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Abstract. We derive a formula for the backward error of a complex number λ when considered
as an approximate eigenvalue of a Hermitian matrix pencil or polynomial with respect to Hermit-
ian perturbations. The same are also obtained for approximate eigenvalues of matrix pencils and
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1. Introduction. We study the perturbation theory of the polynomial eigen-
value problem λkAkx + · · · + λA1x + A0x = 0, where A0, . . . , Ak are complex n × n
matrices that carry a symmetry structure. In particular, we are interested in solving
the following problem.

Problem 1.1. Let P (z) = zkAk + · · ·+ zA1 +A0 be a structured matrix polyno-
mial with A0, . . . , Ak ∈ Cn×n. Given a value λ ∈ C, what is the smallest perturbation
(∆0, . . . ,∆k) from some perturbation set S ⊆ (Cn×n)k+1 so that λ becomes an eigen-

value of P̃ (z) = zk(Ak −∆k) + · · ·+ z(A1 −∆1) + (A0 −∆0)?
The notion structured refers to a symmetry structure in the coefficients of the ma-

trix polynomial as it can be found in Hermitian, alternating, or palindromic matrix
polynomials. Typically, the perturbation set S ⊆ (Cn×n)k+1 is then chosen in such
a way that the perturbed polynomial has the same structure as the original polyno-
mial P (z). The term smallest is understood with respect to some weighted norm on
(Cn×n)k+1 that is related to the spectral norm on Cn×n. The norm of the smallest
perturbation (∆0, . . . ,∆k) in Problem 1.1 can then be interpreted as the backward
error of the value λ as an approximate eigenvalue of the polynomial P (z).

The matrix polynomial P (z) is called Hermitian if P (z)∗ :=
∑k
j=0 zjA

∗
j = P (z),

where A∗ denotes the complex conjugate transpose of a matrix A. Equivalently, if all
coefficient matrices are Hermitian, then P (z) is a Hermitian matrix polynomial. Such
polynomials occur in many applications like structural mechanics, fluid mechanics,
signal processing, etc., see [36] and the references therein. A structure-preserving
linearization of Hermitian matrix polynomials leads to Hermitian pencils [14], thus
making the case k = 1 an important special case. Other important classes of structure
matrix polynomials are ∗-even or ∗-odd polynomials which satisfy P (z)∗ = P (−z) or
P (z)∗ = −P (−z), respectively. Since the coefficient matrices alternate between Her-
mitian and skew-Hermitian matrices, the hypernym ∗-alternating matrix polynomials
has been introduced in [26]. Important applications for ∗-even matrix polynomi-
als are linear-quadratic optimal control theory [25, 29] and gyroscopic systems [24].
The discrete optimal control problem or the computation of the Crawford number of
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Hermitian pencils leads to ∗-palindromic matrix polynomials, see [15, 27], which are
characterized by the identities A∗j = Ak−j for j = 0, . . . , k.

As noted in [1] “backward perturbation analysis and condition numbers play an
important role in the accuracy assessment of computed solutions of eigenvalue prob-
lems”. If eigenvalue problems with additional symmetry structures are considered
then the use of structure-preserving algorithms is advisable, because in this way ex-
isting symmetries in the spectrum are preserved even under roundoff errors. On the
other hand, the use of general methods that do not consider the special structure
of the problem may produce physically meaningless results [36]. Finally, it is well
known that the perturbation theory may be fundamentally different when general
versus structured methods are compared. For example, there exist systems with
Hamiltonian matrices that are unstable when general perturbations are applied, but
stable under Hamiltonian perturbations, see [31, Example 3.5].

Therefore, there has been strong interest in the sensitivity analysis of eigenvalues
and eigenpairs of structured eigenvalue problems, see, e.g., [1, 2, 3, 13, 22, 23, 35]. In
particular, formulas for structured backward errors for eigenpairs of structured matrix
pencils and polynomials have been developed in [1, 2]. However, there is also need for
structured backward errors for eigenvalues of structured matrix polynomials. Indeed,
if one is only interested in computing the eigenvalues of a matrix polynomial, but
not in the eigenvectors or invariant subspaces, then the corresponding error analysis
should take this into account. On the other hand, structured backward errors of
eigenvalues play an important role in the solution of distance problems. For example,
a formula for the structured backward error for eigenvalues of Hamiltonian matrices
was developed and used for the solution of the problem of distance to bounded realness
of Hamiltonian matrices in [4]. This distance has applications in the passivation of
linear time-invariant control systems.

While the unstructured backward errors for eigenvalues of matrix pencils and
polynomials can be easily obtained from the formulas for backward errors of eigenpairs
developed in [3] by minimization over all nonzero vectors, this approach seems not to
be as easy in the case of structured backward errors. Therefore, we will instead follow
the strategy suggested in [21] which uses an approach via minimization problems of
the maximal eigenvalues of a parameter-depending Hermitian matrix.

The main focus of this paper is on Hermitian matrix polynomials, because many
other cases of structure matrix polynomials and pencils can be reduced to the Her-
mitian case. Indeed, if P (z) is a skew-Hermitian or ∗-alternating matrix polynomial,
then one may instead consider the Hermitian polynomials iP (z), or P (iz) and iP (iz),
respectively. Also, some matrix polynomials with coefficient matrices from Lie and
Jordan algebras associated with an indefinite inner product can be reduced to the
Hermitian case. For example, eigenvalue problems with an underlying matrix pen-
cil that is skew-Hamiltonian/Hamiltonian, (see [7, 30]), satisfy (JA1)∗ = JA1 and
(JA2)∗ = −JA2, where n = 2m is even and

J =

[
0 Im
−Im 0

]
.

It immediately follows from the definition that the skew-Hamiltonian/Hamiltonian

pencil L(z) = A1+zA2 is equivalent to the ∗-even pencil L̃(z) = JA1+zJA2. Since the

matrix J is unitary, the backward errors for the pencils L(z) and L̃(z) will be identical
if unitarily invariant norms like the spectral norm are considered. These observations
do not hold for the ∗-palindromic case, though. Here, additional arguments are needed
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and therefore, the investigation of backward errors of palindromic polynomials is
referred to a subsequent paper.

This paper is organized a follows. In Section 2, we introduce definitions and
establish preliminary results that provide a setting for the main results of the paper.
An outline of the technique for deriving the formulas for the structured backward
error is also provided in this section. The minimization of the largest eigenvalue of an
affine combination of Hermitian matrices over several real parameters plays a key role
in finding the formulas for the structured backward error. This problem is discussed
in detail in Section 3. The formulas for the structured backward error of a complex
number λ are given in Section 4 for Hermitian matrix polynomials. These formulas
are extended to the case of the skew-Hermitian, ∗-even and ∗-odd matrix polynomials
in Section 5. In Section 6, the techniques for deriving the backward error formulas are
further extended to the case of perturbations that do not affect all the coefficients of
the original polynomial. Finally, in Section 7, we present some numerical experiments
that illustrate the main results of the paper and highlight the different effects of
structure preserving and arbitrary perturbations on the eigenvalues of the structured
matrix polynomials under consideration.

Notation: The notations Herm(n) and SHerm(n), denote the sets of Hermitian
and skew-Hermitian matrices of size n×n respectively. Given a Hermitian matrix H,
λmax(H) denotes the largest eigenvalue of H.

2. Preliminaries. In order to measure perturbations of matrix polynomials in
a flexible way, we introduce a norm on (Cn×n)k+1 associated with a weight vector
w ∈ Rk+1.

Definition 2.1. Let ‖ · ‖ be the spectral norm and let w = (w0, . . . , wk) ∈ Rk+1,
where w0, . . . , wk > 0.

1) w is called a weight vector and its entries wj are called weights.
2) The reciprocal weight vector of w is defined as w−1 := (w−10 , . . . , w−1k ).
3) For a tuple of matrices ∆0, . . . ,∆k ∈ Cn×n, we define

‖(∆0, . . . ,∆k)‖w :=
√
w2

0‖∆0‖2 + · · ·+ w2
k‖∆k‖2. (2.1)

Definition 2.2. Let P (z) = zkAk + · · · + zA1 + A0 be a matrix polynomial,
where A0, . . . , Ak ∈ Cn×n and let λ ∈ C. Furthermore, let w = (w0, . . . , wk) ∈ Rk+1

be a weight vector and let S ⊆ (Cn×n)k+1. Then we call

ηSw(P, λ) :=inf
{
‖(∆0, . . . ,∆k)‖w

∣∣∣ det
( k∑
j=0

λj(Aj −∆j)
)

= 0, (∆0, . . . ,∆k) ∈ S
}

the structured backward error of λ with respect to P , S and w.
Thus, ηSw(P, λ) is the norm of the smallest perturbation from S so that λ becomes

an eigenvalue of the perturbed matrix polynomial P̃ (z) :=
∑k
j=0 z

j(Aj−∆j). Clearly,

we have ηSw(P, λ) = 0 if the matrix P (λ) ∈ Cn×n is singular, i.e., if λ is already an
eigenvalue of P (z). So, in the following we may assume that P (λ) is nonsingular.

Remark 2.3. If (A0, . . . , Ak) ∈ S then we have

ηSw(P, λ) ≤ ‖(A0, . . . , Ak)‖w <∞,

because the perturbation with the tuple (A0, . . . , Ak) results in the zero polynomial.
Observe that ‖ · ‖w is a norm on (Cn×n)k+1. The weights can be used to balance

the importance of perturbations of individual coefficients. Sometimes, zero weights are
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allowed in the literature with the convention that only perturbations are considered
that change only coefficients associated with nonzero weights. We will treat this case
differently in Section 6 by restricting our perturbation class S accordingly.

Following the strategy used in [21] for computing structured backward errors of
structured matrices, we will first reformulate the determinant equation in the def-
inition of ηSw(P, λ) in terms of a mapping problem. This is done in the following
lemma.

Lemma 2.4. Let A0, . . . , Ak,∆0, . . . ,∆k ∈ Cn×n and λ ∈ C be such that P (λ) :=∑k
j=0 λ

jAj is nonsingular. Furthermore, denote M := P (λ)−1. Then the following
statements are equivalent.

(a) det
( k∑
j=0

λj(Aj −∆j)
)

= 0.

(b) There exist vectors v0, . . . , vk ∈ Cn satisfying
∑k
j=0 λ

jvj 6= 0 such that

vj = ∆jM(λkvk + · · ·+ λv1 + v0), for j = 0, . . . , k.

Proof. Denote P̃ (λ) :=
∑k
j=0 λ

j(Aj −∆j).

(a) ⇒ (b): If (a) holds then there exists x 6= 0 such that P̃ (λ)x = 0. Let vj = ∆j x
for j = 0, . . . , k. Then we have

P (λ)x = P (λ)x− P̃ (λ)x =

k∑
j=0

λj∆j x =

k∑
j=0

λjvj =: vλ. (2.2)

We have vλ 6= 0 because P (λ) = M−1 is nonsingular by assumption. On multi-
plying (2.2) from the left with ∆jM we obtain the identities vj = ∆jM(vλ) for
j = 0, . . . , k.

(b) ⇒ (a): Suppose that (b) holds and set vλ :=
∑k
j=0 λ

jvj . Then

P̃ (λ)Mvλ =
(
P (λ)−

k∑
j=0

λj∆j

)
Mvλ = vλ −

k∑
j=0

λj∆jMvλ = 0,

because ∆jMvλ = vj for j = 0, . . . , k. Since Mvλ 6= 0, this implies (a).
Corollary 2.5. Let A0, . . . , Ak,∆0, . . . ,∆k ∈ Cn×n, S ⊆ (Cn×n)k+1, and λ ∈ C

be such that P (λ) :=
∑k
j=0 λ

jAj is nonsingular. Furthermore, denote M := P (λ)−1.
Then

ηSw(P, λ) = inf
{
‖(∆0, . . . ,∆k)‖w

∣∣∣ (∆0, . . . ,∆k) ∈ S, ∃v0, . . . , vk ∈ Cn :

vλ :=

k∑
j=0

λjvj 6= 0, vj = ∆jMvλ, j = 0, . . . , k
}
.

Since the matrices ∆0, . . . ,∆k are Hermitian in our particular problem, we are
lead to the following Hermitian mapping problems:
Under which conditions on v0, . . . , vk do there exist Hermitian matrices ∆j ∈ Herm(n)
such that the identities

vj = ∆jMvλ, j = 0, . . . , k (2.3)
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are satisfied?

These mapping problems can be condensed into the following general Hermitian
mapping problem:

Under which conditions on vectors x, y ∈ Cn does there exists a Hermitian matrix
H ∈ Cn×n satisfying Hx = y ?

The answer to this problem is well known, see, e.g., [28] where solutions that are
minimal with respect to the spectral or Frobenius norm are also characterized. We
also refer to [20] and [33] for the more general problem of the existence of a Hermitian
H ∈ Cn×n such that HX = Y for two matrices X,Y ∈ Cn×m. For convenience,
we state the answer to our Hermitian mapping problem in terms that allow a direct
application in this paper, and for the sake of completeness we also provide a proof.

Theorem 2.6. Let x, y ∈ Cn, x 6= 0. Then there exists a Hermitian matrix
H ∈ Herm(n) such that Hx = y if and only if Im (x∗y) = 0. If the latter condition is
satisfied then

min
{
‖H‖

∣∣ H ∈ Herm(n), Hx = y
}

=
‖y‖
‖x‖

and the minimum is attained for

H0 =
‖y‖
‖x‖

[
y
‖y‖

x
‖x‖

] [ y∗x
‖x‖ ‖y‖ 1

1 x∗y
‖x‖ ‖y‖

]−1 [
y
‖y‖

x
‖x‖

]∗
. (2.4)

if x and y are linearly independent and for H0 = yx∗

x∗x otherwise.

Proof. The identity Hx = y immediately implies Im (x∗y) = Im (x∗Hx) = 0,
because H is Hermitian, and

‖H‖ ≥ ‖y‖/‖x‖ =: c.

In particular, this proves the “only if”-part of the statement of the theorem.

Conversely, let Im (x∗y) = 0. Suppose first that x and y are linearly independent.
Then H0 given as in (2.4) is well defined and Hermitian, and we immediately obtain

H0

[
x
‖x‖

y
‖y‖

]
=
‖y‖
‖x‖

[
y
‖y‖

x
‖x‖

]
which implies H0x = y and H0y = c2x. Thus, y±cx are eigenvectors of H0 associated
with the eigenvalues ±c, respectively, which implies ‖H0‖ = c.

On the other hand, if x and y are linearly dependent, then y = αx with α ∈ R,
and the matrix H0 = αxx∗/‖x‖2 is Hermitian and satisfies H0x = y and since H0 has
rank 2, ‖H0‖ = c.

Before we derive formulas for the structured backward error of eigenvalues of
Hermitian matrix polynomials of arbitrary degree, let us consider the pencil case
k = 1 in order to illustrate the main ideas. Thus, for the moment, we assume P (z) =
zA1+A0 and for simplicity let us consider the norm (2.1) with weight vector w = (1, 1).
In view of Corollary 2.5, we need to find vectors v0, v1 ∈ Cn with vλ := λv1 + v0 6= 0
and matrices ∆0,∆1 ∈ Herm(n) of minimal norm such that

v0 = ∆0Mvλ and v1 = ∆1Mvλ, (2.5)
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where M := P (λ)−1. By Theorem 2.6 the minimal norm ‖(∆0,∆1)‖w for a fixed pair
(v0, v1) is then given by

‖(∆0,∆1)‖2w = ‖∆0‖2 + ‖∆1‖2 =
‖v0‖2

‖Mvλ‖2
+
‖v1‖2

‖Mvλ‖2
=
‖v0‖2 + ‖v1‖2

‖M(λv1 + v0)‖2

Setting

v :=

[
v0
v1

]
, and G :=

[
M∗M λM∗M
λ̄M∗M |λ|2M∗M

]
,

we obtain using ‖M(λv1 + v0)‖2 = (λ̄v∗1 + v∗0)M∗M(λv1 + v0) that

‖(∆0,∆1)‖2w =
‖v0‖2 + ‖v1‖2

‖M(λv1 + v0)‖2
=

v∗v

v∗
[

M∗M λM∗M
λ̄M∗M |λ|2M∗M

]
v

=
v∗v

v∗Gv
(2.6)

which is just the reciprocal of the Rayleigh quotient of v with respect to the Hermitian
matrix G. Since this quantity is just minimal in norm for a fixed pair (v0, v1), we have
now to minimize (2.6) over all admissible pairs (v0, v1), i.e., all pairs for which there
exists ∆j ∈ Herm(n), j = 0, 1 such that (2.5) is satisfied. By Theorem 2.6 those are
exactly the pairs (v0, v1) satisfying Im

(
v∗0M(v0 + λv1)

)
= 0 = Im

(
v∗1M(v0 + λv1)

)
and λv1 + v0 6= 0. Setting

H0 := i

[
M −M∗ λM
−λ̄M∗ 0

]
and H1 := i

[
0 −M∗
M λM − λ̄M∗

]
these identities can be reformulated as

0 = −2 Im
(
v∗0M(v0 + λv1)

)
= i
(
v∗0M(v0 + λv1)− (M(v0 + λv1))∗v0

)
= i

([
v0
v1

]∗ [
M λM
0 0

] [
v0
v1

]
−
[
v0
v1

]∗ [
M∗ 0
λ̄M∗ 0

] [
v0
v1

])
= v∗H0v, (2.7)

and

0 = −2 Im
(
v∗1M(v0 + λv1)

)
= i
(
v∗1M(v0 + λv1)− (M(v0 + λv1))∗v1

)
= i

([
v0
v1

]∗ [
0 0
M λM

] [
v0
v1

]
−
[
v0
v1

]∗ [
0 M∗

0 λ̄M∗

] [
v0
v1

])
= v∗H1v, (2.8)

Observe that v∗Gv = ‖M(λv1+v0)‖2 6= 0 if and only if λv1+v0 6= 0. Thus, we obtain

from Corollary 2.5 that for S = Herm(n)
2

we have

ηSw(P, λ)2 = inf
{
‖(∆0,∆1)‖2w

∣∣∣∆j ∈ Herm(n), ∃v0, v1 ∈ Cn : λ v1 + v0 6= 0,

vj = ∆jM(λ v1 + v0), j = 0, 1
}

= inf

{
v∗v

v∗Gv

∣∣∣∣ v ∈ C2n, v∗Gv 6= 0, v∗H0v = 0, v∗H1v = 0

}
=

(
sup

{
v∗Gv

v∗v

∣∣∣∣ v ∈ C2n \ {0}, v∗H0v = 0, v∗H1v = 0

})−1
. (2.9)
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Note that in the latter identity the condition v∗Gv 6= 0 could be dropped, because
ηSw(P, λ) is finite which implies that the supremum in (2.9) will be positive. There-
fore including vectors v satisfying v∗Gv = 0 will not change the supremum of the
considered set.

From these observations, we see that the structured backward error ηSw(P, λ) can
be computed by maximizing a Rayleigh quotient under two constraints. Since for
Hermitian matrices the maximum of the Rayleigh quotient is equal to the maximal
eigenvalue, the idea is to introduce Lagrange parameters t0 and t1 and minimize the
function

L : R2 → R, (t0, t1) 7→ λmax(G+ t0H0 + t1H1). (2.10)

In the next section, we will show in a more general setting that under adequate
conditions on G,H0 and H1 the supremum in (2.9) coincides with the global minimum
of L.

3. Minimizing the maximal eigenvalue of a Hermitian matrix function.
As seen in the previous section for the example of Hermitian pencils, we will find out
in Section 4 that the computation of the structured backward error of eigenvalues of
Hermitian matrix polynomials of degree k will lead to a minimization problem of a
function of the form

L : Rk+1 → R, (t0, . . . , tk) 7→ λmax(G+ t0H0 + · · ·+ tkHk)

for some Hermitian matrices G,H0, . . . ,Hk ∈ Cn×n. In order to analyze the ex-
trema of L, we first need information on the partial differentiability of these kinds of
functions. To this end, the following theorem provides useful information.

Theorem 3.1. Let G,H ∈ Cn×n be Hermitian and let the map L : R → R be
given by L(t) = λmax(G + tH). Let the columns of the isometric matrix U ∈ Cn,m
form an (orthonormal) basis of the eigenspace of the eigenvalue λmax(G) of G. Then
the left and right directional derivatives of L in t0 = 0 exists and we have

d

dt
L(0)+ := lim

ε→0
ε>0

λmax(G+ εH)− λmax(G)

ε
= λmax(U∗HU)

d

dt
L(0)− := lim

ε→0
ε>0

λmax(G− εH)− λmax(G)

−ε
= λmin(U∗HU).

If, in particular, m = 1, then L is differentiable in t = 0, u := U ∈ Cn \ {0}, and

d

dt
L(0) = λmax(U∗HU) = u∗Hu.

For a proof of the above result, see [6, page 149] or [32]. With these preparations,
we are able to state and prove the main result of this section.

Theorem 3.2. Let G,H0, . . . ,Hk ∈ Cn×n be Hermitian matrices. Assume that
any nonzero linear combination α0H0 + · · · + αkHk, (α0, . . . , αk) ∈ Rk+1 \ {0} is
indefinite. (Here, “indefinite” is used in the sense “strictly not semi-definite” as
opposed to “not necessarily definite” as it is used in [9].) Then the following statements
hold:

(1) The function L : Rk+1 → R, (t0, . . . , tk) 7→ λmax(G + t0H0 + · · · + tkHk) is
convex and has a global minimum

λ∗max = min
t0,...,tk∈R

L(t0, . . . , tk)
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(2) If the minimum λ∗max of L is attained at (t∗0, . . . , t
∗
k) ∈ Rk+1 and is a simple

eigenvalue of H∗ := G + t∗0H0 + · · ·+ t∗kHk, then there exists an eigenvector
u ∈ Cn \ {0} of H∗ associated with λ∗max satisfying

u∗Hju = 0 for j = 0, . . . , k. (3.1)

(3) Under the assumptions of (2) we have

sup

{
u∗Gu

u∗u

∣∣∣∣u 6= 0, u∗Hju = 0, j = 0, . . . , k

}
= λ∗max. (3.2)

In particular, the supremum of the left hand side of (3.2) is a maximum and
attained for the eigenvector u from (2).

Proof. (1) The convexity of L is straightforward to check. Concerning the proof
that L has a global minimum, we will show that there exists a constant % > 0 such
that for all (t0, . . . , tk) with t20 + · · · + t2k > %2 we have L(t0, . . . , tk) ≥ L(0, . . . , 0).
Since the closed ball

B% := {(t0, . . . , tk) ∈ Rk+1 | t20 + · · ·+ t2k ≤ %2}

with center in the origin and radius % is compact and since L is continuous as eigen-
values depend continuously on the entries of a matrix, L has a global minimum
λ∗max ≤ L(0, . . . , 0) on B%. By construction we then have λ∗max ≤ L(t0, . . . , tk) for
all (t0, . . . , tk) ∈ Rk+1, i.e., λ∗max is the global minimum of L. Thus, define

c := inf
{
λmax(α0H0 + · · ·+ αkHk)

∣∣ (α0, . . . , αk) ∈ Rk+1, α2
0 + · · ·+ α2

k = 1
}
.

Then c ≥ 0, because by hypothesis the matrix α0H0 + · · ·+ αkHk is indefinite for all
(α0, . . . , αk) ∈ Rk+1 with α2

0 + · · · + α2
k = 1, i.e., it always has positive eigenvalues.

Since the function f : (α0, . . . , αk) 7→ λmax(α0H0 + · · ·+ αkHk) is continuous (again
using the well known fact that eigenvalues depend continuously on the entries of a
matrix), the infimum c is attained, because of the compactness of the unit sphere in
Rk+1. This implies c > 0, because the function f only takes positive values on the
unit sphere. Next, define

% :=
λmax(G)− λmin(G)

c
≥ 0.

Let (t0, . . . , tk) ∈ Rk+1 and r ≥ % so that t20 + · · ·+ t2k = r2 ≥ %2. Using the fact that
for two Hermitian matrices A,B ∈ Cn×n we have λmax(A+B) ≥ λmax(A) +λmin(B),
(see [17]), we obtain

L(t0, . . . , tk) = λmax(G+ t0H0 + · · ·+ tkHk) ≥ λmax

(
t0H0 + · · ·+ tkHk) + λmin(G)

= r · λmax

(
t0
r
H0 + · · ·+ tk

r
Hk

)
+ λmin(G)

≥ % · c+ λmin(G) = λmax(G) = L(0, . . . , 0),

This finishes the proof of (1).
(2) By step (1), the minimum λ∗max of L exists and by assumption it is attained

at some point (t∗0, . . . , t
∗
k) ∈ Rk+1 and is a simple eigenvalue of the corresponding

matrix G+ t∗0H0 + · · ·+ t∗kHk. Then, it follows from Theorem 3.1 that L is partially
differentiable in (t∗0, . . . , t

∗
k) and

∂L

∂tj
(t∗0, . . . , t

∗
k) = u∗Hj u, j = 0, . . . , k,

8



where u is an eigenvector of G + t∗0H0 + · · · + t∗kHk associated with λ∗max satisfying
‖u‖ = 1. Since λ∗max is the global minimum of L, this immediately implies u∗Hju = 0
for j = 0, . . . , k.

(3) Let s∗ denote the left hand side of (3.2). We show s∗ = λ∗max

“≥”: By (2), there exists an eigenvector u ∈ Cn \ {0} of G + t∗0H0 + · · · + t∗kHk

associated with λ∗max satisfying u∗Hju = 0 for j = 0, . . . , k. Thus, we obtain

λ∗max =
u∗(G+ t∗0H0 + · · ·+ t∗kHk)u

u∗u
=
u∗Gu

u∗u

which implies that s∗ ≥ λ∗max.
“≤”: Let be u ∈ C2n \ {0} be an arbitrary vector satisfying u∗Hj u = 0 for

j = 0, . . . , k. (By “≥” there do exists such vectors.) Then we obtain

u∗Gu

u∗u
=
u∗(G+ t∗0H0 + · · ·+ t∗kHk)u

u∗u
≤ λmax(G+ t∗0H0 + · · ·+ t∗kHk) = λ∗max.

Since u was arbitrary, this implies s∗ ≤ λ∗max. This completes the proof.
Remark 3.3. We highlight that the applicability of Theorem 3.2 relies heavily

on the fact that the eigenvalue λ∗max is a simple eigenvalue. This need not be the case
as the following example shows.

Example 3.4. Consider the Hermitian 2× 2 matrices G = 0 and

H0 =

[
1 0
0 −1

]
and H1 =

[
0 1
1 0

]
.

Then for t0, t1 ∈ R, the matrix

H(t0, t1) = G+ t0H0 + t1H1 =

[
t0 t1
t1 −t0

]
has the eigenvalues ±

√
t20 + t21 which implies in particular that any nonzero linear

combination α0H0 + α1H1 is indefinite. Moreover, the function L : R2 → R given by
L(t0, t1) = λmax

(
H(t0, t1)

)
has its minimum in (t∗0, t

∗
1) = (0, 0) with value λ∗max = 0

which happens to be a double eigenvalue of the zero matrix H(0, 0). Nevertheless, the

vector u =
[

1 i
]>

is an eigenvector of H(0, 0) associated with λ∗max = 0 satisfying
u∗H0u = 0 = u∗H1u.

Example 3.4 suggests that the statement (2) of Theorem 3.2 may still be true
even without the hypothesis of λ∗max being a simple eigenvalue. The next theorem
shows that in the case of the pencils where k = 1, this is indeed always the case.

Theorem 3.5. Let G,H0, H1 ∈ Cn×n be Hermitian matrices. Assume that any
linear combination α0H0 + α1H1, (α0, α1) ∈ R2 \ {0} is indefinite in the sense of
Theorem 3.2. Then the following statements hold:

(1) The function L : R2 → R given by L(t0, t1) := λmax(G + t0H0 + t1H1) is
convex and has a global minimum λ∗max.

(2) If the minimum λ∗max of L is attained at (t∗0, t
∗
1) ∈ R2, then there exists an

eigenvector u ∈ Cn \ {0} of G+ t∗0H0 + t∗1H1 associated with λ∗max satisfying

u∗H0u = 0 = u∗H1u. (3.3)

(3) We have

sup

{
u∗Gu

u∗u

∣∣∣∣u 6= 0, u∗H0u = 0, u∗H1u = 0

}
= min
t0,t1∈R

L(t0, t1) = λ∗max.

(3.4)
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In particular, the supremum of the left hand side of (3.4) is a maximum and
attained for the eigenvector u from (2).

Proof. In view of Theorem 3.2, it remains to prove (2) for the case that λ∗max

is a multiple eigenvalue of G + t∗0H0 + t∗1H1. Let the columns of U ∈ Cn,m form
an orthonormal basis of the eigenspace of G + t∗0H0 + t∗1H1 associated with λ∗max.
Moreover, let α0, α1 ∈ R such that α2

0 + α2
1 = 1. By Theorem 3.1, we obtain the

existence of the limit of the one-sided derivatives at t = 0 of the function

t 7→ L(t∗0 + α0t, t
∗
1 + α1t) = λmax

(
(G+ t∗0H0 + t∗1H1) + t(α0H0 + α1H1)

)
.

and this limit must be nonnegative, because there is a global minimum in (t∗0, t
∗
1).

More precisely, we obtain from Theorem 3.1 that

λmax

(
U∗(α0H0 + α1H1)U

)
= lim

ε→0
ε>0

L(t∗0 + α0ε, t
∗
1 + α1ε)− L(t∗0, t

∗
1)

ε
≥ 0

for all α0, α1 ∈ R with α2
0 + α2

1 = 1. Thus, for all such α = (α0, α1) there exists an
eigenvector xα ∈ Cm, ‖xα‖ = 1 associated with λmax

(
U∗(α0H0 +α1H1)U

)
such that

x∗αU
∗(α0H0 + α1H1)Uxα = λmax

(
U∗(α0H0 + α1H1)U

)
≥ 0 (3.5)

We now show the existence of a vector x ∈ Cm with ‖x‖ = 1 such that

x∗U∗H0Ux = 0 = x∗U∗H1Ux. (3.6)

Then u = Ux is the desired eigenvector of H0 + t∗0H0 + t∗1H1 satisfying (3.1).
Recall that the joint numerical range of two Hermitian matrices F1, F2 ∈ Cn×n is

the set

W0(F1, F2) := {(x∗F1x, x
∗F2x) ∈ R2 : x ∈ Cn, ‖x‖ = 1}.

Thus the existence of a vector x with ‖x‖ = 1 satisfying (3.6) is equivalent to the fact
that zero is in the joint numerical range W0 :=W0(U∗H0U,U

∗H1U) of the matrices
U∗H0U and U∗H1U . Thus, let us assume that zero is not in W0. Since W0 is a
closed convex set [18], by [16, Theorem 4.11, page 51] this implies the existence of
α̃ = [α̃0, α̃1]> ∈ R2 \ H with

0 >

〈
α̃,

[
x∗U∗H0Ux
x∗U∗H1Ux

]〉
= x∗U∗(α̃0H0 + α̃1H1)Ux

for all x ∈ Cm with ‖x‖ = 1 contradicting (3.5). Hence, zero is in the joint numerical
range of U∗H0U and U∗H1U which finishes the proof of (2) and thus of the theorem.

Remark 3.6. If m > 1 in the above result, then since 0 is in the joint nu-
merical range of the m ×m Hermitian matrices U∗H0U and U∗H1U, the Hermitian
pencil zU∗H0U + U∗H1U is not a definite pencil (see, [34] for details). Therefore its
eigenvalues do not satisfy the conditions that characterize definite pencils as specified
in Theorem 3.2 of [5]. These facts may be used in the numerical computation of the
eigenvector x corresponding to λ∗max such that x∗U∗H0Ux = x∗U∗H1Ux = 0 when
λ∗max is a multiple eigenvalue of G+ t∗0H0 + t∗1H1.

Remark 3.7. Unfortunately, the argument in the proof of Theorem 3.5 cannot
be generalized to the case k > 1, because the joint numerical range of three or more
Hermitian matrices need not be convex.
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Example 3.8. Consider the Hermitian 3 × 3 matrices G = diag(α, α, β), where
α > β ≥ 0, and

H0 =

 1 0 0
0 −1 0
0 0 0

 , H1 =

 0 1 0
1 0 0
0 0 0

 , and H2 =

 0 i 0
−i 0 0
0 0 0

 .
Then for t0, t1, t2 ∈ R, the matrix

H(t0, t1, t2) = G+ t0H0 + t1H1 + t2H2 =

 α+ t0 t1 + it2 0
t1 − it2 α− t0 0

0 0 β


has the eigenvalues β and α±

√
t20 + t21 + t22. Again, any nonzero linear combination

α0H0 + α1H1 + α2H2 is indefinite. Similar to Example 3.4, the function L : R3 → R
given by L(t0, t1, t2) = λmax

(
H(t0, t1, t2)

)
has its minimum in (0, 0, 0) with value

λ∗max = α which happens to be a double eigenvalue of the matrix H(0, 0, 0) = G. In
this case, a matrix whose columns form an orthonormal bases of the eigenspace of
H(0, 0, 0) associated with α is the 3 × 2 matrix U = [e1 e2], where e1 and e2 denote
the first two standard basis vectors. One easily checks that zero is not in the joint
numerical range of

U∗H0U =

[
1 0
0 −1

]
, U∗H1U =

[
0 1
1 0

]
, and U∗H2U =

[
0 i
−i 0

]
. (3.7)

and hence no eigenvector u of H(0, 0) associated with λ∗max = α satisfies u∗Hu = 0
for j = 0, 1, 2.

Note that in this example, scalar multiples of the third standard basis vector e3
are the only vectors u satisfying u∗Hju = 0 for j = 0, 1, 2 which shows that the left
hand side of (3.2) in Theorem 3.2 equals β which is strictly less than α = λ∗max.

The three Hermitian matrices in (3.7) are a classical example for Hermitian ma-
trices whose joint numerical range is not convex [8, 12].

4. Backward errors of approximate eigenvalues of Hermitian polyno-
mials. In this section, we consider Problem 1.1 for the case that A0, . . . , Ak are
Hermitian, i.e., P (z) =

∑k
j=0 z

jAj is a Hermitian matrix polynomial. The unstruc-

tured backward error ηw(P, λ) := ηSw(P, λ) with S = (Cn×n)k+1 is well-known and
given in a notation slightly different from ours in [3, Proposition 4.6]. We restate the
result here and include a proof for the sake of completeness.

Theorem 4.1. Let P (z) =
∑k
j=0 z

jAj, where A0, . . . , Ak ∈ Cn×n are Hermitian,
and let λ ∈ C. Then

ηw(P, λ) =
σmin

(
P (λ)

)
‖(1, λ, . . . , λk)‖w−1

,

where σmin(M) stands for the smallest singular value of a matrix M .
Proof. Let x ∈ Cn \ {0}. Then the backward error ηw(P, λ, x) of the eigenpair

(λ, x) is given by

ηw(P, λ, x) :=
‖(P (λ)x‖

‖x‖ · ‖(1, λ, . . . , λk)‖w−1

(4.1)
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Indeed, if ∆0, . . . ,∆k ∈ Cn×n are perturbation matrices such that

∆P (λ)x :=

k∑
j=0

λj∆jx = P (λ)x,

that is, (λ, x) is an eigenpair of
∑k
j=0 z

j(Aj −∆j), then

‖P (λ)x‖ = ‖∆P (λ)x‖ ≤
∥∥∥∥ k∑
j=0

λj∆j

∥∥∥∥ · ‖x‖ =

∥∥∥∥ k∑
j=0

λj

wj
(wj∆j)

∥∥∥∥ · ‖x‖
≤

k∑
j=0

|λj |
wj

wj‖∆j‖ · ‖x‖ ≤ ‖(1, λ, . . . , λk)‖w−1‖∆P‖w‖x‖

using the Cauchy-Schwarz inequality. This implies the “≥”-inequality in (4.1). On
the other hand, setting

∆j =
λ̄jP (λ)xx∗

w2
j x
∗x‖(1, λ, . . . , λk)‖2w−1

(4.2)

we easily obtain ∆P (λ)x =
∑k
j=0 λ

j∆jx = P (λ)x and equality in (4.1). Clearly
we have ηw(P, λ) = min{ηw(P, λ, x) |x 6= 0}, so the assertion immediately follows
from (4.1).

In the following, we require our perturbation matrices to be Hermitian as well,
i.e., we want to compute the structured backward error ηHerm

w (P, λ) := ηSw(P, λ),
where S = Herm(n)k+1. If λ ∈ R is real, then there is no difference between the
structured and the unstructured case. This fact was shown in [2] for the weight
vector w = (1, . . . , 1) and easily generalizes to arbitrary weight vectors.

Theorem 4.2. Let P (z) =
∑k
j=0 z

jAj, where A0, . . . , Ak ∈ Cn×n are Hermitian,
and let λ ∈ R. Then

ηHerm
w (P, λ) = ηw(P, λ) =

σmin

(
P (λ)

)
‖(1, λ, . . . , λk)‖w−1

.

Proof. If λ is real, then the perturbation matrices ∆j in (4.2) are Hermitian which
implies the desired result.

The situation is completely different, if λ 6∈ R. In this case, we obtain the struc-
tured backward error in terms of a minimization problem of the maximal eigenvalue of
a parameter-depending Hermitian matrix. Here, the pencil case k = 1 differs from the
polynomial case k > 1, where we require an additional hypothesis that the maximal
eigenvalue of the Hermitian matrix that solves the minimization problem be a simple
eigenvalue. For the sake of future reference, we state the pencil case separately.

Theorem 4.3. Let P (z) = zA1 + A0, where A0, A1 ∈ Cn×n are Hermitian, let
λ ∈ C \ R and let w = (w0, w1) be a weight vector. Suppose detP (λ) 6= 0 so that
M := P (λ)−1 exists. Then

ηHerm
w (P, λ) =

(
min
t0,t1∈R

λmax(G+ t0H0 + t1H1)

)−1/2
,

12



where

G = W−1
[
M∗M λM∗M
λ̄M∗M |λ|2M∗M

]
W−1, H0 = iW−1

[
M −M∗ λM
−λ̄M∗ 0

]
W−1,

H1 = iW−1
[

0 −M∗
M λM − λ̄M∗

]
W−1, W = diag(w0In, w1In).

Theorem 4.3 is not proved separately as it is a special case of the following theorem
which we will prove in detail.

Theorem 4.4. Let P (z) =
∑k
j=0 z

jAj, where A0, . . . , Ak ∈ Cn×n are Hermitian,
and w = (w0, . . . , wk) be a weight vector. Let λ ∈ C \ R be such that detP (λ) 6= 0 so
that M := P (λ)−1 exists. Let Λk := [1, λ, . . . , λk]∗ = [1, λ̄, . . . , λ̄k]T and set

G̃ := (ΛkΛ∗k)⊗ (M∗M) =


M∗M λM∗M . . . λkM∗M
λ̄M∗M |λ|2M∗M . . . λ̄λkM∗M

...
...

. . .
...

λ̄kM∗M λλ̄kM∗M . . . |λ|2kM∗M


and

H̃j := i
(
(ej+1Λ∗k)⊗M − (Λke

∗
j+1)⊗M∗

)
= i


−λ̄0M∗

...
λ0M · · · λjM − λ̄jM∗ · · ·λkM

...
−λ̄kM∗

 ,

for j = 0, . . . , k, where ej denotes the j-th standard basis vector of Rk+1 as well as

W := diag(w0, . . . , wk)⊗ In, G = W−1G̃W−1, Hj = W−1H̃jW
−1

for j = 0, . . . , k. Then

λ∗max := min
t0,...,tk∈R

λmax(G+ t0H0 + · · ·+ tkHk)

is attained for some (t∗0, . . . , t
∗
k) ∈ Rk+1. If k = 1 or λ∗max is a simple eigenvalue of

G+ t∗0H0 + · · ·+ t∗kHk, then

ηHerm
w (P, λ) =

1√
λ∗max

=

(
min

t0,...,tk∈R
λmax(G+ t0H0 + · · ·+ tkHk)

)−1/2
.

Proof. Let v0, . . . , vk ∈ Cn with vλ :=
∑k
j=0 λ

jvj 6= 0 and set v := [v>0 , . . . , v
>
k ]>.

Then using Lemma 2.6, we find that there exist ∆j ∈ Herm(n) satisfying

vj = ∆jMvλ, j = 0, . . . , k (4.3)

if and only if v∗jMvλ ∈ R for j = 0, . . . , k. As in (2.7) and (2.8) these conditions can be

reformulated as k+1 Hermitian constraints v∗H̃jv = 0. If these conditions are fulfilled
then according to Lemma 2.6 the minimal norms of ∆j ∈ Herm(n) satisfying (4.3) are
given by ‖∆j‖ = ‖vj‖/‖Mvλ‖, j = 0, . . . , k. Setting u = Wv, by reasons identical to
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those used to establish (2.6), the minimal norm of a tuple (∆0, . . . ,∆k) ∈ Herm(n)k+1

satisfying (4.3) is given by

‖(∆0, . . . ,∆k)‖2w =
w2

0‖v0‖2 + · · ·+ w2
k‖vk‖2

‖Mvλ‖2
=
v∗W 2v

v∗G̃v
=

u∗u

u∗Gu
.

Observe that for any vector v = [v>0 , . . . , v
>
k ]> we have v∗H̃jv = u∗Hju, and that

0 6= u∗Gu = ‖Mvλ‖2 if and only if vλ = λkvk + · · ·+ λv1 + v0 6= 0. Thus, we have

ηHerm
w (P, λ)2 = inf

{
u∗u

u∗Gu

∣∣∣∣ u ∈ C2n, u∗Gu 6= 0, u∗Hju = 0, j = 0, . . . , k

}
= sup

{
u∗Gu

u∗u

∣∣∣∣u ∈ C2n \ {0}, u∗Hju = 0, j = 0, . . . , k

}−1
. (4.4)

Note that since ηHerm
u (P, λ) is finite and positive, the supremum in the latter

equality of 4.4 will not be attained by vectors u satisfying u∗Gu = 0 and therefore,
the condition u∗Gu 6= 0 is superfluous for it.

Since our aim is to apply Theorem 3.5 or Theorem 3.2 for the case of the pencils
and polynomials respectively, we need to check whether each nontrivial linear combi-
nation of H0, . . . ,Hk, or, equivalently, of H̃0, . . . , H̃k, is indefinite. Thus, assume that
α := [α0, . . . , αk]> ∈ Rk+1 is such that H :=

∑k
j=0 αjH̃j is semidefinite. Then

H = i

k∑
j=0

αj
(
(ej+1Λ∗k)⊗M − (Λke

∗
j+1)⊗M∗

)
= i
(
(αΛ∗k)⊗M − (Λkα

>)⊗M∗
)

and we have to show that α = 0. Setting

Q :=


1 −λ 0 0

0 1
. . . 0

...
. . .

. . . −λ
0 . . . 0 1

 and a :=

 a0
...
ak

 := Q∗α,

we obtain Λ∗kQ = e>1 and hence

(Q⊗ In)∗H(Q⊗ In)

= i
(
(ae>1 )⊗M − (e1a

∗)⊗M∗
)

= i


a0M − ā0M∗ −ā1M∗ . . . −ākM∗

a1M 0 . . . 0
...

...
. . .

...
akM 0 . . . 0

 .
Since H is semidefinite and M is invertible, it follows that a1 = · · · = ak = 0, i.e.,
a = a0e1. In particular, a1 = 0 implies that α1 − λ̄α0 = 0. But this implies that
α0 = α1 = 0, because α0, α1 are real and λ is nonreal. Finally, the first entry of Q∗α
yields the identity a0 = α0 = 0 and thus a = 0 which implies α = 0.

If k = 1 then the assertion follows immediately from (4.4) and Theorem 3.5. On
the other hand, if k > 0 then with the additional assumption on λ∗max, the assertion
follows similarly from (4.4) and Theorem 3.2.

Remark 4.5. In view of Example 3.8 it is crucial that the eigenvalue λ∗max in
Theorem 4.4 is a simple eigenvalue. Numerical experiments suggest that generically
this is indeed the case.
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Remark 4.6. Once λ∗max and the corresponding eigenvector u ∈ C(k+1)n satisfy-
ing u∗Hj u = 0, j = 0, . . . , k have been computed, the optimal perturbation matrices
can be easily constructed using Theorem 2.6: writing v := Wu = [v>0 , . . . , v

>
k ]> with

vj ∈ Cn and vλ := λkvk + · · ·+ λv1 + v0, we find that the required coefficients ∆j for
j = 0, . . . , k of the minimal Hermitian perturbation are given by

∆j =
‖vj‖
‖Mvλ‖

[
vj
‖vj‖

Mvλ
‖Mvλ‖

] [ v∗jMvλ
‖Mvλ‖ ‖vj‖ 1

1
(Mvλ)

∗vj
‖Mvλ‖ ‖vj‖

]−1 [
vj
‖vj‖

Mvλ
‖Mvλ‖

]∗
if vj and Mvλ are linearly independent and by

∆j =
vjv
∗
λM

∗

v∗λM
∗Mvλ

otherwise.

5. Matrix polynomials with related structures. As briefly mentioned in the
introduction, the problem of computing structured backward errors for eigenvalues of
skew-Hermitian or ∗-alternating polynomials can be reduced to the case of Hermitian
polynomials. These lead to formulae for the structured backward error of approximate
eigenvalues for such polynomials also.

Theorem 5.1. Let P (z) =
∑k
j=0 z

jAj be a skew-Hermitian matrix polynomial

with A0, . . . , Ak ∈ Cn×n, let S = (SHerm(n))k+1, and let w ∈ Rk+1 \ {0, 0, . . . , 0} be
a weight vector. Then

ηSw(P, λ) = ηHerm
w (iP, λ).

Proof. This follows immediately from the fact that P is skew-Hermitian if and
only if iP is Hermitian.

For the next result let

Se :=
{

(∆0, . . . ,∆k)
∣∣∆2j ∈ Herm(n), ∆2j+1 ∈ SHerm(n), j = 0, . . . , bk2 c

}
and So :=

{
(∆0, . . . ,∆k)

∣∣∆2j+1 ∈ Herm(n), ∆2j ∈ SHerm(n), j = 0, . . . , bk2 c
}
,

i.e., Se is the set of ∗-even matrix polynomials and So is the set of ∗-odd matrix
polynomials.

Theorem 5.2. Let P (z) =
∑k
j=0 z

jAj be a ∗-alternating matrix polynomial with

A0, . . . , Ak ∈ Cn×n, let Q(z) = P (iz) =
∑k
j=0 z

j(ijAj), and let w ∈ Rk+1 \ {0, . . . , 0}
be a weight vector. Then

ηSew (P, λ) = ηHerm
w (Q,λ/i),

if P is ∗-even and

ηSow (P, λ) = ηHerm
w (iQ, λ/i),

if P is ∗-odd.
Proof. This follows immediately from the fact that Q(z/i) = P (z) and that Q is

Hermitian if P is ∗-even, or skew-Hermitian if P is ∗-odd.
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6. Further restriction of perturbation sets. In some cases it may be of
interest to further restrict the perturbation set S = Herm(n)

k+1
. In particular, it

may be useful to perturb only some of the coefficients of the matrix polynomial. For
example, a Hermitian pencil P (z) = zA1 +A0 can be canonically identified with the
A1-selfadjoint matrix H = A−11 A0 if A1 is invertible. (Recall that a matrix H is called
A1-selfadjoint if H∗A1 = A1H, see, e.g., [9].) In this case A1 can be interpreted as a
matrix that induces a (possibly indefinite) scalar product on Cn. If then perturbations
of the pencil P are considered, then only allowing the matrix A0 to be changed results
in the effect that the matrix defining the scalar product remains constant. Therefore,
we briefly explain in this section how our main results can be applied to those cases
as well.

To be more precise, let I = {i0, . . . , im} ⊆ {0, . . . , k} with i0 < · · · < im be an
index set and define

S := S(I) := S0 × · · · × Sk ⊆ Herm(n)
k+1

, (6.1)

where Sj = Herm(n) if j ∈ I and Sj = {0} if j 6∈ I. For example, if k = 4
and I = {1, 2}, then (∆0, . . . ,∆4) ∈ S(I) if and only if ∆0 = ∆3 = ∆4 = 0 and
∆1,∆2 ∈ Herm(n), i.e., perturbations from S will only change the coefficients A1

and A2 of a matrix polynomial
∑4
j=0 z

jAj . Thus, each (∆0, . . . ,∆k) ∈ S can be

canonically identified with a tuple (∆i0 , . . . ,∆im) ∈ Herm(n)
m+1

and we consider

‖(∆i0 , . . . ,∆im)‖ŵ = ‖(∆0, . . . ,∆k)‖w =
√
w2
i0
‖∆i0‖2 + · · ·+ w2

im
‖∆im‖2,

which is a norm on Herm(n)
m+1

and the corresponding backward error

ηSŵ(P, λ) :=inf
{
‖(∆0, . . . ,∆k)‖w

∣∣∣ det
( k∑
j=0

λj(Aj −∆j)
)

= 0, (∆0, . . . ,∆k) ∈ S
}
.

Thus, the new weight vector ŵ = [wi0 , . . . , wim ]T ∈ Rm+1 is obtained from the old
weight vector w ∈ Rk+1 by deleting the entries wj with j 6∈ I.

We then obtain the following analogue of Theorem 4.4.
Theorem 6.1. Let P (z) =

∑k
j=0 z

jAj, where A0, . . . , Ak ∈ Cn×n are Hermitian

and λ ∈ C \ R be such that detP (λ) 6= 0 so that M := P (λ)−1 exists. Let I =
{i0, . . . , im} ⊆ {0, . . . , k}, S be given by (6.1) and ŵ = (wi0 , wi1 , . . . , wim) ∈ Rm+1 \
{0, . . . , 0} be a weight vector. Let Λm := [λi0 , . . . , λim ]∗ and set

Ĝ := (ΛmΛ∗m)⊗ (M∗M) and Ĥj := i
(
(ej+1Λ∗m)⊗M − (Λme

∗
j+1)⊗M∗

)
for j = 0, . . . ,m, where ej denotes the j-th standard basis vector of Rm+1. Also let

W := diag(wi0 , . . . , wim)⊗ In, G = W−1ĜW−1, Hj = W−1ĤjW
−1

for j = 0, . . . ,m. Then

λ∗max := min
t0,...,tm∈R

λmax(G+ t0H0 + · · ·+ tmHm)

is attained for some (t∗0, . . . , t
∗
m) ∈ Rm+1. If If ηSŵ(P, λ) is finite and m ≤ 1 or λ∗max is

a simple eigenvalue of G+ t∗0H0 + · · ·+ t∗mHm, then,

ηSŵ(P, λ) =
1√
λ∗max

=

(
min

t0,...,tm∈R
λmax(G+ t0H0 + · · ·+ tmHm)

)−1/2
.
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Observe that Ĝ and Ĥj are obtained from the corresponding matrices G̃ and H̃ij

in Theorem 4.4 by deleting the block rows and columns with indices not in I.
Remark 6.2. The proof of Theorem 6.1 proceeds in exactly the same way as the

proof of Theorem 4.4. It is based on a modified version of Lemma 2.4 with setting
∆j = 0 for j 6∈ I and requiring vj = 0 for j 6∈ I in (b). (In the case m = 0 [21,
Theorem 4.5] is applied in place of Theorem 3.5.)

The condition ηSŵ(P, λ) < ∞ is indeed necessary, as there a number of instances
when this is not the case. For example, if k = 1 and I = {0}, then ηSŵ(P, λ) =∞ for
any nonreal λ if A1 is either positive or negative definite. Also, if A0 is nonsingular
and 0 /∈ I, then ηSŵ(P, 0) = ∞ for any degree k. The latter situation is also reflected
by the fact that the matrix

Q̂ :=


1 −λi1−i0 0 0

0 1
. . . 0

...
. . .

. . . −λim−im−1

0 . . . 0 1


replaces the matrix Q in the proof of Theorem 4.4 when establishing the indefiniteness
of any nontrivial linear combination of H0, . . . ,Hm and the argument needs the fact
that the vector Λ∗mQ̂ = λi0e>1 is nonzero. Observe that this is true if and only if
i0 = 0 or λ 6= 0.

Thus, we see that restricting the perturbation set in such a way that only m of k
coefficient matrices are perturbed, the corresponding structured backward error can
be computed by solving an (m + 1)-parameter optimization problem rather than a
(k + 1)-parameter problem.

7. Numerical examples. In this section we present some numerical exam-
ples to illustrate the proposed method for computing the structured backward error
ηSw(P, λ) of some λ ∈ C for the case S = (Herm(n))k+1 and w = (1, 1, . . . , 1). In
all cases we have used the software package CVX [11, 10] in MATLAB to solve the
associated optimization problem of finding

λ∗max = min
t0,t1,...,tk∈R

λmax(G+ t0H0 + · · ·+ tkHk)

and the points t∗0, t
∗
1, . . . , t

∗
k ∈ R that attain it as described in Theorem 4.4.

Example 7.1. L(z) = zA1 + A0 is a randomly generated Hermitian pencil of
size 4× 4 with eigenvalues 0.57661± 1.0199i,−1.0966 and −0.10193. The Hermitian
backward error for the point λ = −1.0966 + 0.5i which is close to the eigenvalue
−1.0966 is 1.3058 while the unstructured backward error 0.47045 is much smaller as
expected.

Figure 7.1 illustrates the movement of the eigenvalues of the pencil L(z) under
the homotopic perturbation L(z) + t∆L(z) as t varies from 0 to 1 (in blue curves).
Observe that the point −1.0966+0.5i (marked in red) as well as its complex conjugate,
become eigenvalues of (L + ∆L)(z) and this is produced by the splitting of a real
eigenvalue of multiplicity 2 of (L + t0∆L)(z), for some 0 < t0 < 1. Here ∆L(z) =
z∆1 + ∆0 is the optimal Hermitian perturbation satisfying ‖(∆1,∆0)‖ = 1.3058 such
that −1.0966 + 0.5i is an eigenvalue of (L+ ∆L)(z).

Figure 7.2 illustrates the same effect with respect to unstructured homotopic
perturbations L(z) + t∆̂L(z) as t varies from 0 to 1. In this case ∆̂L(z) = z∆̂1 + ∆̂0
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Fig. 7.1. Eigenvalue perturbation curves for the Hermitian pencil in Example 7.1 with
respect to Hermitian perturbation.
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Fig. 7.2. Eigenvalue perturbation curves for the Hermitian pencil in Example 7.1 with
respect to Hermitian perturbation.

is a minimal non Hermitian perturbation such that −1.0966 + 0.5i is an eigenvalue of
(L+ ∆̂L)(z). Observe that in this case the complex conjugate of −1.0966 + 0.5i is not

an eigenvalue of (L+ ∆̂L)(z) as it is not a Hermitian pencil.
Example 7.2. L(z) = zA1 + A0 is a diagonal Hermitian pencil of size 3 × 3

with real eigenvalues 21.393, 4.2464 and −3.5385. The Hermitian backward error of
the point −0.1241 + 1.4897i is 0.5608 while its unstructured backward error is 0.4246.
This is an example for which λ∗max is a multiple eigenvalue of G+ t∗0H0 + t∗1H1 where
t∗0 = −0.3819 and t∗1 = 0.6266.

Figure 7.3 traces the movement of the eigenvalues of L(z) with respect to pertur-
bations L(z)+t∆L(z) as t varies from 0 to 1 (in blue curves) where ∆L(z) = z∆1+∆0

is the optimal Hermitian perturbation satisfying ‖(∆1,∆0)‖ = 0.5608 such that
−1.0966 + 0.5i is an eigenvalue of (L+ ∆L)(z).

The point −0.1241 + 1.4897i (marked in red) and its complex conjugate, become
eigenvalues of (L+∆L)(z) after the splitting of a real eigenvalue of multiplicity 2 that
arises from the meeting of eigenvalue curves that originated from the unperturbed
eigenvalues 21.393 and −3.5385 of L(z). It is interesting to note that the eigenvalue
curve originating from 21.393 moves over∞ before it meets the curve originating from
−3.5385. Figure 7.4 illustrates the same effect with respect to unstructured homotopic
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Fig. 7.3. Eigenvalue perturbation curves for the Hermitian pencil in Example 7.2 with
respect to Hermitian perturbation.
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Fig. 7.4. Eigenvalue perturbation curves for the Hermitian pencil in Example 7.2 with
respect to Hermitian perturbation.

perturbations L(z) + t∆̂L(z) as t varies from 0 to 1. In this case ∆̂L(z) = z∆̂1 + ∆̂0

is a minimal non Hermitian perturbation such that −1.0966 + 0.5i is an eigenvalue
of (L+ ∆̂L)(z). The complex conjugate of −0.1241 + 1.4897i is not an eigenvalue of

(L + ∆̂L)(z) as it is not a Hermitian pencil and therefore only a single eigenvalue
curve originating from −3.5385 reaches this point for t = 1.

Example 7.3. Q(z) = z2A2 + zA1 + A0 is a Hermitian matrix polynomial of
size 3 × 3 with eigenvalues −0.8738 ± 2.4984i, 0.3091 ± 1.226i, 0.62802 and 0.07796.
The Hermitian backward error for the point 0.62802 + 0.5i which is close to the real
eigenvalue 0.62802 is 1.9177 whereas the backward error with respect to arbitrary
perturbations is 1.3279.

Figure 7.5 traces the movement of the eigenvalues of Q(z) with respect to per-
turbations Q(z) + t∆Q(z) as t moves from 0 to 1, ∆Q(z) being the minimal Hermit-
ian perturbation that produces an eigenvalue at 0.62802 + 0.5i. As expected, since
(Q+∆Q)(z) is Hermitian, it has a pair of eigenvalues at 0.62802±0.5i which are pro-
duced by the meeting (on the real line) and splitting of eigenvalue curves originating
from the two real eigenvalues of Q(z).

On the other hand, Figure 7.6 traces the movement of the eigenvalues of Q(z)

with respect to perturbations Q(z) + t∆̂Q(z) as t moves from 0 to 1. Here ∆̂Q(z) is
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Fig. 7.5. Eigenvalue perturbation curves for the Hermitian polynomial Q(z) of Exam-
ple 7.3 with respect to Hermitian perturbation.
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Fig. 7.6. Eigenvalue perturbation curves for the Hermitian polynomial Q(z) of Exam-
ple 7.3 with respect to non Hermitian perturbation.

the minimal non structure preserving perturbation to Q(z) such that 0.62802 + 0.5i

is an eigenvalue of (Q+ ∆̂Q)(z).

In further numerical experiments we have observed that for diagonal Hermitian
polynomials, λ∗max is a multiple eigenvalue of G+ t∗0H0 + · · · t∗kHk. Despite this fact,
it has been observed that in each of these cases it is possible to find an eigenvector
x corresponding to λ∗max satisfying x∗Hjx = 0 for j = 0, 1, . . . , k. This aspect of
such problems is still under investigation. However, we have not yet encountered a
case where λ∗max is multiple for Hermitian matrix polynomials whose coefficients are
randomly generated.

We also computed the structured and unstructured backward errors of a nonreal
λ whose real part is a simple eigenvalue of the Hermitian matrix polynomial. We
observed that as expected, the unstructured backward error approached zero as the
imaginary part of λ was reduced. However, this did not decrease the structured
backward error as significantly, leading to large differences between the two backward
error values. These are recorded for the Hermitian pencil considered in Example 7.1
and the Hermitian quadratic polynomial considered in Example 7.3 in Table 7.1 and
7.2 respectively.
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Table 7.1
Structured and unstructured eigenvalue backward errors for Hermitian pencils.

λ t∗0 t∗1 λ∗max ηw(L, λ) ηHerm
w (L, λ)

-1.0966 + i 0.47 -0.73 0.5017 0.8450 1.4118
-1.0966 + 0.5i 1.12 -1.39 0.5865 0.4704 1.3058
-1.0966 + 0.1i 6.12 -6.75 0.6533 0.0978 1.2372
-1.0966 + 0.05i 12.27 -13.48 0.6561 0.0490 1.2345
-1.0966 + 0.01i 61.43 -67.37 0.6571 0.0098 1.2337
-1.0966 + 0.005i 122.87 -134.74 0.6571 0.0049 1.2337

Table 7.2
Structured and unstructured eigenvalue backward errors for quadratic Hermitian polynomials.

λ t∗0 t∗1 t∗2 λ∗max ηw(Q,λ) ηHerm
w (Q,λ)

0.62802 + i 0.06 0.09 0.03 0.81 1.0965 1.1099
0.62802 + 0.5i -0.28 -0.54 -0.62 0.2719 1.3279 1.9177
0.62802 + 0.1i -3.38 -5.33 -8.21 0.3852 0.2411 1.6113
0.62802 + 0.05i -6.85 -10.88 -17.17 0.3882 0.1198 1.6051
0.62802 + 0.01i -34.38 -54.73 -87.12 0.3891 0.0239 1.6032
0.62802 + 0.005i -68.76 -109.48 -174.32 0.3891 0.0120 1.6031
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[6] H. Baumgärtel. Analytic perturbation theory for matrices and operators. Operator Theory:
Advances and Applications. Vol. 15. Birkhauser Verlag, Basel-Boston-Stuttgart, 1985.

[7] P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical computation of deflating subspaces
of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl., 24:165–190, 2002.

[8] P. Binding. Hermitian forms and the fibration of spheres. Proc. Am. Math. Soc., 94:581-584
(1985).

[9] I. Gohberg, P. Lancaster, and L. Rodman. Indefinite Linear Algebra. Birkhäuser, Basel, 2005.
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