Exact and Approximative Algorithms for
Colouring G(n, p)

Amin Coja-Oghlan* and Anusch Taraz

Humboldt-Universitdt zu Berlin, Institut fiir Informatik
Unter den Linden 6, 10099 Berlin, Germany

{coja,taraz}@informatik.hu-berlin.de

Abstract. We investigate the problem of colouring random graphs G €
G(n, p) in polynomial expected time. For the case p < 1.01/n, we present
an algorithm that finds an optimal colouring in linear expected time.
For p > In®(n)/n, we give algorithms which approximate the chromatic
number within a factor of O(,/np). We also obtain an O(,/np/ In(np))-
approximation algorithm for the independence number. As an applica-
tion, we propose an algorithm for deciding satisfiability of random 2k-
SAT formulas (with sufficiently many clauses) in polynomial expected
time.

1 Introduction and Results

The problem of determining the minimum number of colours needed to colour
a graph G — denoted by the x(G), the chromatic number of G — is known to
be NP-hard. In fact, Feige and Kilian [6] have shown that, unless coRP = NP,
no polynomial time algorithm with approximation ratio less than n!=¢ exists.
Therefore the question arises whether algorithms can be designed and analyzed
that perform well on average or random instances. The binomial model for such
a random graph, usually denoted by G(n,p), is defined as follows. In a graph
with vertex set [n] = {1,...,n} every possible edge is present with probability
p independently of all others. Here p = p(n) can be a function in n.

Let b=1/(1—p). Bollobés and Luczak (cf. [3,13]) proved that almost surely
a random graph G € G(n,p) satisfies

™ for constant p 2log, n for constant p
~ J 2logyn ~ b
X(@) { W o C < p=o() UE) { 2np - for € < p=o(1), @)

2Innp

where C is a sufficiently large constant and where we say that G(n,p) has a
certain property A almost surely (a.s.), if the probability that G € G(n, p) has
A tends to 1 as n — oo.

For even smaller values of p, and constant k, the situation is as follows. For
any number k > 3, there are constants ¢, and ¢} such that for p < (1 —¢)cj /n

* Research supported by the Deutsche Forschungsgemeinschaft (DFG FOR 413/1-1).
An extended abstract of this paper appears at STACS 2003.

(and p > (1+¢)cf /n respectively), G(n, p) almost surely is (respectively is not)
k-colourable. In fact, it is conjectured that one can actually choose ¢, = c;r [1].

Returning to the algorithmic issue, let us consider the greedy colouring algo-
rithm, which takes the vertices in an arbitrary order and assigns to each vertex
the smallest possible colour. Grimmett and McDiarmid [11] proved that applied
to G(n, 3) the greedy algorithm a.s. uses ~ n/ log, n colours. Though a slight im-
provement using randomization has been obtained by Krivelevich and Sudakov
[20], to date the best known approximation ratio is asymptotically 2.

It is worth emphasizing that for inputs from G(n,p) the greedy algorithm
always has polynomial running time (in fact, linear) and achieves a 2-approxima-
tion almost surely. Nevertheless, it cannot guarantee a good approximation ratio.
Indeed, there are input instances for which the approximation ratio achieved by
the greedy algorithm is {2(n), even for almost all permutations of the vertices
[21]. This motivates the following question by Karp [15]:

Is there an algorithm that for inputs from G(n,p) has ezpected polyno-)
mial running time and always uses the minimum number of colours?

Here the expected running time of an algorithm A is defined as), RA(G)P(G =
G(n,p)), where the sum runs over all graph G with vertex set [n], and R4(G)
is the running time needed by A for input G. Our first result answers question
(2) in the affirmative for the case of small edge probabilities p.

Theorem 1. For p < 1.01/n there exists a colouring algorithm which finds an
optimal colouring and, when applied to G(n,p), has linear expected running time.

We remark that the constant 1.01 is certainly not best possible. It merely
demonstrates that the algorithm can find optimal colourings even after G(n,p)
has passed the phase transition where it suddenly becomes much more complex.
Variants of question (2) have been addressed by several authors, but over a
different probability distribution than G(n,p) (for references cf. [19]).

A new line of research has recently been initiated by Krivelevich and Vu [17],
relaxing question (2) in the following way. Is there an algorithm that for inputs
from G(n,p) has expected polynomial running time and always approximation
ratio at most ? Krivelevich and Vu [17] prove that for n='/2*¢ < p < 0.99, there
exists a colouring algorithm with approximation ratio O(,/np/Inn) and expected
polynomial running time over G(n,p). Moreover they ask [17,19] whether it is
possible to find similarly good approximation algorithms for smaller values of p.
Our next two results give positive answers to this question.

Theorem 2. For In(n)/n < p < 3/4 there exists a colouring algorithm with
approzimation ratio O(/np) and polynomial expected running time over G(n,p).

Theorem 3. Let p > 1/n. Then there ezists a colouring algorithm with approz-
imation ratio at most 3np and linear expected running time over G(n,p).

As an immediate by-product from our work on graph colouring, we obtain
the following approximation algorithm for the independent set problem.

Theorem 4. For In(n)®/n < p < 3/4 there exists an algorithm that approzi-
mates the independence number within O(y/np/In(np)) and has polynomial ex-
pected running time over G(n,p).

Krivelevich [18] has shown that for every fixed k > 3 there exists a constant
C = C(k) so that k-colourability can be decided in expected polynomial time
over G(n,p), provided that p(n) > C/n. Furthermore, he asks [19] whether it
is possible to find such algorithms (i) for the case where k = k(n) is a function
growing in n and (ii) for any value of the edge probability p = p(n). Our methods
contribute to answering the above questions, even in a more general semirandom
situation.

Semirandom graph problems have been studied e.g. in [7,4]. In contrast to
G(n,p), semirandom settings allow for an adversary to change the outcome of the
random experiment to a certain degree. In this way they capture a larger class of
input distributions and therefore require rather robust algorithmic techniques.
Here we introduce two semirandom models, G(n,p)t and G(n,p)~, and give
algorithms for deciding k-colourability. In the model G(n,p)*, instances are
created in two steps as follows:

1. First, a random graph Gy = G(n, p) is chosen.
2. Then, an adversary may add edges to Gy, in order to produce the input
instance G.

Note that the adversary can change the vertex degrees, the independence num-
ber, the chromatic number and even the spectrum of the random graph Gj.
Instances of the semirandom model G(n,p)~ are created similarly, but here the
adversary is only allowed to remove edges. Given Gy = G(n,p), let Z(Go)™ de-
note the set of all instances over Gy, i.e. the set of all graphs G that can be
produced by adding edges to Go. We define Z(Gy)~ similarly. An algorithm A
is said to run in expected polynomial time applied to G(n,p)T if there is a con-
stant [such that for any map I that to each graph Gy associates an element
I(Go) € Z(Go)t, we have), Ra(I(Go))P(Go = G(n,p)) = O(n!), where
R 4(I(Gy)) denotes the running time of A on input I(Gp). We define a similar
notion for the model G(n,p)~.

Theorem 5. For any k = k(n) and p < k/(10n) there exists an algorithm which
decides whether a graph G is k-colourable, and, when applied to G(n,p)~, has
linear expected running time.

Theorem 6. Let k = k(n) and p = p(n) > max{ln(n)”/n,200k?/n}. There
exists an algorithm which decides whether a graph G is k-colourable, and, when
applied to G(n,p)*, has polynomial expected running time.

Observe that Theorem 5 deals with the range where G(n,p) almost surely is
k-colourable, while Theorem 6 concerns graphs which almost surely are not k-
colourable. (The threshold for k-colourability has order (klnk)/n.)

As an application of our work on the maximum independent set problem, we
present an improved algorithm for deciding whether a random k-SAT formula

is satisfiable, where k > 4 is an even integer. (This problem is NP-complete
in the worst case.) Let F(n,k,m) denote the set of all k-SAT formulas over
n propositional variables x1, ..., Z,, equipped with the uniform distribution. It
is known [8] that there exists a threshold ¢, = O(1) such that the random
formula F(n,k,m) in the case m < (1 — g)cgn is satisfiable with probability
1—0(1) as n — oo (analogously, unsatisfiable for m > (1 + &)c¢gn). The best
known algorithmic result concerning random k-SAT, k > 4 even, is due to Go-
erdt and Krivelevich [10], who give a polynomial time algorithm that in the
case m > nk/2to() a5, finds a certificate that F(n,k,m) is unsatisfiable. Re-
placing the spectral techniques employed in [10], we can extend this result by
giving an algorithm with polynomial ezpected running time that decides satisfi-
ability of any formula F € F(n, k,m), m > n*/2t°o() In fact, our algorithm can
even handle semirandom formulas, generated according to the following model

F(n,k,m)T.

1. A formula Fy = a; A--- A ayy, € F(n,k,m) is chosen at random.
2. An adversary picks any formula F over z1,...,x, in which at least one copy
of each a3, =1,...,m, occurs.

(Note that in general we cannot reconstruct Fy from F'.) Let us by Z(Fp) denote
the set of all formulas that can be obtained according to 2. above. We call Z(Fyp)
the set of all instances over Fy. For any k-SAT formula F, let £(F) denote the
number of clauses in F. An algorithm A has polynomial expected running time
applied to F(n,k,m)T, if there exists a constant [> 0 such that the expected
running time of A is O((n + £(F))").

Theorem 7. Suppose that m > 1n(n)7nk/2. There exists an algorithm DecideSAT
that for any k-SAT formula F over z1,...,x, finds a satisfying assignment, if
F admits any, and outputs “unsatisfiable” otherwise. Applied to F(n,k,m)t,

DecideSAT has a polynomial expected running time.

The remainder of the paper is organized as follows. After introducing the
necessary technical terminology, we shall first prove Theorem 3 in Section 2.
Section 3 deals with Theorem 1. The algorithms for Theorems 2 and 4 can be
found in Section 4. Finally, in Section 5 we give the algorithms for Theorems 5
and 6 while Section 6 contains the proof of Theorem 7.

The Euler constant will be denoted by e = exp(1). For a graph G = (V, E)
and a subset S C V we let G[S] be the subgraph of G induced by S. We write
H C G if H is a (weak) subgraph of G. Denote by |G| = |V| the order of G. For
a vertex v in G we let d(v) = dg(v) be the degree of v in G. Denote by §(G) the
minimal degree in G. In this paper we disregard rounding issues since they do
not affect our arguments.

2 A simple O(np)-approximation algorithm: Theorem 3

Consider an integer k > 3. The k-core of a graph G is the unique subgraph H C G
of maximum cardinality such that 6(H) > k. Pittel, Spencer and Wormald [23]

computed the constants -, which determine the precise threshold p = ~x/n
for the appearance of the k-core in G(n,p); e.g. 73 = 3.35. Although almost
surely G(n,p) does not contain a k-core of size, say, In'(n) at, say, p = 1/n,
the probability for this event is not exponentially small in n, and hence such
an event is not sufficiently unlikely to allow us to find the optimal colouring by
brute force on the whole graph. Instead, the following simple algorithm will only
deal with the vertices in the core.

Algorithm 8. CoreColour(G,k)
Input: A graph G = (V, E) and an integer k.
Output: A colouring of G.

1. Let G' := G, set stack S := (.
2. While in G’ there exists a vertex v with dg/(v) < k—1 do
push v onto S, G' := G' — v.
3. Colour G' exactly in time 0(2.443"), where n' = |G| (cf. [22]).
4. Extend this to a colouring of G: while S # () do
pick the top vertex v from S, assign to v the least possible colour.

Proposition 9. For any graph G and any integer k > 3, CoreColour(G,k)
finds a colouring of G with at most max{x(G),k} colours.

Proof. Step 3 uses x(G') < x(G) colours. Let v be an arbitrary vertex. Since
dg: (v) < k—1 when v was removed, Step 4 will never need a colour greater than
k, since v has at most k—1 coloured neighbours at the moment it is coloured. O

Observe next that at the beginning of Step 3, the vertices in G make up the
k-core. Hence, to examine the expected running time of CoreColour, we need
an upper bound on the probability that G contains a k-core of a certain size.

Lemma 10. Let p > 1/n and consider an integer k > e’>np. Then
P(G(n,p) contains a k-core on v vertices) < e~

Proof. The probability that there exists a k-core on v vertices is bounded by the
probability that there exists a weak subgraph H on v vertices with u = kv/2
edges. Let N = (}). Then the expected number of such subgraphs is given by

O =6 (5 <[5 T <[] =

where the last step used v < n and k > e?np > 4 because of p > 1/n. O

Proof of Theorem 3. We can easily check whether x(G) < 2, and, if so, out-
put an optimal colouring. So assume that x(G) > 2. Set k := e’np and apply
CoreColour(G(n,p), k). Proposition 9 shows that the algorithm has approxima-
tion ratio at most k/3 = (e?/3)np as claimed. Its running time is linear for Step 2
and Step 4. As 2.443 < e, Lemma 10 implies that the expected running time of
Step 3 can be bounded by Y_7'_2.443" - P(|G'| = v) = O(n). 0

3 Finding an optimal colouring: Theorem 1

The underlying idea for the proof of Theorem 1 is basically the same as in
Section 2, but we need to refine both the algorithm and the analysis a little in
order to achieve an approximation ratio 1.

The basic idea of our algorithm is as follows: having checked for 2-colourabi-
lity, we again peel off vertices until we get to the 3-core. For the 3-core we merely
decide whether it is 3-colourable. Here we employ an exact algorithm by Beigel
and Eppstein [2] which decides in time O(1.3447™) whether a given graph is 3-
colourable or not. If it is 3-colourable, then we can obviously find a 3-colouring
in O(n21.3447™) steps, simply by trying to add edges to the graph as long as
the graph remains 3-colourable. Thus in the end we have a complete 3-partite
graph and can read off the colouring. If the graph is not 3-colourable, then we
continue shaving off vertices until we get to the 4-core, which will most probably
be substantially smaller than the 3-core. Now we optimally colour the 4-core
using Lawler’s algorithm.

Algorithm 11. ExactColour(G)
Input: A graph G = (V, E)
Output: A colouring of G.

1. If x(G) < 2 then find an optimal colouring of G and stop.
2. Let G' := G, set stack S := 0.
While there exists a vertex v with dg:(v) < 2 do
push v onto S, let G' := G — .
. Check whether x(G') < 3 using Beigel and Eppstein’s algorithm.
If yes then find a 3-colouring of G’ in time O(n/?1.3447™), where n' = |G'|.
If no then run CoreColour(G',4).
. Extend the obtained colouring of G’ to a colouring of G as follows:
while S # 0 do
pick the top vertex v from S, assign to v the least possible colour.

O Ut A W

Proof of Theorem 1. By similar arguments as in Section 2, it is clear that the
algorithm produces an optimal colouring.

In order to prove that the expected running time of ExactColour is linear,
we have to estimate the probability that the k-core of G(n,p) is of size v for
each v € {1,2,...,n} and k = 3,4. Let ¢ = np and recall that ¢ < 1.01. For
any constant k£ we can bound the mentioned probability using the first moment

method as follows. Given a sequence dy,...,d, with Z'{Zl d; = 2y, there are at
most 5 wou
20dq!---dy! exp(u) [[;= (di!)

labelled graphs on v vertices such that the ith vertex has degree d;. We have to
count graphs with minimum degree k, hence d; > k for all i. Define A > 0 by
>y di = kv +2X. Then

v

[1@h > (&) (k+ 1)*. (4)

i=1

Moreover, it is easy to see that the number of degree sequences dy,...,d, with
di > kand 2u =3, d;i = kv + 2)\ is at most
22 +v -1
< 21/-{-2/\ 5
(v—1) = ’ (5)

because if we let df = d; — k, then df > 0 and), , df = 2\ and now we can

i=1""
generate all such sequences (dfj, .. ,du) by choosing numbers t1,...,t,_1 from
{1,...,2Xx+v—1} and letting d} :=t; —t;_1 — 1 (with ¢, := 0 and t,, = 2\+v).
Thus, by combining (3), (4), and (5), the number of labelled graphs with v

vertices, minimum degree k and p = kv/2 + X edges is at most of order

2u+2/\+pup 2u+2k+‘uﬂz\(ky/2)ky/2 B v (kl/)ku/Q 8/L A
exp(p) (k)7 (k +1)2 = exp(kv/2)(k!)” (k +1)>* — (k!)” exp(kv/2) <(k + 1)2>

Now let n = (k+1) - k. We first consider the case A < nv. Here one can
immediately check that
8up
(k+1)2 —

Thus, the expected number of induced subgraphs of order v with minimum
degree k and size < kv/2 + nv in G(n,p) is at most

"Z<n> (22/%)’”/2(8))‘pku/2+,\
2 \v) (e k+1)?

22/kkl/ kv/2
<> (2) (Gaet)

22/% k(v /n)c
(R)27Fe)

n

; (6)

kE v
2°n

< v | exp(H(/m)) (

where H(z) = —zln(z) — (1 — z) In(1 — z) is the entropy function.
Now consider the case A > nv and let N = (}) < v?/2. Then the probability
that there is a k-core of order v and size > (n+k/2)v can be bounded as follows:

(0) (g)27 < exptarmm) (55, -

y (n+k/2D 5\ ™
< (eswtrim (L))

In order to prove that the expected running time of ExactColour is linear,
we first consider the case k = 3, i.e. the 3-core. We have to show that

P(the order of the 3-core equals v) - 1.3448" < 1,

for all v. By letting = v/n and using (6) and (7) it suffices to show that
52/3
H(z) + 31'1 (3.03 247

> 62/) + 21n(1.3448) <0,

and (letting n = 0.389) that

1.0l-e-z

3
H - . In{ — In(1.3448) <
() += (2 +0389) n(3+2‘0.389> + 21n(1.3448) <0
for all 0 < # < 1. This is easily verified, using elementary calculus. A similar
argument (considering k = 4 in (6) and (7) and the running time of Lawler’s
algorithm instead of Beigel and Eppstein’s) applies to Step 5 of ExactColour,
whence we conclude that the expected running time of both Steps 3 and 5 of

ExactColour is O(1). O

We end this section by mentioning that no serious attempts have been made
to optimize the constants involved. For example, an easy way to slightly enlarge
the range of p for which the algorithm ExactColour has expected polynomial
running time would be to use Eppstein’s recent algorithm [5] for finding an
optimal colouring instead of Lawler’s — with O(2.415™) running time instead of
0(2.443™). However it is clear that our analysis must fail at the latest when
p ~ 3.84/n, as here the 3-core appears almost surely and has linear size. On the
other hand it is known [1] that G(n,p) remains 3-colourable a.s. at least until
p = 4.03/n, so it would be interesting to design an algorithm that can handle
the 3-core in expected polynomial time.

4 O(4/np)-approximation: Theorems 2 and 4

Throughout this section we shall assume that p > In(n)®/n. Let w = np and
let G € G(n,p) be a random graph. Recall from Theorem 3 and Section 2,
that CoreColour can be used as a O(np)-approximation algorithm for colouring
G(n,p) within expected polynomial time. In order to guarantee that this colour-
ing is a good approximation, our algorithm needs an efficiently-computable lower
bound on x(G). To this end, we shall use the trivial inequality x(G) > n/a(G)
and compute upper bounds on the independence number a(G).

For a set S C V denote by N(S) := V' \ (SUN(S)) the non-neighbourhood of
S. The following algorithm resembles an algorithm proposed in [17], except that
it uses the Lovasz ¥-function instead of the first eigenvalue of a suitably defined
matrix. It is well-known that a(G) < 9(G) for any graph G, and that 9(G) can
be computed within polynomial time, using the ellipsoid algorithm [12]. For a
thorough introduction to the ¥-function the reader is referred to [12, 16].

Algorithm 12. DecideMIS(G)
Input: A graph G of order n.

Question: Is a(G) < 124/n/p?
Output: Either “yes” or “no”.

1. Let a:=12(n/p)'/? and b := 25In(np)/p.

. Compute #(G). If (@) < a, then output “yes” and terminate.

3. Check whether there exists a subset S of V, |S| = b, such that |N(S)| > a—b.
If no such set exists, then output “yes” and terminate.

4. Check all sets of size a. If none of them is independent, then output “yes”
and terminate. Otherwise, output “no”.

no

Since Steps 3 and 4 of the above algorithm have super polynomial running
time, it is clear that we have to bound the probability that we need to execute
them, in other words we need to estimate expectation and concentration of

HG(n,p))-
Lemma 13. Almost surely, 9(G(n,p)) < 3(n/p)/2.

Proof. The case that p = (2(1) has previously been treated in [14]. Here we
indicate how to adapt this argument for the case In(n)¢/n < p < 1. In order to
bound the value of #(G(n,p)), we use a characterization of ¥ as an eigenvalue
minimization problem (cf. [16, Sec. 6]). Given G = G(n,p), let M = (m;;); jev
be the symmetric n x n matrix with entries m;; = 1, if {i,j} ¢ E(G) or i = j,
and m;; = pp%l otherwise. Let A (M) > --- > A\, (M) denote the eigenvalues of
M; then 9(G) < A (M).

To bound A; (M), we apply the techniques proposed in [9] to the matrix
A = (a;5), where a;; = pm;j. We have E(a;;) = 0, and 0> = Var(a;;) ~ p (i # j).
(Since o = o(1), the result stated in [9] does not apply directly.) The eigenvalues
of A are \;(4) =p\i(M),i=1,...,n. Let us fix an even integer k¥ > 0. We shall
bound the trace of A*, since then the estimate Tr(AF) = 37 | A;j(A)% > A\ (A)*
entails a bound on A; (A). As in [9], let

En,k,p = Zi"o=1 DD |E(aioi1 Tt a’ik—lik)|

ik=1
{i1, - i}l =p
where1 < p<k+1,and put B, = Eﬁii E, k,p- It is straightforward to check

that E, ; > Tr(A¥) > \;(A)F. The counting argument given in [9, Sec. 3] shows
that Epx,, =01if p > 1+ k/2, that

_ 1 k k
En,k,1+k/2 = 1r %/2 (k/2)n(n —1)---(n—k/2)0",

and that - /5 Enkp < O(k® /n)E,, . 14k/2- Let k be the largest even number
< (o4/n)'/3, and put v = 50n'/36%/3 Inn. By Markov’s inequality,

2E; ki4k/2
(20+/n + v)k

< 2n(20v/n +v) " *(20v/n)F < 2nexp <_%ﬁf_++v) .

P(M(A) > 2077 +v) = POw(A)F > (2077 + 0)F) <

Since p > In(n)%/n, we conclude that P(A\;(4) > 304/n) < exp (_3:\0/6) <

n~10. Recalling that 9(G) < A1 (M) = A\1(A)/p completes the proof. 0

10

Remark 14. The above method of bounding ¥(G(n, p)) breaks down if the edge
probability p is too small. For instance, if p = ¢/n for some constant ¢, then a.s.
AL(M) > n > 9(G(n,p)).

Lemma 15. Let pu be a median of 9(G(n,p)). Let £ > max{10,,/u}. Then

P®(G(n,p)) > p+€) < 30exp(=€”/(5u + 10€)).
Consequently, if a > 10\/77 , then
P((G(n,p)) = a) < exp(—a/30). (8)
Lemma 15 is proven in [4]. Its proof is based on Talagrand’s inequality.

Remark 16. The algorithms in [17] are based on bounding the independence
number of G = G(n,p) via the eigenvalue \; (M), where M is as in the proof of
Lemma 13. In [17] it is show that A; (M) is sufficiently sharply concentrated if
p > n~'/2. Our algorithm DecideMIS uses ¥(G) instead of A\; (M), because the
large deviation result in Lemma 15 also gives a sufficiently sharp bound in the
sparse case p < n~ /2,

We are now ready to prove that DecideMIS does what it is supposed to do.

Lemma 17. For any graph G, DecideMIS(G) outputs the correct answer. If
p > In(n)8/n, then applied to G(n,p)*, DecideMIS has polynomial expected
running time. Moreover, the probability that DecideMIS answers “no” is at most

exp(—n).

Proof. 1t is straightforward to check that the answer given by DecideMIS is
always correct. Indeed, as a(G) < ¢(G) this is trivially true if the algorithm
terminates after Step 2, and also if it terminates after Step 4. So suppose that it
terminates after Step 3 and assume for a contradiction that there does exist an
independent set W of size at least a. But then consider any subset S C W with
|S| = b and observe that |[W \ S| > a—band W\ S C N(S).

It remains to prove that DecideMIS has polynomial expected running time.
We make a few preliminary technical observations. First recall that p > In®(n) /n
and that hence \/np > In® (np). Thus, by inserting the definitions for a and b,
it is easy to see that for any constant C' and n sufficiently large

a a 12,/np/C — 25In*(np) _ 11,/np/C 1l a
E—bza—ln(np)bz » > » RETYek 9)
Moreover, we have that
(Z) < ()" < (np)*? = exp (in(np)a/2), (10)
b
(3) =< (5) = (i) <) =esp). ()

11

Now we consider the expected running times of Steps 3 and 4. By (8) in
Lemma 15, the expected time spent in Step 3 is bounded by

exp (—a/30) (Z) n (lgl) nexp (—a/30 + In(np)b) © O(n).

Moving on to Step 4, its expected running time is at most

(:) (1 — p)bla=b) (n) (g) (1(%11) n? exp (In(np)a/2 — pb(a — b) + In(np)b)

a
© 11
< n’exp (In(np)a/2 — 25 ln(np)Ea + In(np)b)

D 0(m2).

—~

It remains to verify the last claim of Lemma 17. The probability that DecideMIS
finds an independent set of size a is at most

() a=p@ < exp (minplarz - pa/3

= exp (n (—48 + 61n(np)//np)) < exp(—n),
as claimed. O

Having established correctness and running time of DecideMIS, it is straight-
forward to design approximation algorithms for the chromatic and the indepen-
dence numbers as required by Theorems 2 and 4.

Algorithm 18. ApproxColour(G)
Input: A graph G = (V, E).
Output: A colouring of G.

1. Run CoreColour(G, 10np). Let C be the resulting colouring of G.
2. Run DecideMIS(G). If a(G) < 124/n/p, then output C and terminate.
3. Otherwise colour G exactly in time O(2.443"™) (cf. [22]).

Proof of Theorem 2. Since the expected running time of ApproxColour(G) is
given by Lemma 17, the only thing we need to do is to check the approxima-
tion ratio achieved by ApproxColour(G) if it terminates after Step 2. Recall
that CoreColour(G,10np) needs at most max{x(G),10np} colours. Hence if
ApproxColour(() terminates after Step 2, then the approximation ratio is at

most
10np _ 10np a(G@) _ 10np 124/n/p
< < =0 ,
@ = n n Vip)
thereby proving the theorem. O

Remark 19. In [14] it is shown that for p = 2(1) we a.s. have ¥(G(n,p)) =
£2(y/n/p). Using similar arguments as in the proof of Lemma 13, one can extend
this result to all p >> In(n)®/n. Therefore, one cannot hope for an approximation
ratio considerably better than O(,/np) using n/9¥(G(n,p)) as a lower bound on

x(G(n, p))-

12

We conclude this section with the proof of Theorem 4 by adapting ApproxColour
as follows. Instead of CoreColour, we use the greedy (colouring) algorithm and
keep the largest colour class it produces. Then we run again DecideMIS and,
finally, instead of using an exact graph colouring algorithm in Step 3, we use an
exact algorithm for the maximum independent set problem.

Algorithm 20. ApproxMIS(G)
Input: A graph G = (V, E).
Output: An independent set of G.

1. Run the greedy algorithm for graph colouring on input G. Let I be the
largest resulting colour class. If |I| < In(np)/(2p), then go to 3.

2. Run DecideMIS(G). If a(G) < 124/n/p, then output I and terminate.

3. Otherwise, enumerate all subsets of V' and output a maximum independent
set.

Lemma 21. The probability that the largest colour class produced by the greedy
colouring algorithm is of size < In(np)/(2p) is at most 27 ™.

Sketch of proof. Use the argument given in [17] for the case p > n°~'/2, with
ag = In(np)/(2p) and t = n/(2a0) = np/ In(np). |
Proof of Theorem 4. Let us first prove that ApproxMIS(G) achieves the approxi-
mation ratio stated in the theorem. Suppose that the algorithm terminates after
Step 2. Then the approximation ratio is at most

a(Q) < 12y/n/p 0
|~ In(np)/(2p)
If, on the other hand, the algorithm terminates after Step 3, then it has found

a maximum independent set. As to the running time, the result follows from
Lemma 21 together with Lemma 17. O

(vnp/ In(np)).

5 Deciding k-colourability: Theorems 5 and 6

In this section we apply the methods established so far to the problem of deciding
k-colorability. First, let us consider the model G(n,p)~.

Algorithm 22. CoreDecide(G)
Input: A graph G = (V, E) and an integer k.

1. Run CoreColour(G, k). Let C be the resulting colouring of G.
2. If the number of colours used in C is at most k, output “G is k-colourable”.
Otherwise, output “G is not k-colourable”.

Proof of Theorem 5. Let Gy = G(n,p), p < k/(10n), and let G € Z(Gy)~ be
the instance chosen by the adversary. Because the adversary can only remove
edges, the k-core of G is contained in the k-core of Gy. Thus, by our assumption
on p, the argument given in the proof of Lemma 10 shows that the expected

13

running time of CoreDecide is linear. Moreover, since CoreColour(G, k) uses
at most max{x(G), %} colours, we must have x(G) > k whenever the output is
“not k-colourable”, and thus CoreDecide is always correct. O

Coming to G(n,p)*, let us now assume that np > max{200k%,In(n)"}. In
this range we almost surely have x(G(n,p)) > k.

Algorithm 23. Decide(G)
Input: A graph G = (V, E).

1. Run DecideMIS(G). If a(G) < 124/n/p, then output “G is not k-colourable”
and terminate.
2. Compute the chromatic number of G exactly in time O(2.443™) [22].

Proof of Theorem 6. By Lemma 17, Decide has polynomial expected running
time. If Decide(G) terminates after Step 1, then

n n /1P
G) > > = >k,
xG) 2 a(G) T 12y/n/p 12
as claimed. O

6 An application to k-SAT: Theorem 7

Throughout this section, we assume that k > 4 is an even integer. In order to

certify unsatisfiability of the random k-SAT formula F(n, k, m), we exploit the

following connection between k-SAT and the maximum independent set problem

established in [10]. Let V = {1,...,n}*/2. Given any k-SAT formula F over

n propositional variables 1, ...,,, we can define two graphs Gr = (V, Er),
"= = (V, E%) as follows. We let

Er = {{v,w}| 2y, V---V Typyn V Ty V-0V Ty, ,0CCUTS in F}
and
Ep = {{v,w}]| =&y, V-V 2y, p V ", V- V DTy, ,0ccurs in F}
Lemma 24. [10] If F is satisfiable, then max{a(Gr),a(G%)} > 27%/2nk/2.

In order to apply the methods of Section 4 to the problem of deciding whether
F is satisfiable, we make use of the following lemma.

Lemma 25. Let F = F(n,k,m) be a random k-SAT formula.

1. Let v = n*/2. Conditioned on |Er| = u, the graph G is uniformly dis-
tributed; i.e. Gr = Gy .

2. Let € > 0. Suppose that 2kn¥/2 < m < nk~'. Then with probability at least
1 —exp(—2(m)) we have |E(GFr)| > (1 —)2 Fm.

Similar statements hold for G'.

14

Proof. The first part of the lemma is proven in [10]. We shall prove that with
probability > 1 — exp(—{2(m)) the graph G enjoys the following three proper-
ties. (The bounds on the probabilities of the first two events are implicit in [10].)
We call a clause all-positve if it doesn’t contain any negated variables.

1. The number P(F) of all-positive clauses in F is at least (1 —)2 *m.

2. The number L(F') of all-positive clauses of type
Iy V"'mG/gv.’b’l V"'V.’L’k/g

that occur in F'is < €2~%m.
3. Let F=aj A--- A ay,. Given literals lq,...,[;, put

V-V Ik) = {1V eV oy s Voo V D)
Then M(F) = |{i € {1,...,m}| h(a;) = h(a;) for some i # j}| < €2 *m.

Since |Ep| > P(F) — L(F) — M (F), the lemma is a consequence of 1.-3. above.

In order to prove that 1. holds with sufficiently high probability, note that the
number of all-positive clauses is binomially distributed with expectation 2~ *m.
By Chernoff bounds, P(P(F) < (1 — €)27%m) < exp(—e227%~m). Similarly,
since the number of clauses as in 2. is binomially distributed with expectation
m(2n)~*/? < €27k~ we conclude that

P(L(F) > E(L(F)) + €27 F"1m) < exp(—?27%"2m).

The probability that 3. is violated is most easily bounded using Talagrand’s
inequality. Indeed, we may consider F(n, k,m) as a product space Ay X - -+ X A,
where A; is a random clause, i = 1,...,m. First, let us estimate the expectation
of M(F). Let FF = oy A+ A auy. If @ # j are fixed, then the probability that
h(a;) = h(ay) is 2n=*. Hence, by our assumption m < n*f=1', E(M(F)) <
2m2n~F < 2m/n < €27%"2m. In order to apply Talagrand’s inequality, we
observe that if Fy, F» € F(n, k,m) differ only in the jth clause, then |M(F}) —
M(F3)| < 2. Furthermore, let 7 > 0. Suppose that F' = ay A+ - -Aay, € F(n, k,m)
satisfies M (F) > r, and let

J ={i €{l1,...,m}| there exists j # i such that h(a;) = h(a;)}.

Then there exists Jo C J, |Jo| <7+ 1, such that the following condition holds.
For any F' = 81 A -+ A Bm € F(n,k,m), such that 3; = «; for all j € Jp,
we have M(F') > r. Put ¢(r) = 4(r + 1). Then Talagrand’s inequality (in the
version [13, p. 40]) yields

P(M(F) > 9E(M(F)) + t) < 2exp (_4¢(2E(1\f[2(F)) " t)> .

Letting ¢t = 27 %*~'m entails P(M(F) > 2~ *Fm) < exp(—£2~*m/100). O

15

In [10] a similar statement as Lemma 25 is established. The difference is that
in order to obtain a polynomial expected running time, we need an exponentially
small probability in part 2 of the lemma. Our algorithm for testing satisfiability
of random k-SAT formulas can now be stated as follows.

Algorithm 26. DecideSAT(F)
Input: A k-SAT formula F' over z1,...,%n-
Output: Either a satisfying assignment of F' or “unsatisfiable”.

1. Construct the graphs Gr and G%. If DecideMIS(GF) and DecideMIS(G')
(with p = m(2n)*) both answer “yes”, then terminate with output “unsat-
isfiable”.

2. Enumerate all 2™ assignments of zy,...,%,. If an assignment Z1,...,%, is
found that satisfies F', then terminate with output Zi,...,%,. Otherwise,
output “unsatisfiable”.

Proof of Theorem 7. We may and shall assume that m = [In(n)"n*/2]. Clearly,
DecideSAT(F') outputs “unsatisfiable” if F' is unsatisfiable. If F' is satisfiable,

then by Lemma 24 we have max{a(Gr),a(G%)} > 27%/2n*/2_ Since % <
nk/2, either DecideMIS(Gr) or DecideMIS(GY%,) will find out that

max{a(Gr),a(Gy)} > 124/n*/2 /p.

Hence, DecideSAT runs Step 2 and finds a satisfying assignment of F'.

As for the running time, let Fy denote the random k-SAT formula from which
F = F(n,k,m)" has been constructed. Clearly, the graphs G and G’ can be
constructed in polynomial time (w.r.t. n + £(F)). As the time used by Step 1
for executing DecideMIS is bounded by exp(n*/?), and because Step 2 consumes
at most £(F)°(") exp(n) time, we may assume that min{|E(Gg,)|,|E()|} >
2~k=1m, by the second part of Lemma 25. By the first part of Lemma 25, the
graphs Gr and G’ both are have the following structure. First, a random graph
G (v, p) is chosen with v = n*/2, y = 2=F~1mp, Then, an adversary adds arbitrary
edges. Our choice of p implies that P(|E(G(v,p))| = u) > n~*. Therefore, applied
to Gr and G'7, DecideMIS has polynomial expected running time. Consequently,
on average DecideSAT(F (n,k,m)") spends polynomial time executing Step 1.
Since the probability that a(G(n*/2,p)*) > 12(n*/?/p)1/? is < exp(—n), and
because we can check in polynomial time whether an assignment of z1,...,z,
is satisfying, the expected time spent executing Step 2 is polynomial. O

Acknowledgement. We are grateful to A. Goerdt and M. Krivelevich for help-
ful discussions.
References

1. Achlioptas, D., Moore, C.: Almost All Graphs of Degree 4 are 3-Colorable, Proc.
Symposium on the Theory of Computing (STOC) 2002.

16

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446™): a no-MIS algorithm, Proc.
36th. IEEE Symp. Found. of Comp. Sci. (1995) 444-453

Bollobés, B.: Random graphs, 2nd edition, Cambridge University Press 2001
Coja-Oghlan, A.: Finding large independent sets in expected polynomial time.
To appear in Proc. STACS 2003 (available from http://www.informatik.hu-
berlin.de/~coja/)

Eppstein, D.: Small maximal independent sets and faster exact graph coloring. To
appear in J. Graph Algorithms and Applications

Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Proc. 11. IEEE
Conf. Comput. Complexity (1996) 278-287

Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and
System Sci. 63 (2001) 639671

Friedgut, E.: Necessary and sufficient conditions for sharp thresholds of graph
properties and the k-SAT problem. J. of the AMS 12 (1999) 1017-1054

Fiiredi, Z., Komlo$, J.: The eigenvalues of random symmetric matrices, Combina-
torica 1 (1981) 233-241

Goerdt, A., Krivelevich, M.: Efficient recognition of random unsatisfiable k-SAT
instances by spectral methods. Proc. 18th Int. Symp. on Theoret. Aspects of Comp.
Sci. (STACS’2001) Springer LNCS 2010 294-304.

Grimmett, G., McDiarmid, C.: On colouring random graphs. Math. Proc. Cam.
Phil. Soc 77 (1975) 313-324

Grotschel, M., Lovész, L., Schrijver, A.: Geometric algorithms and combinatorial
optimization. Springer 1988

Janson, S., Luczak, T., Ruciniski, A.: Random Graphs. Wiley 2000

Juhdsz, F.: The asymptotic behaviour of Lovdsz ¥ function for random graphs,
Combinatorica 2 (1982) 269-270

Karp, R.: The probabilistic analysis of combinatorial optimization algorithms.
Proc. Int. Congress of Mathematicians (1984) 1601-1609.

Knuth, D.: The sandwich theorem, Electron. J. Combin. 1 (1994)

Krivelevich, M., Vu, V.H.: Approximating the independence number and the chro-
matic number in expected polynomial time. J. of Combinatorial Optimization 6
(2002) 143-155

Krivelevich, M.: Deciding k-colorability in expected polynomial time, Information
Processing Letters 81 (2002) 1-6

Krivelevich, M.: Coloring random graphs — an algorithmic perspective, Proc. 2nd
Coll. on Mathematics and Computer Science, B. Chauvin et al. Eds., Birkhauser,
Basel (2002) 175-195.

Krivelevich, M., Sudakov, B.: Coloring random graphs. Informat. Proc. Letters 67
(1998) 71-74

Kucera, L.: The greedy coloring is a bad probabilistic algorithm. J. Algorithms 12
(1991) 674684

Lawler, E.L.: A note on the complexity of the chromatic number problem, Infor-
mation Processing Letters 5 (1976) 66-67

Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a
random graph. JCTB 67 (1996) 111-151

