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Abstract. We study non-isothermal nucleation and growth phase transformations,
which are described by a generalized Avrami model for the phase transition coupled
with an energy balance to account for recalescence effects. The main novelty of our
work is the identification of temperature dependent nucleation rates. We prove that
such rates can be uniquely identified from measurements in a subdomain and apply
an optimal control approach to develop a numerical strategy for its computation.

1. Introduction

According to [6], nucleation and growth processes may occur in all metastable
systems and the initial or final phase may be solid, liquid, or gaseous. The new phase
grows at the expense of the old one by the migration of the interphase boundary. At
a fixed temperature the reaction proceeds isothermally and will continue until it is
complete. Hence the final amount of transformation is independent of temperature as
long as the equilibrium phase fraction is so.

To become more specific let us consider a test volume V ⊂ IR3 in which a transfor-
mation from a phase A to a phase B happens. We call V A(t) and V B(t) the sub-volumes
occupied by phases A and B at time t, respectively, i.e.

V = V A(t) + V B(t) for all t ∈ [0, T ].

Moreover, we define the phase volume fraction of the product phase,

P (t) =
V B(t)
V

.

We introduce the growth rate ρ, which we assume to be a constant. In many cases
such a linear isotropic growth is well justified. However, especially in solid-solid phase
transitions with an underlying grain structure one would observe rather an anisotropic
growth perpendicular to the grain boundary. When the composition of the matrix also
changes during the transformation, a parabolic growth corresponding to ρ ∼ t−1/2 can
be expected.

Assuming spherical growth the volume of a phase B region originating from a
nucleus born at time τ is given by

(1.1) v(t, τ) =
4π
3
ρ3(t− τ)3.

In the sequel we use the abbreviation γ := 4πρ3. The way to derive the nucleation and
growth model is to start with an extended volume V B

ext of the new phase B disregarding
impingement of different B sub-regions. To this end, multiplying the single grain volume
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(1.1) with the number of nuclei born at time τ , i.e., α(θ(τ))V , we obtain the extended
volume fraction

(1.2) V B
ext(t) =

γV

3

t∫
0

α(θ(τ))(t− τ)3dτ.

Here, α is the temperature θ dependent nucleation rate which denotes the number of
stable nuclei formed per unit time and space. After some time the B sub-regions will
first impinge and then grow into each other. Moreover, new nuclei will be born in
already transformed regions. In reality, the new phase grows either until the growing
process ceases locally due to impingement of sub-regions or until an equilibrium volume
V B
eq (θ) is reached with corresponding equilibrium volume fraction

Peq(θ) =
V B
eq (θ)
V

.

Usually, the equilibrium value is temperature dependent and can be extracted from
the respective equilibrium phase diagram. Then, we may assume only that fraction of
an incremental extended volume fraction dV B

ext contributes to the growth of the really
transformed fraction dV B, which previously has not been transformed. In other words
we conjecture that

(1.3) dV B =
(

1− V B

V B
eq (θ)

)
dV B

ext.

This so-called Avrami correction has been investigated independently by Avrami [1, 2, 3]
and Kolmogorov [16], see also [14]. Tacitly assuming that θ is a constant, we integrate
(1.3) using (1.2) to obtain

(1.4) − ln
(

1− P

Peq(θ)

)
=
γ

3
1

Peq(θ)

∫ t

0
α(θ(τ))(t− τ)3dτ

from which we conclude

(1.5) P (t) = Peq(θ)
(

1− e−
γ
3

1
Peq(θ)

R t
0 α(θ(τ))(t−τ)3dτ

)
.

In the case of a constant nucleation rate and Peq ≡ 1, (1.5) boils down to the classical
Johnson-Mehl-Avrami-Kolmogorov equation

(1.6) P (t) = 1− e−
π
3
ρ3αt4 .

Note that the latter is still often used to quantify phase transitions in steel, especially
in the engineering sciences, see, e.g., [23]. Our interest is to identify the temperature
dependent nucleation rate α(θ) in the generalized Avrami model (1.5). To simplify the
exposition in the sequel we assume Peq ≡ 1.

Phase transitions are known to be accompanied by the release or consumption of
latent heat, which is usually assumed to be proportional to the phase growth rate Pt.
To incorporate this effect it is convenient to take the derivative of (1.4) with respect
to time (recall that we assume (Peq ≡ 1) and replace (1.5) with the integro-differential
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equation

Pt(t) = γ(1− P (t))

t∫
0

α(θ(τ))(t− τ)2dτ(1.7a)

P (0) = 0.(1.7b)

For numerical purposes and the derivation of optimality conditions it is more favorable
to work with an ODE. To this end we define the new unknown variable

(1.8) η(t) := ln
(

1
1− P (t)

)
.

Taking now the fourth derivative in (1.4), we can rewrite (1.7) equivalently with the
fourth order ODE

η(4)(t) = 2γα(θ(t))(1.9a)
η(0) = η′(0) = η′′(0) = η′′′(0) = 0.(1.9b)

To account for the release of latent heat during the phase change we couple the phase
kinetics with the balance of internal energy, which reads

ρ
∂e

∂t
−∇ · (κ∇θ) = 0,

where we have employed Fourier’s law of heat conduction. Here, ρ is the mass density,
e the specific internal energy and κ the heat conductivity. Now we proceed as in [24]
and assume that there exists a differentiable material function ê such that the internal
energy takes the form

e(x, t) = ê(θ, P ),
with the partial derivatives

(1.10)
∂ê

∂θ
= c,

∂ê

∂P
= −L,

where L denotes the latent heat and c the specific one, respectively. Then the energy
balance reads as

(1.11) ρcθt −∇ · (κ∇θ) = ρLPt.

Equivalently (cf. (1.8)), we will write the latent heat term as ρLηte−η(t). The goal of
this paper is to study the system (1.7) or (1.9) together with (1.11). We investigate
the solvability of the state system and study the inverse problem of identifying the
temperature dependent nucleation rate α(θ). To this end we also establish a uniqueness
result. We refer to Choulli, Ouhabaz and Yamamoto [5], DuChateau and Rundell [7],
Egger, Engl and Klibanov [8], Isakov [13], Klibanov [15], Lorenzi [19], Pilant and Rundell
[20]. Those papers discuss parabolic equations without integral term, and proved the
uniqueness with boundary measurements and the key is the maximum principle. To
the best of our knowledge we do not know the works on uniqueness in determination of
nonlinear terms for integral-differential equation, e.g. nonlinear parameter identification
in the nonlocal integral-differential equation.

Justified by the uniqueness result we employ an optimal control approach to the
numerical identification of the nucleation rate. This is done in the spirit of [21], where
the identification of a nonlinear heat transfer law is studied. In [10] a similar approach
has been taken to identify a temperature dependent rate law for the coagulation of
cancerous tissue. In addition we note that optimal control problems for nucleation and
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growth models related to the crystallization of polymers have been studied in [4, 9]. In
[18] a simplified version of the generalized Avrami model has been developed.

The paper is organized as follows. Section 2 contains the well-posedness of our
coupled model with appropriate boundary and initial conditions. In Section 3 we show
that indeed the nucleation rate α can be uniquely determined from measurements in
a subdomain. We will utilize an optimal control approach in Section 4 to identify the
nucleation rate α by minimizing a cost functional defined on a subdomain. In the last
section we exploit the adjoint based approach for a numerical identification of nucleation
rates.

2. Well-posedness of the forward model

For sake of simplicity, we skip most of the physical-based constants and obtain the
simplified forward problem in the following parabolic-ODE coupled system. We assume
Ω ⊂ IR3 to be a domain with C1,1 boundary. We consider a transition from phase A
stable at high temperature to a low temperature phase B. Accordingly, we consider
cooling processes assuming that the initial temperature θ0 is greater than the coolant
temperature θw, assumed to be constant. Then the governing parabolic system for the
temperature distribution θ is

θt − κ∆θ = L(θ)Pt in Ω× (0, T );(2.1a)
κ∂νθ + σ(θ − θw) = 0 on ∂Ω× (0, T );(2.1b)

θ(x, 0) = θ0 in Ω(2.1c)

where ν is the normal vector, σ > 0 is the constant heat exchange coefficient and
κ > 0 the constant heat conductivity. The governing ODE system for the phase volume
fraction P is

Pt = γ(1− P )
∫ t

0
α(θ)(t− τ)2dτ in Ω× (0, T );(2.2a)

P (0) = 0 in Ω.(2.2b)

As mentioned in the last section, changing of variables η = ln
(

1
1−P

)
and taking

additional initial conditions, we can reformulate an equivalent parabolic-ODE coupled
system

θt − κ∆θ = L(θ)e−ηηt in Ω× (0, T );(2.3a)

κ∂νθ + σ(θ − θw) = 0 on ∂Ω× (0, T );(2.3b)

θ(x, 0) = θ0 in Ω(2.3c)

and
d4η

dt4
= 2γα(θ) in Ω× (0, T );(2.4a)

η(i)(0) = 0, i = 0, . . . , 3, in Ω.(2.4b)

The following assumptions are important in the sequel:

(A1) θ0 and θw are positive constants satisfying θ0 > θw.

(A2) L is in C1,1(IR), and L(θ) = 0 if θ ≤ θ− or θ ≥ θ+, and L(θ) 6= 0 if θ− < θ < θ+,
where θ+− are chosen such that θw ≤ θ− < θ+ = θ0.
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(A3) The admissible set for α(θ) is

Aad :=
{
α ∈ C1,γ(R) : ‖α‖C1,γ ≤M0, suppα ⊂ (θ−, θ+), α(s)|s∈R ≥ 0

}
(A4) The measurement data satisfies θm ∈ Lp(0, T ;Lp(ω)), where ω is an interior

open domain satisfying ω ⊂ Ω.

Remark 2.1. According to (A1)–(A3) we consider a cooling process from high initial
temperature to quenchant temperature. The phase transition happens in the subdomain
[θ−, θ+] ⊂ [θw, θ0].

To proceed further, we recall a standard parabolic regularity result for linear par-
abolic equations in the space W 2,1

p (Q) := W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) where
Q := Ω× (0, T ) is the space-time cylinder.

Lemma 2.2. ([17, Theorem 9.1]) Assume that assumption (A1) holds. Then for any
f ∈ Lp(Ω) (p ∈ (1,∞)), there exists a unique solution in W 2,1

p (Q) for the parabolic
system

θt − κ∆θ = f in Ω× (0, T );
κ∂νθ + σ(θ − θw) = 0 on ∂Ω× (0, T );

θ(x, 0) = θ0 in Ω

and satisfies the following a priori estimate

‖θ‖
W 2,1
p (Q)

≤ C1 + C2‖f‖Lp(Q).

with constants C1,2 and C1 = 0 if θ0 = θw = 0. If in addition p > 5/2, then for
ε ∈ (0, 2−5/p) the solution θ is in C0,ε(Q̄) and the same estimate holds for the C0,ε(Q̄)-
norm.

Meanwhile, the a priori estimates for the ODE system are carried out by changing
of variables η := ln

(
1

1−P

)
.

Lemma 2.3. Assume (A2), let θ ∈ L1(Q) and fix a finite final time T . Then there
holds η(t) ∈ [0, ηmax] with t ∈ [0, T ] and a constant ηmax <∞. Moreover, there exists a
constant M independent of θ s.t.

‖η‖W 1,∞(0,T ;L∞(Ω)) ≤M.

At the same time, assume that there exist θ1, θ2 ∈ Lp(Q) with p ∈ [2,∞) with solutions
η1, η2, then the following estimate holds with a constant L > 0

‖η1 − η2‖W 1,p(0,T ;Lp(Ω)) ≤ L‖θ1 − θ2‖Lp(Q).

Proof. The proof follows by changing of variables η := ln
(

1
1−P

)
from the original ODE

system on P in (2.2). Notice{
ηt = γ

∫ t
0 α(θ)(t− τ)2dτ ;

η(0) = 0.

Assuming θ ∈ L1(Q) and the initial condition, we conclude that η(t) is increasing and
finite in the time interval [0, T ] such that 0 ≤ η(t) ≤ ηmax = γ

12M0T
4. Moreover, ηt

satisfies 0 ≤ ηt ≤ γ
3M0T

3. The rest of the proof follows by testing the difference of
η1, η2 by |η1−η2|p−2(η1−η2) and applying the Gronwall’s and Young’s inequalities. �



6 DIETMAR HÖMBERG1, SHUAI LU2, KENICHI SAKAMOTO3, AND MASAHIRO YAMAMOTO4

Remark 2.4. We emphasize that by adding appropriate initial conditions, the original
ODE system (2.2) is equivalent to the 4-th order ODE system (2.4). The a priori
estimates in Lemma 2.3 are adjusted, respectively, in the following estimates

‖η‖W 4,∞(0,T ;L∞(Ω)) ≤M ;

‖η1 − η2‖W 4,p(0,T ;Lp(Ω)) ≤ L‖θ1 − θ2‖Lp(Q).

In the sequel, we denote by η the solution of the 4-th order ODE system (2.4) where
the standard estimates in Lemma 2.3 are sufficient for the well-posedness of the forward
model.

Corollary 2.5. Let θ ∈ L1(Q) and fix a finite final time T , the term e−ηηt is nonneg-
ative and bounded with an a priori estimate

‖e−ηηt‖L∞(0,T ;L∞(Ω)) ≤M
where the constant M is independent of η and θ.

Now, we are ready to present the main existence theorem for the parabolic-ODE
coupled system (2.3)-(2.4).

Theorem 2.6. Assume that assumptions (A1)-(A3) hold and let p > 5/2. Then
the parabolic-ODE coupled system (2.3)-(2.4) admits a unique solution (θ, η) such that
θ ∈W 2,1

p (Q) ∩ C0,ε(Q̄) for some ε ∈ (0, 1) and η ∈W 1,∞(0, T ;L∞(Ω)).

Proof. Fix a finite final time T > 0, we consider the following closed set

KT := {θ ∈W 2,1
p (Q) : θ(x, 0) = θ0}.

Choose θ̂ ∈ KT , and define η be the solution of (2.4) where the governing ODE
has the form

d4η

dt4
= 2γα(θ̂).(2.5)

The solution η uniquely exists and satisfies the a priori estimates in Lemma 2.3.

Now define θ as the solution to (2.3), where the right-hand side of the governing
parabolic equation is replaced by the solution η to (2.5). Since the a priori estimates
in Lemma 2.2 and Corollary 2.5 are independent of θ̂, we can infer that the operator
S : θ̂ → θ maps KT onto itself.

At the same time, defining S(θ̂i) = θi, i = 1, 2 with θ̂1,2 ∈ KT , we can obtain, for
θ = θ1− θ2 and f̂ := L(θ̂1)e−η1η1,t−L(θ̂2)e−η2η2,t, where ηi is the solution to (2.5) with
respect to θ̂i and ηi,t is the time derivative of each ηi, θt − κ∆θ = f̂ in (0, T )× Ω;

κ∂νθ + σθ = 0 on (0, T )× ∂Ω;
θ(x, 0) = 0 in Ω.

Lemmas 2.2, 2.3, (A1), and Hölder’s inequality then yield

‖θ1 − θ2‖W 2,1
p (Q)

≤ C‖f̂‖Lp(Q) ≤ C‖θ̂1 − θ̂2‖Lp(Q) ≤ CT
p−1
p ‖θ̂1 − θ̂2‖W 2,1

p (Q)
.

Thus, S is a contraction map if we choose T := T+ sufficient small. The existence of
a unique local solution then follows from Banach’s fixed point theorem. The global a
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priori estimates in Lemma 2.2 and Corollary 2.5 guarantee that such an estimate holds
true on the whole interval [0, T ]. �

Moreover, one can prove upper and lower bounds of θ, which allow the choice of
constant temperatures θ− and θ+ in the admissible set Aad.

Lemma 2.7. Assume α ∈ Aad and (θ, η) are the solutions of (2.3) and (2.4). Then we
have

θw ≤ θ ≤ θ0

for all (x, t) ∈ Ω× (0, T ) and all α ∈ Aad.

Proof. Consider the decomposition

θ = θw + [θ − θw]+ − [θ − θw]−

where [x]+ = max{x, 0} and [x]− = −min{x, 0} are the positive and negative part
functions. Testing (2.3) with [θ − θw]− and integrate in Q, we obtain

1
2

∫
Ω

[θ − θw]2−dx+ κ

∫ T

0

∫
Ω
|∇[θ − θw]−|2dxdt = −

∫ T

0

∫
Ω
e−ηηt[θ − θw]−dxdt

+
∫ T

0

∫
∂Ω
σ[θ − θw]2−dxdt.

By the trace theorem, we obtain that∫ T

0

∫
∂Ω
σ[θ − θw]2−dxdt ≤ σ

∫ T

0
‖[θ − θw]−‖2

H
1
2 (Ω)

dt.

Implementing the interpolation inequality, we derive∫ T

0

∫
∂Ω
σ[θ − θw]2−dxdt ≤ σ

∫ T

0

(
‖[θ − θw]−‖L2(Ω)

) (
‖[θ − θw]−‖H1(Ω)

)
dt.

Young’s inequality then yields∫ T

0

∫
∂Ω
σ[θ − θw]2−dxdt ≤ κ

2

∫ T

0

∫
Ω
|∇[θ − θw]−|2dxdt

+ c1

∫ T

0

∫
Ω

[θ − θw]2−dxdt,

with a constant c1 depending on σ and κ.

Noticing the non-positivity of the term −
∫ T

0

∫
Ωe
−ηηt[θ−θw]−dxdt, we can conclude

that

1
2

∫
Ω

[θ − θw]2−dx ≤ C
∫ T

0

∫
Ω

[θ − θw]2−dxdt.

Gronwall’s inequality then yields [θ − θw]− = 0. Invoking (A1), a similar reasoning
yields the upper bound for θ. �



8 DIETMAR HÖMBERG1, SHUAI LU2, KENICHI SAKAMOTO3, AND MASAHIRO YAMAMOTO4

3. Uniqueness of the inverse problems

In the preceding section we have seen that for any α ∈ Aad there exists a unique solution
θ(α), P (α) to the the state system (2.1), (2.2). In this section, we consider the solution
θ(α)(x, t) in the class W 2,1

2 (Q). Now, we consider the inverse problem and ask if we
can identify α from temperature measurements in an arbitrary subdomain ω ⊂ Ω with
non-zero measure, i.e. we consider the problem

(IP) determine α by θ|ω×(0,T ).

We are ready to state the main result on the inverse problem.

Theorem 3.1. (uniqueness) Assume (A1)-(A3). If θ(α1)(x, t) = θ(α2)(x, t) for x ∈ ω
and 0 < t < T , then I := {θ(α1)(x, t) : x ∈ ω, 0 < t < T} is a non-empty open interval
and α1(η) = α2(η) for η ∈ I.

Remark 3.2. (1) For our inverse problem, we cannot expect any maximum principle
or monotone property of θ with respect to α, and we use interior observation
data in ω × (0, T ).

(2) This is a local uniqueness result, that is, we can prove the uniqueness only over
an interval I.

(3) As is seen by the proof, the local uniqueness also follows, if we replace assumption
(A2) by one of the following conditions:

• θ0 is not a constant function in ω.

• θ0 is constant in ω and θw(x, t) 6≡ θ0 on ∂Ω× (0, T ).

Corollary 3.3. Under the same assumption of Theorem 3.1, if αk, k = 1, 2 are real-
analytic in {η : αk(η) 6= 0} and θ(α1)(x, t) = θ(α2)(x, t) for x ∈ ω and 0 < t < T , then
suppα1 = suppα2 and α1 = α2 on suppα1.

Remark 3.4. By modifying the uniqueness proof, we can prove some conditional stability
estimate for ‖α1 − α2‖C(I) by suitable norm provided that α1, α2 are in some bounded
set. Here we omit details.

For the proof we need the following

Lemma 3.5. Let z ∈W 2,1
2 (Ω× (0, T )) satisfy

∂tz − κ∆z =
∫ t

0
A(x, t, τ)z(x, τ)dτ, x ∈ Ω, 0 < t < T

z(x, 0) = 0, x ∈ Ω

with A ∈ L∞(Ω× (0, T )2). If z = 0 in ω × (0, T ), then z = 0 in Ω× (0, T ).

The proof of Lemma 3.5 is done by a Carleman estimate and given in the Appen-
dix.

Proof of Theorem 3.1. We set u = θ(α1), v = θ(α2), p = P (α1), q = P (α2) and

y = u− v, r = p− q.
Then y = 0 in ω × (0, T ). Then

(3.1) ∂ty = κ∆y + L(u)∂tr + (L(u)− L(v))∂tq in Ω× (0, T )
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and

(3.2) ∂tr = γ(1− p)
∫ t

0
α1(u)(t− τ)2dτ − γ(1− q)

∫ t

0
α2(v)(t− τ)2dτ.

We set

Σ1 = {(x, t) ∈ ω × (0, T ) : θ− < u(x, t) < θ0}.

Then

(3.3) αk(u(x, t)) = 0, k = 1, 2, (x, t) ∈ ω × (0, T ) \ Σ1

by supp αk ⊂ (θ−, θ0) and

(3.4) L(u(x, t)) 6= 0, (x, t) ∈ Σ1

by assumption (A2).

By y = 0 in ω × (0, T ), (3.1) and (3.4), we have ∂tr = 0 in Σ1. By r(x, 0) = 0,
x ∈ Ω, we see that r = 0 in Σ1. Hence (3.2) and u = v in ω × (0, T ) yield

(1− p(x, t))
∫ t

0
(α1(u)(x, τ)− α2(u)(x, τ))(t− τ)2dτ = 0, (x, t) ∈ Σ1.

By (2.2) and α ≥ 0, we can verify that p(x, t) < 1 for (x, t) ∈ Ω× [0, T ] and∫ t

0
(α1(u)(x, τ)− α2(u)(x, τ))(t− τ)2dτ = 0, (x, t) ∈ Σ1.

Hence

α1(u(x, t)) = α2(u(x, t)), (x, t) ∈ Σ1.

Therefore by (3.3) we have

(3.5) α1(u(x, t)) = α2(u(x, t)), (x, t) ∈ ω × (0, T ).

It suffices that I = {u(x, t) : x ∈ ω, 0 ≤ t ≤ T} contains at least two points. Then, the
intermediate value theorem yields that I is a non-empty open interval. Assume that
u(x, t) = θ(α1)(x, t) is constant for x ∈ ω and 0 < t < T . Then u ≡ θ0 in ω × (0, T )
by (2.1). We set z = u − θ0. Therefore z = 0 in ω × (0, T ). On the other hand, by
(3.3) we obtain α1(θ0) = 0. The mean value theorem yields α1(u(x, τ)) = α1(z + θ0) =
α1(θ0) + (α1)′(µ)z = (α1)′(µ)z(x, τ) for (x, τ) ∈ Ω× (0, T ), where µ is between θ0 and
u(x, τ). Hence with A ∈ L∞(Ω× (0, T )2), we can rewrite (2.1) as

(3.6) ∂tz − κ∆z =
∫ t

0
A(x, t, τ)z(x, τ)dτ, x ∈ Ω, 0 < t < T

and

(3.7) z(x, 0) = 0, x ∈ Ω.

In view of Lemma 3.5, we have u = θ0 in Ω × (0, T ). Therefore the boundary
condition of θ1 yields θ0 = θw. This contradicts θ0 > θw. Thus the proof is completed.

�
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4. Analysis of the optimal control problem

4.1. Interior measurement. The minimization approach is realized by the following
cost functional

J(θ, η) :=
1
2

∫ T

0

∫
ω
(θ − θm)2dxdt

with the measurement data θm in a small interior domain ω ⊂ Ω satisfying (A4). Thus
the optimal control problem in current work is to

min
α∈Aad

J(θ, η) subject to (2.3)− (2.4).(4.1)

Taking a minimizing sequence and proceeding with similar arguments as in [10],
we can prove the following existence theorem.

Theorem 4.1. The optimal control problem (4.1) has a solution ᾱ ∈ Aad.

4.2. Differentiability of the solution operator. In view of Section 2, we are ready
to introduce the well-defined solution operator F , s.t.

F : α 7→ (θ(α), η(α)), Aad →W 2,1
p (Q) ∩ C0,ε(Q̄)×W 1,p(0, T ;Lp(Ω)).

To show the Gâteaux differentiability of F , we need the following stability estimate for
two feasible solutions α1,2 ∈ Aad which follows easily from Lemma 2.2 and Theorem
2.6:

Lemma 4.2. Let (θ1,2, η1,2) be the solutions of (2.3)-(2.4) corresponding to α1,2 ∈ Aad.
Then there is a constant C such that

‖θ1 − θ2‖W 2,1
p (Q)

+ ‖θ1 − θ2‖C0,ε(Q̄) + ‖η1 − η2‖W 1,p(0,T ;Lp(Ω)) ≤ C‖α1 − α2‖C[θ−,θ+].

Next, we choose a second coefficient function α̃ ∈ Aad and define the admissible
perturbation αε = α+ ε(α̃− α) with a small constant ε. Denote (θε, ηε) and (θ, η) the
solutions of (2.3)-(2.4) corresponding to α and αε, respectively, we define u = lim

ε→0

θε−θ
ε

and v = lim
ε→0

ηε−η
ε . In view of the definition of αε, we can conclude

lim
ε→0

αε(θε)− α(θ)
ε

= α′(θ)u+ α̃(θ)− α(θ)

and

lim
ε→0

L(θε)e−η
ε
ηεt − L(θ)e−ηηt
ε

= L′(θ)e−ηηt − L(θ)e−ηηtv + L(θ)e−ηvt.

Hence, we formally can derive the following linearized system for (u, v):

ut − κ∆u = L′(θ)ue−ηηt − L(θ)e−ηηtv + L(θ)e−ηvt, in Ω× (0, T );(4.2a)
∂νu+ σu = 0, on ∂Ω× (0, T );(4.2b)

u|t=0 = 0, in Ω,(4.2c)

and
d4v

dt4
= 2γ(α̃(θ)− α(θ) + α′(θ)u);(4.3a)

v(i)(0) = 0, (i = 0, . . . , 3).(4.3b)
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Regarding (A1), it is easy to see that the linearized system (4.2), (4.3) admits a
unique solution with the same regularity as the state system. Now, we define

uε = θε − θ − εu; vε = ηε − η − εv.

To verify that (u, v) is indeed the Gâteaux derivative of (θ, η), it remains to
show

‖uε‖
W 2,1
p (Q)

+ ‖uε‖C0,ε(Q̄) + ‖vε‖W 1,p(0,T ;Lp(Ω)) = o(ε)

However, this can be done using a first order Taylor expansion and the a priori estimates
of Theorem 2.6 and Lemma 4.2. All in all, we can infer

Theorem 4.3. The solution operator

F : α ∈ Aad →W 2,1
p (Q) ∩ C0,ε(Q̄)×W 1,p(0, T ;Lp(Ω))

subject to (2.3)-(2.4) is Gâteaux differentiable. The directional derivative (u, v) in di-
rection α̃− α is defined as the solution to (4.2)-(4.3).

Following the standard techniques (see, e.g., [22]), we introduce the Lagrange mul-
tiplier (ϑ, ζ) and the Lagrangean

L(θ, η, ϑ, ζ) :=
1
2

∫ T

0

∫
ω
(θ − θm)2dxdt−

∫ T

0

∫
Ω

(θt − κ∆θ − L(θ)e−ηηt)ϑdxdt

−
∫ T

0

∫
∂Ω

(κ∂νθ + σ(θ − θw))ϑdxdt−
∫ T

0

∫
Ω

(
d4η

dt4
− 2γα(θ)

)
ζdxdt.

Taking the derivative with respect to θ we derive

Lθ(θ, η, ϑ, ζ)h =
∫ T

0

∫
ω
(θ − θm)hdxdt+

∫ T

0

∫
Ω
ϑthdxdt−

∫
Ω
ϑh
∣∣∣T
0

dx+
∫ T

0

∫
Ω
L′(θ)he−ηηtϑdx

+
∫ T

0

∫
Ω
hκ∆ϑdxdt−

∫ T

0

∫
∂Ω
κ∂νϑhdxdt+

∫ T

0

∫
∂Ω
κ∂νhϑdxdt

−
∫ T

0

∫
∂Ω
κ∂νhϑdxdt−

∫ T

0

∫
∂Ω
σhϑ+

∫ T

0

∫
Ω

2γα′(θ)ζhdxdt.

Thus the adjoint ϑ satisfies the parabolic system

−ϑt − κ∆ϑ = L′(θ)e−ηηtϑ+ 2γα′(θ)ζ + χω(θ − θm) in Ω× (0, T );(4.4a)
κ∂νϑ+ σϑ = 0 on ∂Ω× (0, T );(4.4b)

ϑ(T ) = 0 in Ω(4.4c)

where χω is the characteristic function on ω.

The adjoint equation for η is derived by taking the η derivative with respect to the
Lagrangean, i.e.

Lη(θ, η, ϑ, ζ)k = −
∫ T

0

∫
Ω
L′(θ)θte−ηϑkdx−

∫ T

0

∫
Ω
L(θ)e−ηϑtkdxdt+

∫
Ω
L(θ)e−ηpk

∣∣∣T
0

dx

−
∫ T

0

∫
Ω

d4ζ

dt4
kdxdt+

(∫
Ω

d3ζ

dt3
kdx−

∫
Ω

d2ζ

dt2
dk

dt
dx+

∫
Ω

dζ

dt

d2k

dt2
dx−

∫
Ω
ζ
d3k

dt3
dx
) ∣∣∣T

0
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or equivalently

−d
4ζ

dt4
= L′(θ)θte−ηϑ+ L(θ)e−ηϑt in Ω× (0, T );(4.5a)

ζ(i)(T ) = 0, i = 0, . . . , 3, in Ω.(4.5b)

To obtain an a priori estimate for the adjoint system we can proceed in a standard
manner. First, we integrate (4.5) three times and obtain

ζt(t) =
1
2

∫ T

t
(t− s)2

(
L′(θ)θse−ηϑ+ L(θ)e−ηϑs

)
ds

We test this equation with |ζ|p−2ζ, use the inequalities of Gronwall and Young, and the
regularity of data and state variables to conclude∫

Ω
|ζ(t)|pdx ≤ c1 + c2‖ϑ‖p

W 2,1
p (Ω×(t,T ))

.

Using this estimate and writing ϑ(t) = −
∫ T
t ϑs ds we obtain for the right-hand side of

(4.4a)

‖L′(θ)e−ηηtϑ+ 2γα′(θ)ζ + χω(θ − θm)‖pLp(Ω×(T,t)) ≤ c3 + c4

∫ T

t
‖ϑ‖p

W 2,1
p (Ω×(s,T ))

ds.

Hence, using Gronwall’s Lemma and Lemma 2.2, we obtain an a priori estimate for ϑ in
W 2,1
p (Q). In the same way one can use a contraction argument to show that the adjoint

system admits a unique solution

Finally, we will formulate the first order necessary optimality condition. To this
end, we employ the linearized and adjoint system and integrate by parts with respect
to time to obtain

0 ≤
∫ T

0

∫
ω
(θ − θm)udxdt

(4.4)
=
∫ T

0

∫
Ω
ϑutdxdt+

∫ T

0

∫
Ω
κ∇ϑ∇udxdt−

∫ T

0

∫
Ω
L′(θ)e−ηηtϑudxdt

+
∫ T

0

∫
∂Ω
σϑudxdt− 2

∫ T

0

∫
Ω
γα′(θ)ζudxdt

(4.2)
= −2

∫ T

0

∫
Ω
γα′(θ)ζudxdt−

∫ T

0

∫
Ω
L(θ)e−ηηtvϑdxdt+

∫ T

0

∫
Ω
L(θ)e−ηvtϑdxdt

= −2
∫ T

0

∫
Ω
γα′(θ)ζudxdt−

∫ T

0

∫
Ω
L′(θ)θte−ηϑvdxdt−

∫ T

0

∫
Ω
L(θ)e−ηϑtvdxdt

(4.5)
= −2

∫ T

0

∫
Ω
γα′(θ)ζudxdt+

∫ T

0

∫
Ω

d4ζ

dt4
vdxdt

(4.3)
= 2γ

∫ T

0

∫
Ω

(
α̃(θ)− α(θ)

)
ζdxdt.

We summarize the first order necessary optimality condition in the following the-
orem:
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Theorem 4.4. Assume (A1)–(A4), then there exists an optimal control ᾱ ∈ Aad, an
optimal state set (θ̄, η̄) satisfying (2.3)-(2.4), and the adjoint state (ϑ, ζ) satisfying (4.4)-
(4.5). Moreover, the following variational inequality holds true s.t.∫ T

0

∫
Ω

(α(θ̄)− ᾱ(θ̄))ζ ≥ 0, for all α ∈ Aad

where Aad is the admissible set.

4.3. Interior & boundary measurement. We also admit that the cost functional
can be established as

J(θ, η) :=
1
2

∫ T

0

∫
ω
(θ − θm,1)2dxdt+

1
2

∫ T

0

∫
∂Ω

(θ − θm,2)2dxdt.

Then the corresponding adjoint system for the temperature satisfies ϑt + κ∆ϑ = −2γα′(θ)ζ − χω(θ − θm,1) in Ω× (0, T );
∂νϑ+ σϑ = θm,2 − θ on ∂Ω× (0, T );

ϑ(T ) = 0,
(4.6)

where χω is the characteristic function on ω. Other adjoint for the phase fraction and
the first order necessary optimality condition are the same as previous subsection.

5. Numerical Simulation

In this section we present a numerical example by implementing the optimal control
problem (4.1) to a 2D problem as an illustration. For simplicity’s sake the following
parabolic-ODE coupled system will be considered with a constant latent heat L :=
L(θ),  θt − κ∆θ = LPt in Ω× (0, T );

κ∂vθ + σ(θ − θw) = 0 on ∂Ω× (0, T );
θ(x, 0) = θ0 in ∂Ω

(5.7)

and {
Pt = γ(1− P )

∫ t
0 α(θ)(t− τ)2dτ in Ω× (0, T );

P (0) = 0 in Ω
(5.8)

where the symbols take the values of Ω = (−1, 1), L = 151.099, κ = 0.125, σ = 1,
θw = 20, θ0 = 800 and γ = 4π. Our choice of these data reflects the cooling of a
eutectoid carbon steel, which is known to exhibit one diffusive phase transition below
the temperature θ0, see, e.g., [11]. Moreover, we assume a uniform growth rate ρ = 1.
To realize the forward problem we let the nucleation rate, also the control, α(θ) =
6 exp(−0.02(θ−650)2) and discretize the coupled system with the finite element method
by the Matlab pde toolbox. In order to save the computational time we adjust the cost
functional with a weighted constant W = 103 such that

J(θ(α)) =
W

2

∫ T

0

∫
ω
(θ − θm)2dxdt(5.9)

where the adjoint system is adjusted accordingly in the numerical realization. The
measurement domain ω is a circle centered at (0, 0.6) with a radius of 0.2. In Figures
1 and 2, we collect the complete domain, the measurement θm at T = 3 and the
temperature distribution θ(x, t), phase volume fraction P (x, t) at x = (0, 0.6). As one
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can observe in the left penal of Figure 2 the cooling process is disturbed by the latent
heat induced by the phase volume fraction P especially at t ∈ (0.5, 1.5).

Figure 1. Left: the whole domain Ω and the observation domain ω.
Temperature distribution and phase volume fraction at � (x = (0, 0.6))
is presented in Figure 2. Right: Measurement θm(x, T ) for x ∈ ω and
T = 3.

Figure 2. Left: Temperature distribution θ(x, t). Right: Phase vol-
ume fraction P (x, t) for x = (0, 0.6) and t ∈ [0, 3].

In order to identify the nucleation rate α(θ) with respect to the measured temper-
ature distribution on ω we define the support of the control supp(α) = [θ−, θ+] with
θ− = 650 and θ+ = 750. We then discretize the domain [θ−, θ+] with equal-distance
distributed points θ− := τ0 ≤ τ1 < · · · < τN := θ+ and approximate α with cubic
B-splines of basis functions ϕi(τ) such that

αN (τ) =
N∑
i=1

αiϕi(τ), τ ∈ [θ−, θ+]

with N = 9.

We thus define a finite-dimensional set of admissible controls

αNad = {αN = (α1, . . . , αN )T ∈ RN : 0 ≤ m ≤ αi ≤M for i = 1, . . . , N}
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with the upper and lower constraints M and m. The original (infinite-dimensional)
optimal control problem (4.1) is reduced into a finite form such that Jdis(αN ) =
J(θ(αN ), αN ) and define ᾱN to be the optimal control. By choosing αN satisfying
αj = ᾱj for j 6= l, the first order necessary optimality condition in Theorem 4.4
yields

(αl − ᾱl)
∫ T

0

∫
Ω
ϕl(θ̄)ζdxdt ≥ 0.

The feasible gradient for Jdis(αN ) thus can be defined by

∂Jdis
∂αl

=
∫ T

0

∫
Ω
ϕl(θ̄)ζdxdt, 1 ≤ l ≤ N,(5.10)

which allows us to solve the optimal control problem with a quasi-Newton method rou-
tinely by calling Matlab command fmincon. In Figure 3, we displayed four snapshots
of the approximated solution towards the exact measured data. Quantitative informa-
tion of the iteration is collected in Table 1 with objective function value as well as the
gradient value.

Figure 3. 4 snapshots of the approximated solution towards the exact
measured data. The solid line is the exact solution, the dashed line is
the approximated one.

Finally to investigate the robustness of our proposed method we tested our algo-
rithm with noisy perturbed data. The noisy data is generated by adding the exact
measurements with uniformly distributed noise whose absolute noise levels are 0.1 and
0.4 respectively. In Figure 4 we collected the the optimization results for perturbed
data where the stable performance can be observed.
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Table 1. Quantitative information of the objective functional Ji and
error in the gradient ei = ‖Ḡ(θ)−Gi(θ)‖

Iteration i Ji ei

1 2608.62 650
15 0.0393 0.0070
30 0.0068 0.0003
46 3.2× 10−10 3.15× 10−6

Figure 4. Final iteration of the optimization problem for noisy data.
Left: absolute noise level 0.1; Right: absolution noise level 0.4.

6. Conclusions

In the present paper we have investigated the identification of the temperature
dependent nucleation rate for the generalised Avrami model. We have shown its unique
identifiability and derived an optimal control based approximation scheme. Numerical
results with model data prove the feasibility of this approach.

The next step will be the utilisation of experimental data which have been derived
from dilatometer experiments as in [11]. From modelling point of view an interesting
task is the generalisation of the present model to multiphase nucleation and growth
models. This would allow to describe the phase evolution in modern multi-phase steels.
Finally, the ultimate goal is to study the optimal control problem for the production of
multi-phase steels. In other words one would like to compute optimal cooling conditions
to produce a steel with desired micro structural composition.

Acknowledgment

The first author is partially supported by the DFG Research Center Matheon
“Mathematics for key technologies” in Berlin. The second author is grateful to
Nataliya Togobytska (WIAS, Germany) and Xinming Wu (Fudan, China) for fruit-
ful discussions and helps on the numerical realization of Section 5. S. Lu is supported
by NSFC (key project no. 91130004, no. 11101093); Shanghai Science and Technology
Commission (no.11ZR1402800) and the Programme of Introducing Talents of Discipline
to Universities (number B08018), China.



NON-ISOTHERMAL NUCLEATION AND GROWTH PROCESSES 17

References

[1] Avrami, M., Kinetics of phase change. I general theory. J. Chem. Phys., 7 (1939), 110311.12.
[2] Avrami, M., Kinetics of phase change. II transformation time relations for random distribution of

nuclei. J. Chem. Phys., 8 (1940), 212–224.
[3] Avrami, M., Kinetics of phase change. III granulation, phase change, and microstructure kinetics

of phase change. J. Chem. Phys., 9 (1941), 177–184.
[4] Burger, M., Capasso, V., Micheletti, A., Optimal control of polymer morphologies. J. Eng. Math.,

49 (2004), 339–358.
[5] Choulli, M. and Ouhabaz, E.M. and Yamamoto, M., Stable determination of a semilinear term in

a parabolic equation. Commun. Pure Appl. Anal., 5 (2006), 447–462.
[6] Christian J.W., The Theory of Transformations in Metals and Alloys, Part I. Pergamon (2002).
[7] DuChateau, P. and Rundell, W., Unicity in an inverse problem for an unknown reaction term in a

reaction-diffusion equation. J. Differential Equations, 59 (1985), 155–164.
[8] Egger, H. and Engl, H. and Klibanov, M. V., Global uniqueness and Hölder stability for recovering
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Appendix A. Proof of Lemma 3.5

First we show a Carleman estimate. Let d ∈ C2(Ω) such that |∇d| 6= 0 on Ω. We
set

ψ(x, t) = d(x)− βt2, ϕ(x, t) = eλψ(x,t),

D = {(x, t) : x ∈ Ω, t > 0, ψ(x, t) > ε}
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with some β > 0 and ε > 0. We fix sufficiently large λ > 0. We assume that D ⊂
Ω× [0, T ]. We set Lu = ∂tu− κ∆u. Then, there holds

Lemma A.1. There exists a constant s0 > 0 such that there exists a constant C =
C(s0) > 0 such that ∫

D
(s|∇u|2 + s3|u|2)e2sϕdxdt

≤ C

∫
D
|Lu|2e2sϕdxdt+ CeCs

∫
∂D

(|∇x,tu|2 + |u|2)dSdt

for all s > s0 and u ∈ H2,1(D).

The proof is found e.g., as Theorem 3.2 in Yamamoto [25].

Let Ω0 be an arbitrary bounded domain such that ∂Ω0 is smooth and

Γ := ∂Ω0 ∩ ω ⊃ ∂Ω0 ∩ {x ∈ IR3 : |x− x0| < ε0}(1)

with some x0 ∈ IR3 and ε0 > 0. By z = 0 in ω × (0, T ), we have

z = |∇x,tz| = 0 on Γ× (0, T ).(2)

It suffices to prove that

z = 0 in Ω0 × (0, T ).(3)

In fact, since Ω is covered by a family of Ω0 satisfying (1), the conclusion (3) implies
that z = 0 in Ω× (0, T ).

Let Ω1 be a bounded domain with smooth boundary such that

Ω1 ⊂ Ω0 ∪ Γ,

∂Ω1 ∩ ∂Ω0 6= ∅ is an open subset of ∂Ω0, and is a proper subset of Γ.
For proving (3), we have only to prove

z = 0 in Ω1 × (0, T ).(4)

Because we can choose Ω1 arbitrarily close to Ω0.

Let Ω2 be a union of Ω0 and a bounded domain Ω̂ ⊂ IR3 \ Ω0 such that ∂Ω̂∩Ω0 = Γ
and Ω̂ contains some non-empty open set. Then

Ω0 ⊂ Ω2, Γ = ∂Ω0 ∩ Ω2, ∂Ω0 \ Γ ⊂ ∂Ω2.(5)

Choose ω0 satisfying ω0 ⊂ Ω2 \ Ω0. Then there exists d ∈ C2(Ω2) satisfying

d(x) > 0, x ∈ Ω2, d(x) = 0, x ∈ ∂Ω2,

|d(x)| > 0, x ∈ Ω2 ∩ Ω0.(6)

The existence of such d is proved e.g., in Imanuvilov [12].

Then, since Ω1 ⊂ Ω2 and d|∂Ω2 = 0, we can choose a sufficiently large N > 1 such
that

{x ∈ Ω2 : d(x) >
4
N
‖d‖C1(Ω2)} ∩ Ω0 ⊃ Ω1.(7)

We choose β > 0 and ε > 0 such that

β >
‖d‖C(Ω2)

T 2
, 0 < ε <

√
3‖d‖C(Ω2)

Nβ
.(8)
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We set µk = k
N ‖d‖C(Ω2), k = 1, 2, 3, 4 and

D = {(x, t) : x ∈ Ω0, t > 0, ψ(x, t) > µ1}.(9)

Then we can prove

Ω1 × (0, ε) ⊂ D ⊂ Ω0 × (0, T ).(10)

Proof of (10). Let (x, t) ∈ Ω1 × (0, ε). Then, by (7), we see that x ∈ Ω0 and

d(x) ≥ 4
N
‖d‖C(Ω2).

Hence

ψ(x, t) = d(x)− βt2 > 4
N
‖d‖C(Ω2) − βε

2

>
1
N
‖d‖C(Ω2) +

(
3
N
‖d‖C(Ω2) − βε

2

)
>

1
N
‖d‖C(Ω2) = µ1

by (8). Therefore (x, t) ∈ D. Next let (x, t) ∈ D. Then by the definition of D, we have
x ∈ Ω0 and d(x)− βt2 > µ1. Hence ‖d‖C(Ω2) − βt2 > µ1 = 1

N ‖d‖C(Ω2), and so

‖d‖C(Ω2) >
N − 1
N
‖d‖C(Ω2) > βt2,

that is,

0 < t <

√
‖d‖C(Ω2)

β
.

The first condition in (8) yields 0 < t < T . Therefore (10) is verified.

Next we have

∂D ⊂ Σ1 ∪ Σ2 ∪ Σ3,(11)

where
Σ1 ⊂ Γ× (0, T ), Σ2 = {(x, t) : x ∈ Ω0, t ≥ 0, ψ(x, t) = µ1}

and
Σ3 ⊂ Ω0 × {0}.

In fact, it is sufficient to prove that ∂D ∪ {t > 0} ⊂ Σ1 ∪ Σ2. In fact, let (x, t) ∈
∂D ∩ {t > 0}. Then x ∈ Ω0, t > 0 and ψ(x, t) ≥ µ1. We separately consider the cases
x ∈ Ω0 and x ∈ ∂Ω0. First let x ∈ Ω0. If ψ(x, t) > µ1, then (x, t) is an interior point of
D. Therefore if x ∈ Ω0, then ψ(x, t) = µ1. Next let x ∈ ∂Ω0. Let x ∈ ∂Ω0 \ Γ. Then
x ∈ ∂Ω2 by the third condition in (5), and d(x) = 0 by the second condition in (6). On
the other hand, ψ(x, t) ≥ µ1 yields that

d(x)− βt2 = −βt2 ≥ 1
N
‖d‖C(Ω2).

By t > 0, this is impossible. Therefore we must have x ∈ Γ. In terms of (10), we have
t ∈ (0, T ). Thus the verification of (11) is completed.

We apply Lemma A.1 in D. Henceforth C > 0 denotes generic constants, which
are independent of s and choices of g, p, κ. For it, we need a cut-off function because we
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have no data on ∂D\(Γ×(0, T )). Let χ0 ∈ C∞(IR) be monotone increasing, 0 ≤ χ0 ≤ 1,
and satisfy

χ0(η) =
{

1, η > µ3,
0, η < µ2.

Then setting χ(x, t) = χ0(ψ(x, t)), we see that χ ∈ C∞(IRn+1), 0 ≤ χ ≤ 1 and

χ(x, t) =
{

1, ψ(x, t) > µ3,
0, ψ(x, t) < µ2.

(12)

Since ψ(x, τ) ≥ ψ(x, t) for 0 ≤ τ ≤ t and x ∈ Ω1 and χ0 is monotone increasing, we
have

χ(x, τ) ≥ χ(x, t), 0 ≤ τ ≤ t, x ∈ Ω1.(13)

We set v = χz, and have

∂tv − κ∆v
= (∂tχ)z − 2κ∇χ · ∇z − κz∆χ

+
∫ t

0
A(x, t, τ)z(x, τ)dτ in D.(14)

Since z(x, 0) = 0, x ∈ Ω, we have z(x, 0) = ∂tz(x, 0) = 0, x ∈ Ω by substituting
t = 0 in ∂tz − κ∆z =

∫ t
0 A(x, t, τ)z(x, τ)dτ . Consequently by (3) and (11), we have

z = |∇z| = ∂tz = 0 on ∂D. Hence applying Lemma 1 in (14), we obtain∫
D
s3|v|2e2sϕdxdt

≤ C

∫
D
|(∂tχ)z − 2κ∇χ · ∇z − κz∆χ|2e2sϕdxdt

+ C

∫
D

∣∣∣∣χ(x, t)
∫ t

0
A(x, t, τ)z(x, τ)dτ

∣∣∣∣2 e2sϕdxdt

for all large s > 0. By (12), the first terms on the right-hand side includes the derivatives
of χ as factors and so does not vanish only if µ2 < ψ(x, t) < µ3. Hence∫

D
|(∂tχ)z − 2κ∇χ · ∇z − κz∆χ|2e2sϕdxdt ≤ CMe2sθ3 ,

where we set
θk = eλµk , k = 1, 2, 3, 4

and
M = ‖z‖2L2(0,T ;H1(Ω)).

Therefore ∫
D
s3|v|2e2sϕdxdt(15)

≤ CMe2sθ3 + C

∫
D

∣∣∣∣χ(x, t)
∫ t

0
A(x, t, τ)z(x, τ)dτ

∣∣∣∣2 e2sϕdxdt

for all large s > 0. We estimate the second term on the right-hand side. First by (9)
we note that (x, t) ∈ D if and only if

0 < t < g(x) :=

√
d(x)− µ1

β
, x ∈ Ω0.
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Therefore by (13) and v(x, τ) = χ(x, τ)z(x, τ), we obtain

J :=
∫
D

∣∣∣∣χ(x, t)
∫ t

0
A(x, t, τ)z(x, τ)dτ

∣∣∣∣2 e2sϕdxdt

≤
∫
D

(
|χ(x, t)|

∫ t

0
|A(x, t, τ)z(x, τ)|dτ

)2

e2sϕdxdt

≤
∫
D

(∫ t

0
|χ(x, τ)||A(x, t, τ)z(x, τ)|dτ

)2

e2sϕdxdt =
∫
D

(∫ t

0
|A(x, t, τ)v(x, τ)|dτ

)2

e2sϕdxdt

≤
∫
D

(∫ t

0
|v(x, τ)|dτ

)2

e2sϕ(x,t)dxdt.

At the last inequality, we used A ∈ L∞(Ω×(0, T )2) and the Cauchy-Schwarz inequality.
Hence, since ϕ(x, t) ≤ ϕ(x, τ) for 0 ≤ τ ≤ t, we have

J ≤ C
∫

Ω0

(∫ g(x)

0

(∫ t

0
|v(x, τ)|2dτ

)
e2sϕ(x,t)dt

)
dx

≤ C

∫
Ω0

∫ g(x)

0

(∫ t

0
e2sϕ(x,τ)|v(x, τ)|2dτ

)
dtdx ≤ C

∫
Ω0

∫ g(x)

0

(∫ g(x)

0
e2sϕ(x,τ)|v(x, τ)|2dτ

)
dtdx

≤ C max
x∈Ω0

g(x)
∫

Ω0

∫ g(x)

0
e2sϕ(x,τ)|v(x, τ)|2dτdx ≤ C1

∫
D
|v|2e2sϕdxdt.

Consequently by (15), we have

s3

∫
D
|v|2e2sϕdxdt ≤ CMe2sθ3 + C1

∫
D
|v|2e2sϕdxdt(16)

for all large s > 0. Choosing s > 0 large, we can absorb the second term on the
right-hand side into the left-hand side, and we have

s3

∫
D
|v|2e2sϕdxdt ≤ C2Me2sθ3 .

Since D(µ4) := {(x, t) ∈ D : ψ(x, t) > µ4} ⊂ D, we obtain

s3e2sθ4

∫
D(µ4)

|v|2dxdt ≤ C2Me2sθ3 ,

that is, ∫
D(µ4)

|v|2dxdt ≤ C2M

s3
e−2s(θ4−θ3)

for all large s > 0. Letting s→∞, noting that χ = 1 in D(µ4) by (12), we have v = 0
in D(µ4), that is, z = 0 in D(µ4). We can choose N > 0 arbitrarily and so µ4 > 0 is
arbitrary. Therefore we have z = 0 in D = D(µ1). Hence z = 0 in Ω1 × (0, ε) by (10).
Therefore z satisfies

∂tz − κ∆z =
∫ t

ε
A(x, t, τ)z(x, τ)dτ, x ∈ Ω1, ε < t < T,

and
z(x, ε) = 0, x ∈ Ω1.
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After fixing N > 0 sufficiently large, we choose ε > 0 by (8) and we repeat the previous
argument to have z = 0 in Ω1 × (ε, 2ε). Continuing this argument until mε ≥ T with
some m ∈ IN , we obtain (4). Thus the proof of Lemma 3.5 is completed.
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