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Abstract.

Motivation. Modelling, parameter identification, and simulation play an important

role in systems biology. Usually, the goal is to determine parameter values

that minimise the difference between experimental measurement values and model

predictions in a least-squares sense. Large-scale biological networks, however, often

suffer from missing data for parameter identification. Thus, the least-squares problems

are rank-deficient and solutions are not unique. Many common optimisation methods

ignore this detail because they do not take into account the structure of the underlying

inverse problem. These algorithms simply return a “solution” without additional

information on identifiability or uniqueness. This can yield misleading results,

especially if parameters are co-regulated and data are noisy.

Results. The Gauss-Newton method presented in this paper monitors the numerical

rank of the Jacobian and converges locally, for the class of adequate problems, to a

solution that is unique within the subspace of identifiable parameters. This method has

been implemented in BioPARKIN, a software package that combines state-of-the-art

numerical algorithms with compliance to system biology standards, most importantly

SBML, and an accessible interface.

Availability. The software package BioPARKIN is available for download at

http://bioparkin.zib.de .
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1. Introduction

Following [1], there are two main modelling approaches in systems biology. On one

hand, there exist detailed models for isolated parts of a system. The states and

model parameters of such systems are generally well-defined, but the system is far

from being closed and there are great variations in the environmental conditions. On

the other hand, large-scale networks are more closed, but suffer from missing data

for parameter identification. Biological data, however, often indicate that parameters

are correlated, and that a system’s behaviour can be characterised by a few control

parameters. In contrast to parameter optimisation, parameter identification not only

aims at the determination of parameter values from given measurement data, but also on

the detection of dependencies between parameters. As stated in [1], the identification of

all control parameters which allow a proper characterisation of the states of a biological

system, is by no means trivial and, at least for most applications, an open problem.

Modelling, parameter estimation and simulation of biological systems have become

part of modern systems biology toolboxes. Unfortunately, many of these programs are

based on inefficient or mathematically outdated algorithms. To counteract this problem,

we have developed the software package BioPARKIN1 [2]. This software is a renewed

version of the former codes LARKIN [3] and PARKIN [4], which have successfully been

applied in chemical industry for more than 20 years [5].

BioPARKIN combines a basis of long-standing mathematical principles with

compliance to system biology standards, most importantly SBML [6], and an accessible

interface. The SBML format is one of the most important standards in systems

biology to facilitate collaboration of researchers at all levels (physicians, biologists,

mathematicians, etc.). The interface strives to wrap complicated structures and settings

(especially with regard to the numerical back-end) into an user-friendly package that

can be used correctly by non-mathematicians.

BioPARKIN is split into two parts – the numerical library PARKINcpp and the

graphical user interface (GUI) – in order to achieve several advantages. The crucial, yet

computation-intensivenumerical algorithms are embedded in an efficient C++ library

while the GUI is coded in Python which enables rapid interface changes when adapting

the user interface to new insights into user behaviour. Another important advantage is

the independent availability of the PARKINcpp library for use in other related projects.

Both parts are available under the LPGL which is a flexible open-source license allowing

for the use of the software in both open and closed (i.e. commercial) projects.

The core of PARKINcpp and its unique feature is the solver NLSCON for nonlinear

least-squares with constraints [7]. This Gauss-Newton type method is especially suited

for rank-deficient problems [8]. NLSCON requires, however, some user specified input

such as threshold values for species and parameters, or a threshold value for rank

decision. In order to choose reasonable values and to obtain reliable results, it is

indispensable to understand the foundations of the algorithm. This paper therefore

1 Biology-related paramater identification in large kinetic networks
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aims at giving an overview of the functionality and implementation of NLSCON within

BioPARKIN.

The article is organised as follows. We start with the problem definition in Section 2.

In Section 3 we explain our method to solve nonlinear least-squares problems. Finally,

we present and discuss numerical results in Section 4.

2. Approach

2.1. Large kinetic networks

A major topic in systems biology is the study of the dynamical evolution of bio-

chemical mechanisms within a well-defined, biology-related context. The bio-chemical

mechanisms in such a compound under consideration are typically given as a, possibly

huge, set of chemical reactions between numerous species forming a large kinetic

network. Assuming the general principle of mass action kinetics, this large network

transforms readily to a system of n ordinary differential equations (ODEs) leading to

an autonomous initial value problem (IVP)

y′ = f(y ; p), y(t0) = y0, p ∈ Rq (2.1)

where the rate of change in the species vector, y′ ∈ Rn, is described by the term

on the right-hand side, f(y; p), depending on both the species, y ∈ Rn, and the

parameter vector, p ∈ Rq. The initial condition vector, y0, has the same dimension

as the species vector y. In BioPARKIN, the ODE systems are solved numerically with

LIMEX, a linearly implicit Euler method with extrapolation that is especially suited for

stiff differential equations [9, 10, 11]. LIMEX is a numerical integrator with adaptive

stepsize control that allows for a computation of the solution y at arbitrary time points

with prescribed accuracy by using an appropriate interpolation scheme. This is often

not possible with other ODE solvers. LIMEX can be applied to differential-algebraic

equations as well, which allows for the processing of algebraic constraints in BioPARKIN.

It is assumed that some discrete experimental data (in form of species

concentrations versus time),

(τ1, z1), . . . , (τM , zM), (2.2)

are available. Note that frequently only a certain amount of the n species concentrations

are measurable observables, if at all. The task at hand now reduces to quantify the q

unknown components of the parameter vector, p, by comparison between computed

model values and measured data.

A complete data set, of course, must include prescribed statistical tolerances,

δzj (j = 1, . . . ,M), for each measurement as well. The mathematically correct handling

of these will be described in Section 2.2.

Breakpoint handling. A sudden event (maybe from outside the biological system) is

handled by introducing a breakpoint, tb > t0, and subsequently, splitting the ODE
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system into a y−-part for t0 < t ≤ tb, and a y+-part for tb < t,

(y−)′ = f(y−; p), y−(t0) = y0 (2.3)

(y+)′ = f(y+; p), y+(tb) = g(y−(tb) ; p) (2.4)

where g : Rn × Rq −→ Rn is a mapping of the initial conditions, possibly dependent

on the parameter vector, p. Note that, in BioPARKIN, breakpoints have to be defined

beforehand and hence, they must be independent of the time course of y. This approach

of splitting the ODE system with respect to time particularly applies in case of multiple

experiments.

In SBML such breakpoints are defined via “events” with trigger expressions in the

form

eq(time, tb).

Many other present simulation tools cannot handle this kind of event because the

numerical integrator simply does not stop at time tb.

Multiple experiments. The design of experiments almost always includes different

conditions such that the effects of these different conditions on the system under

investigation can be observed and studied. In the simplest case, calibration

measurements might be necessary, for example, or data related to different initial

conditions, y0,1, y0,2, . . . , y0,ν , . . ., are given. Numerically, these situations can be handled

by the concatenation of several IVPs,

y′ν = fν(yν ; p), yν(t0,ν) = y0,ν , ν = 1, 2, . . . , (2.5)

very similar to the management of breakpoints/events. If required, the solution yν
corresponding to the (virtual) initial timepoint, t0,ν , can readily be shifted to the

(original) initial time, t0, for comparison or plotting purposes.

2.2. Parameter identification

Following the fundamental idea of Gauss, parameter identification is, as implemented

in BioPARKIN, equivalent to solving the weighted least-squares problem,

1

M

M∑
j=1

‖D−1
j (y(τj ; p)− zj)‖22 = min, (2.6)

with diagonal weighting (n, n)-matrices,

Dj := diag((δzj)1, . . . , (δzj)n), j = 1, . . . ,M. (2.7)

Note that, if not all components of a datum, zj ∈ Rn, are available at a specific

measurement time point, τj, then the missing data in the least-squares formulation

is simply replaced by the computable model value, therefore effectively neglecting the

corresponding contribution in the sum of Equation (2.6). The corresponding entry in

Dj is then set to one.
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If, on the other hand, a component of given error tolerance, δzj, or even the whole

vector, is put to zero, this contribution to the sum in Equation (2.6) is also taken

out, and considered as a (nonlinear) equality constraint to the least-squares formulation

instead.

In the (hopefully rare) case of missing error tolerances in the data file, the

measurement tolerances are simply set to

(δzj)` = max {|(zj)`|, thres(y`)}, ` = 1, . . . , n, (2.8)

with some user specified threshold mapping, thres(y`). If this threshold value is not

defined, it is set to zero.

The least-squares problem (2.6) may be written even more compactly as

‖F (p)‖22 ≡ F (p)
T

F (p) = min, (2.9)

where F : Rq → RL is a nonlinear mapping and structured as a stacked vector of length

L = nM ,

F (p) =

 D−1
1 (y(τ1 ; p)− z1)

...

D−1
M (y(τM ; p)− zM)

 . (2.10)

If not all components of a measurement, zj, are given, the number L will accordingly

be smaller, L < nM .

2.3. Parameter constraints

In order to enforce constraints such as positivity or upper and lower bounds on the

unknown parameters to be determined in the model, a (differentiable) transformation,

ϕ : Rq −→ Rq, can be introduced resulting in a different parametrisation, u, of the

model ODE system,

p = ϕ(u), y′ = f(y ; ϕ(u)) = f̃(y ; u) (2.11)

A global positivity constraint on the parameter vector, p, can be achieved, for example,

by the (component-wise) exponential transformation

pi = exp(ui), i = 1, . . . , q (2.12)

To impose an upper and a lower bound, A and B, respectively, a sinusoidal

transformation

pi = A+
B − A

2
(1 + sinui) , i = 1, . . . , q (2.13)

can be used. For a single bound, C, as last example in this section, a root square

transformation

pi = C ±
(
1−

√
1 + u2

i

)
, i = 1, . . . , q (2.14)

(with the upper sign for an upper bound and the lower sign for a lower bound) is possible.
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The last two transformation formulas are especially eligible since, at least for small

perturbations dpi ≈ ϕ′ dui, the differentials are bounded and, most importantly, are

essentially independent of the new parametrisation, u.

Note that the application of any transformation of the parameters obviously changes

the sensitivities of the parameters to the dynamical evolution of the ODE system.

Therefore, it is strongly recommended that parameter constraints should only be applied

in order to prevent the parameter vector components, pi, from taking on physically

meaningless values. The better choice in this case would be to change the model

equations since model and data seem to be incompatible.

2.4. Parameter scaling

In general, a scaling-invariant algorithm, i.e. an algorithm that is invariant under the

choice of units in a given problem, is (almost) indispensable to guarantee any reliable

results. Therefore, the following scaling strategy within the course of the Gauss-Newton

iteration has been implemented: in each iteration step k, an internal weighting vector,

pw ∈ Rq, is used to define local scaling matrices, Wk , by

Wk = diag(pw1, . . . , pwq) (2.15)

with locally given

pwi := max
{
|pki |, thresh(pi)

}
, i = 1, . . . , q (2.16)

where pki are the current parameter iterates, and thresh(pi) > 0 are suitable threshold

values for scaling chosen by the user. Consequently, any relative precision of parameter

values below these prescribed threshold values will be meaningless.

3. Methods

3.1. Affine covariant Gauss-Newton algorithm

Starting with an initial guess, p0 ∈ Rq, the (damped) Gauss-Newton method is given as

pk+1 = pk + λk∆pk, k = 0, 1, . . . (3.1)

Here, the step-length, 0 < λk ≤ 1, is recomputed successively in each iteration (see

below). The update, ∆pk, is the minimum norm solution to the linear least-squares

problem,

‖F ′(pk)∆pk + F (pk)‖ !
= min . (3.2)

The (L × q)-Jacobian matrix, F ′(·), can be approximated by stacking the rows of the

sensitivity matrices, S(τj), corresponding to the measurement points (τj, zj),

J =

 D−1
1 S(τ1)

...

D−1
M S(τM)

 . (3.3)
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Herein the sensitivity matrices, S(τj), are samples of the solution trajectories of the

inhomogeneous variational equation

S ′ = fy

(
y(t ; pk) ; pk

)
S + fp

(
y(t ; pk) ; pk

)
, S(t0) = 0 (3.4)

taken at the measurement time points, τj. The terms fy and fp on the right hand side

are computed analytically by symbolic differentiation. The variational equation is solved

simultaneously with the IVP (2.1), representing an ODE system of ((n+1)×q) equations

in total. To avoid expensive factorisations of the iteration matrix within LIMEX,

it is replaced by its block-diagonal part, as proposed in [12]. The linearly-implicit

extrapolation algorithm allows such an approximation, as long as the characteristics of

the dynamic system are preserved, which is satisfied here. By using this sparsing, the

effort required for sensitivity evaluation does not grow quadratically with the number

of parameters, q, but only linearly. Hence, reasonable computing times are achieved

(compare also Table 2).

For reasons of comparison with other software tools, the Jacobian matrix can

alternatively be approximated by computing the difference quotient, for ` = 1, . . . , L

and i = 1, . . . , q,

J`,i =
1

h

(
F`(p+ eih)− F`(p)

)
, h = O

(
|pi| ·

√
eps
)
, (3.5)

whereby eps it the relative machine precision. In BioPARKIN, the user can optionally

invoke a feedback strategy in which the finite difference disturbance is additionally

adapted to the current values of F`.

All approaches to compute the Jacobian matrix make sure that, at each current

parameter estimation, pk, the approximation J ≈ F ′(pk) is valid. Note, however, that

the Jacobian computed by numerical differentiation is generally less accurate than the

Jacobian obtained via the variational equation.

In passing, the notation of the so-called simplified Gauss-Newton correction, ∆p
k+1

,

as the minimum norm solution to

‖J(pk)∆p
k+1

+ F (pk+1)‖ !
= min, (3.6)

may also be introduced for later use.

3.2. Threshold-related scaling

Often, model species and model parameters cover a broad range of physical units and

their values can vary over orders of magnitude. To achieve comparability, the sensitivity

values have to be normalised by the absolute values of species and parameters to obtain

scaled sensitivity matrices,

Sij(t) =

(
∂yi
∂pj

)
(t) · max{|pj| , thres(pj)}

max{max
t∈I

|yi(t)| , thres(yi)}
(3.7)

where thres(·) are user-specified threshold values for parameters and species,

respectively, and the integration time interval of the ODE system, I, is used. In
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BioPARKIN, the absolute values of these scaled sensitivity values are displayed (see

Figure 4 as an example).

3.3. Subcondition monitor

For the solution of the linear least-squares problem in each iteration step, a QR-

decomposition of the associated Jacobian (L, q)-matrix, J = F ′(p),

QJ Π =

(
R

0

)
(3.8)

by applying Householder reflections with additional column pivoting is realised in

BioPARKIN. Here, for simplicity, the full rank case is assumed where q ≤ L and R

is an upper triangular (q, q)-matrix, R = (rij). The permutation, Π, is determined such

that

|r11| ≥ |r22| ≥ . . . ≥ |rqq|. (3.9)

For some required accuracy, δ > 0, given by the user, the numerical rank, ` := rnk(J),

indispensable to the successful solution of ill-posed problems, is then defined by the

inequality

|r`+1,`+1| < δ |r11| ≤ |r``|. (3.10)

In general, the maximum of all given measurement tolerances, δzj, is a suitable choice

for this accuracy, δ := max
i,j

{(δzj)i}. In BioPARKIN, however, this choice is left to the

user, who has to specify a tolerance XTOL. This tolerance is assigned to δ.

Note that this definition of the numerical rank is highly biased by both row and

column scaling of the Jacobian. Introducing, nevertheless, the so-called subcondition

number, for ` = q, by

sc(J) :=
|r11|
|rqq|

≤ cond2(J), (3.11)

it follows that, if δ · sc(J) ≥ 1, the Jacobian will certainly be rank-deficient. In this

case, a rank-deficient pseudo-inverse is realised in BioPARKIN, either by a QR-Cholesky

variant or by a QR-Moore-Penrose variant [13]. Both cases of pseudo-inverses of the

Jacobian, J , will be denoted by
(
J `
)+

.

3.4. Steplength strategy

In order to determine an optimal damping parameter, 0 < λk ≤ 1, in each Gauss-Newton

step, a first estimate λ
(0)
k is calculated in BioPARKIN from a theoretical prediction on

the basis of the former iterate step,

λ
(0)
k = min{1, µk}

µk :=
[
‖∆pk−1‖ ‖∆p

k‖ / ( ρk ‖∆pk‖ )
]
· λk−1

ρk :=
∥∥∥[Iq − J(pk)+J(pk−1)

]
∆p

k
∥∥∥ .

(3.12)
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If this first a priori estimate, λ
(0)
k , fails in the natural monotonicity test,∥∥∥∆p

k+1
∥∥∥ <

∥∥∆pk
∥∥ , (3.13)

then an additional correction strategy is invoked to compute the a posteriori estimates,

λ
(ν)
k = min

{
1 ,

1

2
λ
(ν−1)
k , ,

1

2
µ
(ν−1)
k

}
, ν = 1, 2, . . . (3.14)

where

µ
(ν−1)
k :=

‖∆pk‖
‖∆p

k+1,ν−1 − (1− λ
(ν−1)
k )∆pk‖

· (λ(ν−1)
k )2 . (3.15)

For details see [8] and [2].

As experience shows, the a posteriori loop is rarely activated. To avoid an infinite

loop, however, it is ensured that both estimates, λ
(0)
k and λ

(ν)
k , ν = 1, 2, . . ., always

satisfy the condition

λ
(ν)
k ≥ λmin, ν = 0, 1, 2, . . . (3.16)

with a minimal permitted damping factor, λmin, provided by the user. In case λ
(ν)
k < λmin

deliberate rank reduction is invoked, which usually leads to larger damping factors.

Otherwise, the Gauss-Newton iteration will be stopped.

3.5. Deliberate rank reduction

A deliberate rank reduction may additionally help to avoid an iteration towards an

attractive point, p̂, where the associated Jacobian matrix, J(p̂), becomes singular.

The general idea of this device is to reduce the maximum permitted rank in the QR

decomposition until the natural monotonicity will be fulfilled again or, of course, no

further rank reduction is possible. The subroutine as implemented in BioPARKIN is as

follows.

To start with, let q denote the current rank. The ordinary Newton correction, ∆pk,

is then recomputed with a prescribed maximum allowed rank, ` = q− 1. With the new

(trial) correction, ∆pk,`, a new a priori damping factor, a new trail iterate, and a new

simplified correction,

λ
(0,`)
k = min

{
1, µ

(0,`)
k

}
, (3.17)

p(0,`) = pk + λ
(0,`)
k ∆pk,`, (3.18)

∆pk,` = − J `(pk)+F (pk), (3.19)

∆p(0,`) = − J `(pk)+F (p(0,`)), (3.20)

are computed, respectively.

If now the monotonicity test is successfully passed, the Gauss-Newton iteration

proceeds as usual. Otherwise, the damping factors, λ
(ν,`)
k (ν = 1, 2, . . .), are calculated

using the a posteriori estimates as given above. If in the a posteriori loop, in turn,

λ
(ν,`)
k < λmin occurs, the maximum allowed rank is further lowered by one and, again,

the repetition of the rank reduction step starts once more.
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Table 1. Typical protocol of parameter identification run with full data, here for the

model EpoRcptr (cf. Section 4.4).

G-N It. Normf Normx Damp. Fctr. Rank

0 4.1941414e+01 2.115e-02 6

1 4.1936708e+01 * 2.094e-02 0.01000

1 4.1936708e+01 2.469e-02 6

2 4.1751843e+01 * 1.669e-02 0.41932

2 4.1751843e+01 3.373e-02 6

3 4.1655239e+01 * 2.266e-02 0.42693

3 4.1655239e+01 1.024e-01 6

4 4.1639220e+01 * 7.410e-02 0.19117

4 4.1639220e+01 1.076e-01 6

5 4.1631470e+01 * 4.854e-02 0.37178

5 4.1631470e+01 1.538e-02 6

6 4.1547355e+01 * 1.816e-03 1.00000

6 incompatibility factor: 0.14248

6 4.1547355e+01 6.366e-03 6

7 4.1542667e+01 * 2.140e-04 1.00000

7 incompatibility factor: 0.42707

7 4.1542667e+01 3.339e-05 6

8 4.1542118e+01 . 1.783e-08 1.00000

8 incompatibility factor: 0.00526

Requested identification accuracy has been xtol = 10−4. A star in the third column

indicates values corresponding to simplified Gauss-Newton corrections.

This rank reduction procedure is carried out until natural monotonicity, ‖∆p
(ν,`)‖ ≤

‖∆pk,`‖, holds true or, alternatively, a final termination criterion, ` < `min (0 < `min <

q), is reached.

Note that an emergency rank reduction can occur in a step where the rank of the

Jacobian, J(pk), has already been reduced because of the subcondition criterion.

3.6. Convergence

As the solution p∗ is approached, the Gauss-Newton method converges linearly with an

asymptotic convergence factor κ(p∗). This quantity κ, called incompatibility factor, is

monitored by NLSCON and must be smaller than 1 to obtain convergence. Problems

that satisfy this condition are called adequate problems. If model and measurement

values match exactly, i.e. F (p∗) = 0, then κ(p∗) = 0 and the method converges

quadratically just as Newton’s method. This so-called compatible case, however, does

not occur in practice since experimental measurements are never exact. For inadequate

nonlinear least-squares problems, the adaptive damping strategy will typically yield

values λk ≈ 1/κ < 1, and too small damping factors result in fail of convergence. Vice

versa, this effect can be conveniently taken as indication of the inadequacy of the inverse

problem under consideration [8]. In this case, model equations or the initial parameter

guess p0 should be changed. A typical NLSCON output protocol in case of successful
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Table 2. Comparison of computing times w.r.t. different models.

GynCycle BovCycle BIOMD008 EpoRcptr

Model Characteristics

#Species 33 15 5 7

#Parameters 114 60 21 9

#Reactions 54 28 13 9

Simulation

BioPARKIN0 (adpt. h) 3.2s 0.8s 0.1s 0.1s

COPASI1 (h = 10−2) 1.4s 0.6s 0.2s 0.2s

COPASI2 (h = 10−3) 7.2s 4.0s 1.4s 1.1s

Sensitivity

BioPARKIN

(∗) (var. eq., overview) 49s 12.9s 0.7s 1.7s

(var. eq., overview) 117s 29.2s 0.9s 2.0s

(num. diff., overview) 309s 35.4s 0.8s 0.2s

COPASI1 (grand total) 94s 18.1s 1.0s 0.3s

COPASI2 (grand total) 328s 115.6s 8.3s 1.5s

Benchmark times are rounded to one decimal. Integration was done in [0,100] with time

units [s] or [d], accordingly. For comparison reasons, rtol = 10−6 and atol = 10−12

have been used in all rows (except (∗)) as accuracy for the ODE solvers. COPASI run

times have been measured by batch processing, excluding the time spent for file I/O.

In COPASI, sensitivities were computed by numerical differentiation. In BioPARKIN,

sensitivities were computed by either solving the variational equation (var. eq.) or by

numerical differentiation (num. diff.). In a sensitivity overview, sensitivities are plotted

over the complete time interval (for an example, see Figure 4).

(∗) Var. Eq. computing times: values have been achieve with slightly lower but still

more than sufficient accuracy (rtol = 10−5, atol = 10−7).

convergence is shown in Table 1. In the convergent phase, the damping factors approach

1 and finally κ < 1.

4. Results of numerical experiments

This section illustrates the use of BioPARKIN and PARKINcpp with actual models.

First, two models developed by the Computational Systems Biology group at Zuse

Institute Berlin are presented. Next, a third model was obtained from the BioModels

database, a website with curated SBML models [14]. And last but not least, a variant

of a EPO receptor model from the same database is taken, as it was already published

in [15]. All subsequent computations have been performed on an Intel Core 2 Dual CPU

(T7200 @ 2.0GHz). In addition, for comparison reason, all forward simulations have

been repeated by using COPASI [16]. Note that the stiff ODE solver LSODAR [17, 18]

is used in COPASI in contrast to LIMEX. In fact, it seems that, for the computation
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Figure 1. BovCycle: Computing times for the BovCycle model w.r.t. different

integrator tolerances. The cases BioPARKIN1 and BioPARKIN2 are interpolating

at exactly as many sample points as requested for the COPASIj (j = 1, 2) cases,

respectively, in addition to the adaptive time points. Note that these artificially

high numbers of sample points are unusual and absolutely unnecessary for trajectory

computations with BioPARKIN and that, for comparision reasons only, these numbers

have been applied here. Additionaly, BioPARKIN0 denotes the timings in case of no

interpolation at all.

of any model trajectories, the researcher is forced to supply an equidistant time grid in

COPASI. Thereby, the accuracy of the ODE solution, as set by the user in the values

atol and rtol, can easily be foiled in the sense that essential details of model trajectories

are simply neglegted in COPASI if the chosen equidistant time grid happens to be too

coarse. Note that this is surely not contradicting that the computed ODE solution,

at the given sample points, of course, is in fact within the requested accuracy and

that, even more surprisingly, the ODE solver LSODAR internally proceeds adaptively.

In contrast, simply avoiding all these problems, LIMEX integrates fully adaptive, and

Hermite interpolation of appropriate order is applied where necessary, strictly respecting

the requested accuracy. Moreover, the fully adaptive approach (i.e. its implementation

in BioPARKIN, at least) seems to be much more efficient, see Table 2 and Figures 1, 2.
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Figure 2. GynCycle: Computing times for the variational equation w.r.t. different

integrator tolerances. Note that BioPARKIN integrates the variational equation

system while COPASI takes finite differences for the computation.

4.1. GynCycle

Description of the model. GynCycle is a differential equation model that describes the

feedback mechanisms between a number of reproductive hormones and the development

of follicles and corpus luteum during the female menstrual cycle [19]. The model

correctly predicts hormonal changes following administration of single and multiple doses

of two different drugs.

BioPARKIN and the model. The model GynCycle is fairly large. It contains 33 species,

2 assignment rules, 114 parameters, and 54 reactions. The related benchmark timings

for a forward simulation run and sensitivity calculations can be found in Table 2.

Here, BioPARKIN served as a tool to explore the model and its parameter space.

Together with its predecessor POEM (an unreleased, in-house tool based on the same

numerical principles), it was able to develop and to fine-tune a highly descriptive and

predictive model for a complex human pathway that has direct relevance to real-world

applications.
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Figure 3. BovCycle: Trajectories of model simulation of selected species.

4.2. BovCycle

Description of the model. The model BovCyle is a mechanistic mathematical model

of the bovine estrous cycle that includes the processes of follicle and corpus luteum

development and the key hormones that interact to control these processes [20]. The

model generates a periodic solution without external stimuli, see Figure 3. The bovine

estrous cycle is subject of extensive research in animal sciences. Of particular interest

have been, for example, the examination of follicular wave patterns [21], as well as the

study of synchronization protocols [22].

BioPARKIN and the model. The BovCycle model consists of 15 species, 60 parameters,

and 28 reactions. Again, the benchmark timings are given in Table 2.

In this application, BioPARKIN enabled the researchers to successively improve

the model with each design iteration. Procedures such as parameter identification and



Parameter identification with BioPARKIN 15

0 20 40 60 80 100
Time [s]

−5

−4

−3

−2

−1

0

1

2

3
S
e
n
si

ti
v
it

y
 [

a
.u

.]

 Y (V3p) 
 X (V3p) 
 C (V3p) 
 Z (V3p) 
 M (V3p) 

Figure 4. BIOMD008: Sensitivity trajectories of the variational equation

w.r.t. parameter V3p.

sensitivity analysis proved to be absolutely essential within this context as they guide

design decisions by giving insight into hidden dependencies between parameters.

4.3. BIOMD008

Description of the model. The model with ID 008 in the BioModels database describes

the cell cycle control using a reversibly binding inhibitor.

BioPARKIN and the model. The model BIOMD008 comprises only 5 species, 21

parameters, and 13 reactions. The relevant benchmark timings for this model can also

be found in Table 2.

Albeit being small, nevertheless, the model is of the cell cycle type and, in

principle, exhibits a stable limit cyclic which is interesting by itself to look at sensitivity
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Figure 5. EpoRcptr: Sensitivity trajectories of measurement variable Y1.
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Figure 6. EpoRcptr: Sensitivity trajectories of measurement variable Y2.
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Figure 7. EpoRcptr: Sensitivity trajectories of measurement variable Y3.

trajectories, see e.g. Figure 4.

Parameter identification. Key questions of practical relevance in parameter identifica-

tion tasks are almost always how much data is sufficient and, even more importantly,

how much data is necessary to successfully identify the unknown parameters. We pro-

ceed as follows.

A specific parameter (V3p) is changed (from 0.3 to 1.0), and the goal is to

reconstruct the original parameter value. In a sequence of identification runs, each

of the five species is selected to be the only species for which data are available. As

data, we take the values of the selected species from the simulation run with the original

parameter set, at the time points chosen adaptively by LIMEX.

For three of the five species (M, Y, and Z), the original value of V3p is reconstructed

without any difficulties. The parameter identification, however, is not successful at all

if one of the other two species (C and X) is selected as data source.

Sensitivities. We examined the sensitivity w.r.t. parameter V3p. The sensitivity

overview for BIOMD008 results in a plot of the sensitivity trajectories of all species

over time (see Figure 4). Parameter V3p displays a cyclic sensitivity across all species.

It seems that a change in V3p influences the least the time course of species Y and Z

while it has more influence on species C, M, and X. We note that these observations,
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apparently, are in distinct contrast to the findings of the parameter identification task

just described.

4.4. EpoRcptr

Description of the model. A dynamical model for the endocytosis of the erythropoietin

receptor (EPO receptor) has been published in [15]. In fact, it is apparently a variant

of BIOMD271 of the database already mentioned above. The model is relatively small

as it consists of 7 species, 9 parameters, and 9 reactions. However, there exist groups of

functionally related parameters, that were identified by a statistical method in [15]. We

use this example to demonstrate that BioPARKIN handles saddle points in the unknown

parameter space correctly as opposed to, e.g., the Levenberg-Marquardt procedure that

is well-known to not be able to detect these stationary points adequately.

BioPARKIN and the model. The model EpoRcptr is even smaller than BIOMD008,

it contains 7 species, 9 parameters, and 9 reactions. The measurable values in this

model, Y1, Y2, Y3, are linear combinations of some species. In BioPARKIN, these are

added to the ODE system as algebraic equations, and thus forming a DAE system.

The integration routine LIMEX is capable of DAE systems up to order 1. Again, the

corresponding benchmark timings can be found in Table 2.

Parameter identification. The parameter set as given in [15] served as ,,true” values

of the model. With these values the three measurement variables Y1, Y2, Y3 have been

sampled by 10 equidistant points within the time interval [0, 100] each. To be realistic,

5% white, i.e. normal distributed, noise has been added to this data set.

For the identification run we took the time interval three times longer, 0 ≤ t ≤ 300,

and the true parameter values as initial guess for the iterative Gauss-Newton algorithm.

Since it is known that this point in parameter space lies on a lower dimensional manifold

[15], the point has the character of a saddle point. Indeed, identification runs of

BioPARKIN indicate just this: the higher xtol is chosen, the less iteration steps are

made, reporting the stop at stationary points (i.e. no reduction of the residual value)

with unreasonably high incompatibility factors. In addition, the initial parameter values

(the ,,true” values) are not recovered, but a different point on the parameter manifold is

identified (Table 3). This can clearly be concluded by studying the related correlation

matrix which contains in all cases a submatrix with entries near 1 or -1 only. In fact,

the parameters k4, k5, and k6 are thus connected by the correlation matrix, in total

agreement with the findings as given in [15].

Sensitivities. The sensitivity trajectories of the measurement variables Y1, Y2, and Y3

w.r.t. parameters k4, k5, k6 are depicted in Figures 5, 6, and 7, respectively. As it

can readily be seen, denser sampling of the measurement variables, especially for the
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Table 3. Parameter identification for model EpoRcptr.

Parameter True Value Reconstruction Std. Dev.

k1 8.0e-03 8.114e-03 ± 2.053e-03 =̂ 25.30 %

k2 5.0e-05 5.045e-05 ± 6.361e-06 =̂ 12.61 %

k3 1.0e-01 1.012e-01 ± 8.970e-03 =̂ 8.87 %

k4 2.5e-01 4.297e-01 ± 4.216e-03 =̂ 0.98 %

k5 1.5e-01 1.096e-01 ± 2.732e-02 =̂ 24.93 %

k6 7.5e-02 5.343e-02 ± 2.556e-02 =̂ 47.83 %

Requested identification accuracy has been xtol = 10−4. Gauss-Newton iteration

converged after 9 steps, with incompatibility factor κ = 0.04845.

Table 4. Parameter identification for model EpoRcptr using more data.

Parameter True Value Reconstruction Std. Dev.

k1 8.0e-03 8.136e-03 ± 4.847e-04 =̂ 5.96 %

k2 5.0e-05 4.956e-05 ± 1.702e-06 =̂ 3.44 %

k3 1.0e-01 1.016e-01 ± 2.707e-03 =̂ 2.67 %

k4 2.5e-01 2.546e-01 ± 1.215e-03 =̂ 0.48 %

k5 1.5e-01 1.465e-01 ± 5.637e-03 =̂ 3.85 %

k6 7.5e-02 7.201e-02 ± 2.443e-05 =̂ 0.03 %

Requested identification accuracy has been xtol = 10−4. Gauss-Newton iteration

stopped at stationary point after 11 steps, with incompatibility factor κ = 0.03227.

variables Y1 and Y3, at later times should resolve the ambiguous parameter manifold.

Indeed, a convenient numerical test nicely confirms this conjecture, see Table 4.

4.5. A noteworthy caveat

Key point, here, is that the sensitivity analysis is not always suitable to anticipate

which parameters are more likely to be identified than others. In fact, sensitivities

highly depend on the actual parameter set and, therefore, they are only meaningful at

the end of a successful identification run. Thus, it really should always be kept in mind

that the sensitivity results are merely meant as an exploratory a priori tool that might

aid the researcher to get a better understanding of the model.

5. Conclusion

Systems biology as a scientific research field is getting more attention, and is gaining

more practitioners around the world every year. With the increased size of the

community the importance of establishing standards becomes more pronounced. The

software package BioPARKIN presented here tries to inject long-standing mathematical

experience into this growing community. Ideally, this knowledge enables researchers to

generate meaningful and reliable results even faster.
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While the computing time is comparable with other available software tools,

BioPARKIN offers several unique features that are especially useful for biological

modelling, such as breakpoint handling, or identifiability statements. In particular,

the implemented affine covariant Gauss-Newton method provides information on the

compatibility between model and data, as well as on the uniqeness of a solution in case

of convergence. This is an important tool for model discrimination, when the “best”

model is to be selected from several alternative models which all explain the given data

equally well. Moreover, the Jacobian can be computed with prescribed accuracy by

solving the variational equation instead of using inaccurate numerical differentiation,

thus increasing the reliability of numerical results.
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