to distinguish graphs with a chromatic number near the “typical value” (1) from
“pathological cases” efficiently. To this end, we shall use the following trivial
inequality. For any graph G of order n we have x(G) > n/a(G). Thus, instead
of lower bounding the chromatic number x(G), we may also compute an upper
bound on the independence number a(G).

The same approach has been used in [22], where the independence number
of G(n,p) is bounded from above as follows. Given a random graph G € G(n,p)

with vertex set V = {1,...,n}, let the matrix M = (my;); jev have entries
(1 if{i,j}¢E@G)ori=j
iy = =L otherwise.

Then the largest eigenvalue A; (M) provides an upper bound on a(G). In order
to base an approximation algorithm with polynomial expected running time on

computing the bound n/A\ (M) < x(G), it is necessary to estimate the proba-
bility that A{ (M) is “large”. To this end, it is shown in [22] that

P(M (M) > 4(n/p)*/?) < 2775, (3)

Note that the exponent on the right hand side depends on w (and thus both
on p and n). Nonetheless, in the case w > n'/?>t¢ ¢ > 0, the concentration
result (3) suffices to obtain an O(y/np/Inn)-approximation algorithm for both
the chromatic number and the independence number of G(n,p). The proof of
(3) is based on Talagrand’s inequality (cf. [16]).

However, in the case p < n~'/2, (3) seems not to be sharp enough in order
to construct an algorithm with expected polynomial running time and approx-
imation ratio O(np)'/2. Therefore, we shall use the Lovdsz number ¥(G) as an
upper bound on a(G) instead of the eigenvalue A;(M); it is well-known that
a(@) < Y¥(G) for any graph G. For a thorough introduction to the Lovdsz num-
ber the reader is referred to [15,21]. The Lovasz number ¥#(G) can be computed
within polynomial time, using the ellipsoid algorithm [15].

What is the relation between ¥(G) and the eigenvalue A; (M)? Let us call a
real symmetric matrix A = (ayw)v,wev feasible for G if a,, = 1 for all v and
ayy = 1 for any pair u,v of non-adjacent vertices of G. Then we have ¥(G) =
min{A; (A)| A is feasible for G}, where as above A\;1(A) denotes the maximum
eigenvalue of A. Observing that the matrix M defined above is feasible, we
obtain

a(G) < 9(G) < M (M), (4)

Thus, our colouring algorithm uses n/9¥(G) as a lower bound on x(G). Conse-
quently, we need to estimate the expectation of ¥(G(n,p)).

Lemma 11. With high probability, 9(G(n,p)) < 3(n/p)*/2.

The proof of Lemma 11 is based on (4) and on the fact that M is a random
symmetric matrix as considered in [11], except for the fact that the entries m;;
may be unbounded. The analysis of our colouring algorithm makes use of the
following concentration result on the Lovész number of random graphs [6].

Lemma 12. Let i be a median of 9(G(n,p)). Let & > max{10,,/u}. Then

2
PO(G(n,p) > u+ &) < 30exp (—ﬁ) .

Consequently, if a > 10 /n/p, then
P(J(G(n,p)) > a) < exp(—a/30). ()

The proof of Lemma 12 is based on Talagrand’s inequality. Note that, con-
trary to the estimate (3), the exponent on the right hand side of (5) does not
increase as p decreases. The following algorithm for colouring G(n, p) resembles
the colouring algorithm proposed in [22]. The main difference is that we use the
algorithm CoreColour instead of the greedy algorithm in step 1, and that we
bound the chromatic number via the Lovasz number.

Algorithm 13. ApproxColour(G)
Input: A graph G = (V, E).
Output: A colouring of G.

1. Run CoreColour(G,10np). Let C be the resulting colouring of G.

2. Compute 9(G). If ¥(G) < 10(n/p)'/?, then output C and terminate.

3. Check whether there exists a subset S of V, |S| = 251n(np)/p, such that
[V\(SUN(S))| > 10(n/p)'/?, by enumerating all subsets of V of cardinality
251In(np)/p. If no such set exists, then output C and terminate.

4. Check whether in G there is an independent set of size 10(n/p)'/? by enu-
merating all subsets of V' of cardinality 10(n/p)'/2. If this is not the case,
then output C and terminate.

5. Colour G exactly by Lawler’s algorithm [27] in time O(n®(1 + ¥/3)").

It is straightforward to verify that ApproxColour achieves the approximation
ratio stated in Theorem 2. The proof that the expected running time over G(n, p)
is polynomial is based on (5).

In [17] it is observed that with high probability ¥#(G(n,p)) = 2(n/p)'/>.
Since the chromatic number x(G(n,p)) satisfies (1) with high probability, we
cannot hope for an approximation ratio considerably better than O(np)'/? using
n/¥(G(n,p)) as a lower bound on x(G(n,p)).

Let us conclude this section noting that the techniques behind ApproxColour
immediately lead to an approximation algorithm for the maximum independent
set problem in G(n,p). In order to obtain an algorithm ApproxMIS that satisfies
the requirements of Theorem 6, we adapt ApproxColour as follows. Instead
of CoreColour, we use the greedy (colouring) algorithm and keep the largest
colour class it produces. Then we estimate the independence number of the input
graph as ApproxColour does. Finally, instead of using an exact graph colouring
algorithm in step 5, we use an exact algorithm for the maximum independent
set problem.

Lemma 14. The probability that the largest colour class produced by the greedy
colouring algorithm is of size < In(np)/(2p) is at most 27 ™.

The proof uses a similar argument as given already in [22] for the case that
P Z ne—1/2_

Algorithm 15. ApproxMIS(G)
Input: A graph G = (V, E).
Output: An independent set of G.

1. Run the greedy algorithm for graph colouring on input G. Let I be the
largest resulting colour class. If |I| < In(np)/(2p), then go to 5.

2. Compute 9(G). If 9(G) < 10(n/p)'/?, then output I and terminate.

3. Check whether there exists a subset S of V, |S| = %f"”), such that |V \
(SUN(S))| > 10(n/p)'/2. If no such set exists, then output I and terminate.

4. Check whether in G there is an independent set of size 104/n/p. If this is
not the case, then output I and terminate.

5. Enumerate all subsets of V' and output a maximum independent set.

5 Deciding k-colourability

In this final section we shall apply the methods established so far to the following
problem. Given a semirandom graph G = G(n,p)* or G = G(n,p)~, we are to
decide within polynomial expected time whether G is k = k(n)-colourable. First,
let us see what the algorithm CoreColour contributes to the problem of deciding
k-colourability in the model G(n,p)~.

Algorithm 16. CoreDecide(Q)
Input: A graph G = (V, E).

1. Run CoreColour(G, 10np). Let C be the resulting colouring of G.
2. If the number of colours used in C is at most k, output “G is k-colourable”.
Otherwise, output “G is not k-colourable”.

Let Go = G(n,p) be a random graph, p < k/(10n), and let G € Z(Gy)~ be
the instance chosen by the adversary. Because the adversary can only remove
edges, the 10np-core of G is contained in the 10np-core of Gy. Thus, the argu-
ment given in the proof of Lemma 9 shows that the expected running time of
CoreDecide is linear. Moreover, it is easy to see that the answer produced by
CoreDecide is always correct. For if CoreDecide states that G is k-colourable,
then CoreColour must have found a proper k-colouring of G. Conversely, by
Proposition 8 we know that the number of colours that CoreColour uses is at
most max{x(G), 10np}. Thus, by our choice of p, if x(G) < k, then CoreColour
finds a k-colouring of G.

Let us now assume that np > max{200k2,In(n)"}. In this range we almost
surely have x(G(n,p)) > k. Applying the techniques behind ApproxColour to
the problem of deciding k-colourability of the semirandom graph G(n,p)*, we
obtain the following algorithm.

Algorithm 17. Decide(G)
Input: A graph G = (V, E).

1. Compute ¥(G). If 9(G) < 10(n/p)'/?, then terminate with output “G is not
k-colourable”.

2. Check whether there exists a subset S of V, |S| = 25In(np)/p, such that
[V'\ (SUN(S))| > 10(n/p)'/2. If no such set exists, then output “G is not
k-colourable” and terminate.

3. Check whether in G there is an independent set of size 10(n/p)'/2. If this is
not the case, then output “G is not k-colourable” and terminate.

4. Compute the chromatic number of G exactly by Lawler’s algorithm [27] in
time O(e™) and answer correctly.

In order to prove that Decide has polynomial expected running time ap-
plied to G(n,p)*, we consider a random graph G¢ € G(n,p) and an instance
G € I(Go)*T. Because Gy is a subgraph of G, we have 9(G) < 9¥(Gy), by the
monotonicity of the J-function (cf. [21]). Moreover, if G admits a set S as in
step 2 of Decide, then a fortiori Gy admits such a set S. Finally, a(G) < a(Gy).

Thus, the arguments that we used to prove that the expected running time of
ApproxColour applied to G(n,p) is polynomial immediately yield that the ex-
pected running time of Decide applied to the semirandom model G(n,p)* is
polynomial.

We finally claim that Decide(G) always answers correctly. For assume that
Decide(G) asserts that G is k-colourable. Then step 4 of Decide(G) must have
found a proper k-colouring of G; hence, G is k-colourable. On the other hand,
assume that Decide(Q) asserts that G is not k-colourable. Then, Decide(G) has
found out that

(@) < 10(n/p)'/* + 251n(np) /p < 11(n/p)'/*.

Thus,

n n__ (np)'?
XO =z Z ez - 1 ok

as claimed.

6 Conclusion

No serious attempts have been made to optimize the constants involved. For
example, an easy way to slightly enlarge the range of p for which the algorithm
ExactColour has expected polynomial running time would be to use Eppstein’s
recent algorithm [8] for finding an optimal colouring instead of Lawler’s — with
0(2.415™) running time instead of 0(2.443™). However it is of course clear that
our general approach must fail at the latest when p = 3.84/n, as here the 3-core
appears almost surely and has linear size.

References

1. Achlioptas, D., Molloy, M.: The analysis of a list-coloring algorithm on a random
graph, Proc. 38th. IEEE Symp. Found. of Comp. Sci. (1997) 204-212

2. Beck, L.L., Matula, D.W.: Smallest-last ordering and clustering and graph coloring
algorithms, J. ACM 30 (1983) 417-427

3. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446™): a no-MIS algorithm, Proc.
36th. IEEE Symp. Found. of Comp. Sci. (1995) 444-453

4. Bollobés, B.: Random graphs, 2nd edition, Cambridge University Press 2001

5. Coja-Oghlan, A.: Finding sparse induced subgraphs of semirandom graphs. Proc.
6th. Int. Workshop Randomization and Approximation Techniques in Comp. Sci.
(2002) 139-148

6. Coja-Oghlan, A.: Finding large independent sets in expected polynomial time. To
appear in Proc. STACS 2003

7. Dyer, M., Frieze, A.: The solution of some NP-hard problems in polynomial ex-
pected time, J. Algorithms 10 (1989) 451-489

8. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. To
appear in J. Graph Algorithms and Applications

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Proc. 11. IEEE
Conf. Comput. Complexity (1996) 278-287

Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and
System Sci. 63 (2001) 639671

Fiiredi, Z., Komlo$, J.: The eigenvalues of random symmetric matrices, Combina-
torica 1 (1981) 233-241

Firer, M., Subramanian, C.R., Veni Madhavan, C.E.: Coloring random graphs in
polynomial expected time. Algorithms and Comput. (Hong Kong 1993), Springer
LNCS 762, 31-37

Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Struc-
tures and Algorithms 10 (1997) 5-42

Grimmett, G., McDiarmid, C.: On colouring random graphs. Math. Proc. Cam.
Phil. Soc 77 (1975) 313-324

Grotschel, M., Lovész, L., Schrijver, A.: Geometric algorithms and combinatorial
optimization. Springer 1988

Janson, S., Luczak, T., Ruciniski, A.: Random Graphs. Wiley 2000

Juhdsz, F.: The asymptotic behaviour of Lovdsz ¥ function for random graphs,
Combinatorica 2 (1982) 269-280

Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite
programming. Proc. of the 35th. IEEE Symp. on Foundations of Computer Science
(1994) 2-13

Karp, R.: Reducibility among combinatorial problems. In: Complexity of computer
computations. Plenum Press (1972) 85-103.

Karp, R.: The probabilistic analysis of combinatorial optimization algorithms.
Proc. Int. Congress of Mathematicians (1984) 1601-1609.

Knuth, D.: The sandwich theorem, Electron. J. Combin. 1 (1994)

Krivelevich, M., Vu, V.H.: Approximating the independence number and the chro-
matic number in expected polynomial time. J. of Combinatorial Optimization 6
(2002) 143-155

Krivelevich, M.: Deciding k-colorability in expected polynomial time, Information
Processing Letters 81 (2002) 1-6

Krivelevich, M.: Coloring random graphs — an algorithmic perspective, Proc. 2nd
Coll. on Mathematics and Computer Science, B. Chauvin et al. Eds., Birkhauser,
Basel (2002) 175-195.

Krivelevich, M., Sudakov, B.: Coloring random graphs. Informat. Proc. Letters 67
(1998) 71-74

Kucera, L.: The greedy coloring is a bad probabilistic algorithm. J. Algorithms 12
(1991) 674684

Lawler, E.L.: A note on the complexity of the chromatic number problem, Infor-
mation Processing Letters 5 (1976) 66-67

Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a
random graph. JCTB 67 (1996) 111-151

Promel, H.J., Steger, A.: Coloring clique-free graphs in polynomial expected time,
Random Str. Alg. 3 (1992) 275-302

