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Abstract—A basic task in signal analysis is to character-
ize data in a meaningful way for analysis and classification
purposes. Time-frequency transforms are powerful strategies
for signal decomposition, and important recent generalizations
have been achieved in the setting of frame theory. In parallel
recent developments, tools from algebraic topology, traditionally
developed in purely abstract settings, have provided new insights
in applications to data analysis. In this report, we investigate some
interactions of these tools, both theoretically and with numerical
experiments, in order to characterize signals and their frame
transforms. We explain basic concepts in persistent homology
as an important new subfield of computational topology, as well
as formulations of time-frequency analysis in frame theory. Our
objective is to use persistent homology for constructing topo-
logical signatures of signals in the context of frame theory. The
motivation is to design new classification and analysis methods by
combining the strength of frame theory as a fundamental signal
processing methodology, with persistent homology as a new tool
in data analysis.

I. INTRODUCTION

Modern developments in signal processing have triggered
important interactions between pure and applied mathematics.
A basic example is given by new advances in time-frequency
analysis and its generalizations to frame theory [2, 8], but
another recent and major development illustrating a rich in-
terplay between abstract ideas and practical applications is
persistent homology [1, 7], which in the last few years has be-
come an important subfield of computational topology. These
developments in persistent homology have been applied in
different situations, and particular results relevant in our setting
are recent results in sensor networks [10, 11]. This report
is a natural continuation of our previous work [12] which
introduced a strategy for integrating time-frequency analysis
with persistent homology. Our contribution now is to further
understand and improve these interactions by combining frame
theory with the stability of persistent homology.

The outline of this report is as follows. We begin with a
short overview of time-frequency analysis and frame theory,
with a particular focus on voice transformations and how
this setting is generalized in (continuous) frame theory by
considering analysis operators V : H → L2(X ). Here, X is a
locally compact group for the case of voice transformations,
and a locally compact Hausdorff space in frame theory.

We then shortly present elements of persistent homology
as a new important branch in data analysis which, given a
point cloud data X = {xi}mi=1, (or more generally, a family of
simplicial complexes K1 ⊂ K2 ⊂ · · · ⊂ Kr = X ) constructs
a diagram that encodes a topological features of X (resp.
X ). We then proof a property combining the basic stability
of persistent diagrams with frame theory, and illustrate this
concept with computational experiments.

II. TIME-FREQUENCY ANALYSIS AND FRAME THEORY

Given a Hilbert space H as, for instance, a functional
space of signals L2(R), the basic strategy in time-frequency
analysis is to segment a signal f ∈ H in smaller chunks
xb = fgb, for g a window function, and gb(t) = g(t − b).
This segmentation procedure is the basis of Gabor analysis
and the short term Fourier transform (STFT), and it allows to
locally analyze the frequency behavior of f and its evolution
in time. A generalization of this method can be described
using a locally compact group G acting in a Hilbert space H
(see [8]). This action is an irreducible and square integrable
group representation, π : G → U(H), defined as a group
homomorphism between G and U(H), the group of unitary
operators in H. The basic transformation that is constructed
with π is the analysis operator or the voice transform:

Vψ : H → L2(G), Vψ(f)(x) = 〈f, π(x)ψ〉,

which maps each f ∈ H to a square integrable function Vψf
that “unfolds” the content of f in the setting provided by G.
We remark that a fundamental property of V is to be a quasi
isometry, which allows to perform not only analysis but also
synthesis procedures.

A. Continuous and Discrete Frames

Despite the major role of the voice transform and its
group representation background, in some applications it is
too restrictive to assume the existence of a group G that
parametrizes the family of dictionary vectors {π(x)ψ}x∈G. An
important generalization of these procedures is frame theory
which considers a family of vectors {ψx}x∈X in a Hilbert
space H, where X is a locally compact Hausdorff space with
a positive Radon measure µ (see [9]). When X is finite or
discrete (e.g. X = N), we will consider a counting measure



µ, and the resulting concept will be a generalization of an
orthogonal basis, and it provides powerful mechanisms for the
analysis and synthesis of a signal f ∈ H.

The main property required by a frame {ψx}x∈X ⊂ H is
the stabilization of the analysis operator.

Definition 1. A set of vectors {ψx}x∈X ⊂ H in a Hilbert
space H is a frame, if

A||f ||2 ≤ ||V f ||2 ≤ B||f ||2, ∀f ∈ H

for 0 < A ≤ B <∞, the lower and upper frame bounds, and
V : H → L2(X ), (V f)(x) = 〈f, ψx〉 is the analysis operator.

Reducing the difference between A and B improves the
stability of V , and for the case of A = B, or A = B = 1,
the resulting frame is denominated tight frame and Parseval
frame, respectively. The corresponding synthesis operator V ∗ :
L2(X )→ V , with V ∗((ax)x∈X ) =

∫
X axψx dµ(x) is defined

with an adequate positive Radon measure µ, when X is a
locally compact Hausdorff space (see [9]). The maps V ∗ and
V are combined in the frame operator

S = V ∗V : H → H, Sf =

∫
X
〈f, ψx〉ψxdµ(x),

which plays an important role due to the fact that the operator
norm of S can be bounded by A and B, namely:

A ≤ ||S||op ≤ B. (1)

III. PERSISTENT HOMOLOGY

In order to shortly introduce the basic concepts in persistent
homology, we recall elementary ideas in simplicial homology.
One of the simplest homology theories available is simplicial
homology which translates topological data into an algebraic
formulation. The fundamental objective is to compute quali-
tative properties of a topological space X , as the number of
n-dimensional holes X has. The basic object to analyze is a
(finite) abstract simplicial complex K, defined as a nonempty
family of subsets of a vertex set V = {vi}mi=1 with {v} ∈ K if
v ∈ V , and if α ∈ K,β ⊆ α, then β ∈ K. We define faces (or
simplices) to be the elements of K, and their corresponding
dimension will be their cardinality minus one.

In order to compute the number of holes of a given simpli-
cial complex K, we translate its topological or combinatorial
properties in the language of linear algebra. There are three
basic steps in this procedure: first, we construct a family
of free groups Cn, the group of n-chains defined as the
formal combinations of k-dimensional faces with coefficients
in a given group (or rings and fields in more specific cases).
Secondly, we construct the boundary operators ∂n, defined as
homomorphisms (or more specifically linear maps) between
the group of k-chains Ck. The homomorphism maps a face
σ = [p0, · · · pn] ∈ Cn into Cn−1 by

∂nσ =

n∑
k=0

(−1)k[p0, · · · , pk−1, pk+1, · · · pn].

Finally, in the third step, we construct the homology groups
defined as the quotients Hk := ker(∂k)/im(∂k+1). The main

property is now the computation of the Betti numbers, which
represent the amount of k-dimensional holes, and it corre-
sponds to the rank of the homology groups, βk = rank(Hk).

The fundamental ideas of persistent homology have been
introduced at the end of the last century (see [6]) where the
estimation of topological properties of finite sets arises as an
important problem in many applications. An important sce-
nario is the analysis of a point cloud data X = {xi}mi=1 which
represents the challenging situation that no simplicial structure
is given a priori. The strategy is to consider special type
of simplicial complexes (e.g. Čech complexes, Vietoris Rips
complexes) arising by considering the set Rε(X), defined with
X as the vertex set, and setting the vertices σ = {x0, . . . , xk}
to span a k-simplex of Rε(X) if d(xi, xj) ≤ ε for all
xi, xj ∈ σ. The fundamental remark is to notice that for a finite
point cloud data X = {xi}mi=1 there is only a finite number
of simplicial complexes that fully characterize the family
{Rε(X)}ε>0. Namely, there is only a finite number of non-
homeomorphic simplicial complexes K1 ⊂ K2 ⊂ · · · ⊂ Kr

(a so called filtration) that fully describe the topology of the
sets {Rε(X)}ε>0. The power of persistent homology lies in
efficient algorithms that compute homology information for
the filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr.

Definition 2 (Persistent homology). A filtration is the basic
input of persistent homology, and it is defined for a topological
space X , as a family of non-homeomorphic simplicial com-
plexes K1 ⊂ K2 ⊂ · · · ⊂ Kr = X . We define a persistent
homology group (at the level n) of a filtration as the image
of a group homomorphisms f ijn : Hn(Ki) → Hn(Ki+j).
The maps f ijn are induced from the continuous inclusions
Ki ⊂ Kj by the functorial properties of homology. The images
of f ijn represent the homology classes born at i and still alive
at i + j. The rank of theses images βijn = rank(Imf ijn ) is
the persistent Betti number (at the homology level n). The
persistent diagram dgm(X ) (at the level n) of X is constructed
by associating the value βijn to the pairs (i, j), 1 ≤ i ≤ j ≤ r.

A. Stability Properties

We now present an important component in the persistent
homology toolbox denominated the stability of persistent dia-
grams [5]. In order to explain this concept, we first introduce
some preliminary notions.

Definition 3 (Homological critical values and tame functions).
Let X be a topological space, and α : X → R a continuous
function. A homological critical value (or HCV) is a number
a ∈ R for which the map induced by α

Hn(α
−1(]−∞, a− ε[))→ Hn(α

−1(]−∞, a+ ε[))

is not an isomorphism for all ε > 0. Remember that each
α−1(]−∞, a[) is a level sets of α, and it plays a crucial role
in Morse theory, as well as in our current setting. A tame
function is now defined to be a function α : X → R that has
only a finite number of HCV.



Typical examples of tame functions are Morse functions on
compact manifolds, and piecewise linear functions on finite
simplicial complexes [5].

Definition 4. For a tame function α : X → R, we define
its persistent diagram dgm(α) as the persistent diagram of
the filtration K1 ⊂ K2 ⊂ · · · ⊂ Kr = X where we define
Ki = f−1(]−∞, ai]), and a1 < a2 < · · · < ar are the critical
values of α (see [4]).

Definition 5 (Bottleneck and Hausdorff distances). For two
nonempty sets X,Y ⊂ R2 the Hausdorff distance and bottle-
neck distances are defined as

dH(X,Y ) = max
{
sup
x∈X

inf
y∈Y
||x− y||∞, sup

y∈Y
inf
x∈X
||y − x||∞

}
dB(X,Y ) = inf

γ
sup
x∈X
||x− γ(x)||∞,

where we consider all possible bijections γ : X → Y . Here,
we use ||p−q||∞ = max{|p1−q1|, |p2−q2|} for p, q ∈ R2. We
also remark the following inequality between these distances:
dH(X,Y ) ≤ dB(X,Y ) (see [5]).

Theorem 1 (Stability of persistent diagrams [3, 4, 5]). Let X
be a topological space with tame functions α, β : X → R.
Then, the following stability property holds:

dB(dgm(α), dgm(β)) ≤ ||α− β||∞. (2)

IV. FRAMES ANALYSIS AND PERSISTENT HOMOLOGY

Our objective is now to combine the core concepts in
frame theory with persistent diagrams in order to combine
the strength and features of these different analysis tools. Our
theorem provides stability properties of persistent diagrams of
frame transforms |V f |, when considering a frame decompo-
sition V f ∈ L2(X ). We assume the frame parametrization
space X to have a counting measure, which is anyway the
case when considering discrete structures for applications.

Theorem 2. Let f, g ∈ H and |V f |, |V g| tame functions with
V : H → L2(X ) a frame analysis operator with upper bound
B. We consider a discrete topological space X with a counting
measure. Then, the following stability property holds:

dB(dgm(|V f |), dgm(|V g|)) ≤
√
B||f − g||H.

Proof: This is a consequence of the inequality (1) (the
bounding of the norm of the frame operator) and the stability
of the persistent diagrams described in the inequality (2):

dB(dgm(|V f |), dgm(|V g|))
≤ || |V f | − |V g| ||∞
≤ ||V f − V g||2
≤ ||V || ||f − g||H
=
√
||V ∗V ||||f − g||H

=
√
||S|| ||f − g||H

≤
√
B||f − g||H,

where we use ||V ||2 = ||V ∗V ||.

This proposition is an initial step towards the integration of
frame theory and persistent stability. We remark that important
developments have been achieved in generalizing the work in
[5], and the inequality (2), by avoiding the restrictions imposed
by the functional setting and expressing the stability in a purely
algebraic language (see [1, 3, 4]). The usage of these more
flexible and general stability properties is a natural future step
in our program.

A. Experiments

We now experiment with acoustic signals the interaction
between the components in our framework (frame transforma-
tions and persistent diagrams). A main objective is to study
both the stability and the discriminative power of persistent
diagrams in the setting of frame theory. We consider two
signals f0 and f1 together with a process transforming f0 into
f1 encoded with a family of signals {ft}0≤t≤1 defined as:

ft = (1− t)f0 + tf1, t ∈ [0, 1].

a) Signal f0 b) Signal f1

c) |V f0|: STFT of f0 d) |V f1|: STFT of f1

e) dgm(|V f0|) f) dgm(|V f1|)
Fig. 1. Time-frequency plots and discriminative properties of persistence

In Fig. 1 (a) and Fig. 1 (b), the plots of f0 and f1 are
shown, and they represent a female speech recording and
a castanet signal respectively. In Fig. 1(c) and Fig. 1(d)
the corresponding spectrograms (STFT) |V f0| and |V f1| are
displayed, indicating different frequency characteristics. Here,



the horizontal axis refers to the time domain, and the vertical
axis corresponds to the frequency domain. The case of the
speech signal f0 presents a mixture of harmonic and transitory
effects originated by vocal and consonants features of a speech
signal. In the case of the castanets signal f1, a sequence
of transients are displayed indicating the complex frequency
behavior of the rapid series of clicks.

The spectrograms |V f0| and |V f1| are then fed to a per-
sistent homology algorithm by considering its level sets as
indicated in Definitions 3 and 4. We use a Morse-theory based
algorithm that analyzes a quantized version of an input func-
tion, and feeds the resulting level sets to an efficient persistent
homology implementation, see [13]. In our persistent diagrams
of Fig. 1(e) and Fig. 1(f), we have selected only the 30 most
prominent 1-dimensional homological structures, displayed by
the 30 dots with the largest distance to the diagonal in the
persistent diagram. We are therefore not considering topolog-
ical unstable (noisy) components represented by dots, or 1-
homology features, located in closer regions to the diagonal in
Figures 1(e) and 1(f). These persistent diagrams are homolog-
ical fingerprints characterizing the shape of the corresponding
spectrograms. Notice that these homological structures are
clearly identifying and discriminating these spectrograms us-
ing a limited set of homological components. This description
represents a new type of topological characterization of time-
frequency data.

As indicated in Theorem 2, the persistent diagram
dgm(|V f |) has the crucial property to be robust with respect
to perturbations of the signal f . This important feature can
be used to illustrate the discriminative power of persistent
homology by studying the distances between persistent dia-
grams dgm(|V f0|) and dgm(|V ft|), for t ∈ [0, 1]. In Fig. 2,
we display the function d(t) := dH(dgm(|V f0|), dgm(|V ft|))
using the Hausdorff distance, whose implementation is simpler
and it does not interfere with the stabilty property, due to the
inequality dH(X,Y ) ≤ dB(X,Y ) (see Definition 5). Notice
that when the parameter t increases from 0 to 1, the Haus-
dorff distance between dgm(|V f0|) and dgm(|V ft|) increases,
which indeed resonates with the discriminative properties of
persistent homology in the setting of frame analysis.

Fig. 2. d(t) := dH(dgm(|V f0|), dgm(|V ft|)), t ∈ [0, 1]
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and the Heisenberg group: Gabor expansions and short
time Fourier transform from the group theoretical point
of view. In Wavelets: a tutorial in theory and applica-
tions, volume 2 of Wavelet Anal. Appl., pages 359–397.
Academic Press, Boston, 1992.

[9] M. Fornasier and H. Rauhut. Continuous frames, function
spaces, and the discretization problem. J. of Fourier Anal
and Appl., 11(3):245–287, 2005.

[10] R. Ghrist and V. de Silva. Coverage in sensor networks
via persistent homology. Algebr. Geom. Topol., 7:339–
358, 2007.

[11] R. Ghrist and V. de Silva. Homological sensor networks.
Notices Amer. Math. Soc, 54(1):10–17, 2007.

[12] M. Guillemard and A. Iske. Signal filtering and persistent
homology: an illustrative example. In Proc. Sampling
Theory and Applications (SampTA’11), 2011.

[13] K. Mischaikow and V. Nanda. Morse theory for filtra-
tions and efficient computation of persistent homology.
Discrete Comput. Geom., to appear.


