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Abstract

We study a mechanical equilibrium problem for a material consisting of two
components with different densities, which allows to change the outer shape by
changing the interface between the subdomains. We formulate the shape design
problem of compensating unwanted workpiece changes by controlling the interface,
employ regularity results for transmission problems for a rigorous derivation of op-
timality conditions based on the speed method, and conclude with some numerical
results based on a spline approximation of the interface.

1 Introduction

By definition, distortion means undesired alterations in workpiece size and shape, which
may happen as a side effect at some stage in the manufacturing chain. In that case an
additional final step has to be added to the manufacturing chain, i.e., the elimination of
distortion by mechanical surface finishing. It has been shown that this leads to severe
economic losses within machine, automotive, and transmission industry [Thoben et al.,
2002]. Recently, a new strategy has been developed, which allows the elimination of
distortion already during heat treatment [Schüttenberg et al., 2005], the last step in
many manufacturing chains anyway.
Without going into details the cause why such a heat treatment might lead to a change
in geometry are the occurring solid-solid phase transitions during such a heat treatment.
They may lead to a microstructure consisting of phases with different densities, resulting
in internal stresses along phase boundaries and also to macroscopic changes in geometry.
Distortion compensation then means finding a desired phase mixture such that the result-
ing internal stresses and accompanying changes in geometry compensate the distortion
and hence lead to the desired workpiece size and shape.
Assuming that no rate effects occur during cooling, i.e., neglecting transformation-induced
plasticity [Che lminski et al., 2008], one can tackle this problem mathematically in a hybrid
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approach. In the first step the optimal microstructure for distortion compensation is
computed solving a shape design problem subject to a stationary mechanical equilibrium
problem. In the second step an optimal cooling strategy is computed to realize this
microstructure. While the latter has been studied extensively, see, e.g., [Hömberg and
Volkwein, 2003, Hömberg and Kern, 2009] the goal of this paper is to develop a novel
approach to compute an optimal microstructure or phase mixture to compensate for
distortion.
In contrast to [Che lminski et al., 2013], where a phasefield approach to distortion com-
pensation is taken, here we assume that the workpiece domain D ⊂ Rd consists of a
microstructure with two phases in the domains Ω ⊂ D and D \ Ω, separated by a sharp
interface. For instance one might think of these two phases as having been created from
one parent phase during a heat treatment. To distinguish between the subdomains we
introduce the characteristic function χ = χΩ of the set Ω, which is equal to 1 for x ∈ Ω
and 0 otherwise.
Now assume the workpiece to be in equilibrium. Then the stress tensor σ satisfies

− div σ = 0, in D (1.1)

σn = 0, in ΓN (1.2)

u = 0, in Γ0 (1.3)

with Γ̄N ∪ Γ̄0 = ∂D. According to Hooke’s law only elastic strains contribute to the stress,
so in the case of small deformations we obtain

σ = A(ε(u)− ε̃), (1.4)

with the stiffness tensor A, the internal strain ε̃ and the linearized overall strain

ε(u) =
1

2
(Du + (Du)T ).

In general, the stiffness might be different in both subdomains, hence we make the ansatz

A = Aχ(x) := χ(x)A1 + (1− χ(x))A2. (1.5)

The main reason for the occurrence of internal stresses lies in the different densities of the
two subdomains. Thus we make an analogous mixture ansatz, i.e.

ε̃ = ε̃χ(x) := χ(x)ε̃1 + (1− χ(x))ε̃2,

and assume in addition isotropy, i.e.

Aiε̃i = βi(x)I,

where I is the identity matrix. Then the constitutive relation reads as

σχ(x) = Aχε(u)− βχI, (1.6)

with
βχ(x) := χ(x)β1 + (1− χ(x))β2. (1.7)

To motivate this modelling assumption, one might think that (1.1) describes the steady
state of an isotropic homogeneous linear thermoelastic body after cooling from a reference
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Figure 1: Deformation of a rectangular reference domain caused by subdomains with
different densities.

temperature θref to the asymptotic one, θ∞. In that case the internal stress corresponds
to the asymptotic linear thermoelastic stress, which can be described as

εth = δ(θ∞ − θref )I,

where δ denotes the thermal expansion.
Figure 1 demonstrates the effect of subdomains with different densities for the mechanical
equilibrium shape. For details about the chosen data we refer to Section 4. The goal of
this paper is to utilize this effect by finding an optimal mixture of subdomains Ω and its
complement in D, such that the workpiece attains a desired equilibrium shape. To this
end we consider the cost functional

J(χ,y) =

∫
Σ

‖y − ud‖2ds+ αPD(χ), (1.8)

where Σ ⊂ ΓN and ud ∈ H1(Rd,Rd). The geometric part of the cost functional, i.e., the
first two terms will drag the workpiece towards the desired equilibrium shape. Details how
to choose L1,2 in practice will be described in Section 4. It is known that minimizing this
geometric part alone would lead to homogenized or laminated microstructures [Allaire,
2002]. To avoid this scenario, we have added the last term in (1.8) term which penalizes
subdomains Ω with large perimeter P̂D(χ). Details about its definition will be given in
Section 2.1. Note that if the boundary is C2 the perimeter corresponds to the total surface
area of the boundary in three-dimensional problems, and to the total arc length of the
boundary in two-dimensional problems.
The optimal shape design problem to be studied in this paper then amounts to finding
an optimal subdomain Ω̂ and optimal displacement û = u(Ω̂) = u(χ̂), which solves the
equilibrium problem (1.1).
The main contribution of this paper is the rigorous derivation of the shape derivative
of our cost functional using a saddle point formulation and recent regularity results for
transmission problems [Costabel et al., 2010]. Similar results for scalar transmission
problems can be found in [Pantz, 2005,Afraites et al., 2007].
Note that this problem is related to topology optimization, where the subdomain Ω rep-
resents the final structure or topology of the workpiece and its complement D \
barOmega is interpreted as void. The goal is to find the stiffest structure corresponding to
the minimal compliance. In [Haber et al., 1996] this problem is studied with a perimeter
penalization. Recently, a number of authors investigated topology optimization, where
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the perimeter term is replaced by a Ginzburg Landau type phasefield relaxation [Bourdin
and Chambolle, 2003,Burger and Stainko, 2006].
In the next Section we will detail the optimal design problem, analyse the state system
and proof the existence of an optimal design. In Section 3 we derive optimality conditions
which we will utilize for the numerical computation of optimal phase mixtures in Section 4.

2 The shape design problem

2.1 Assumptions, notations and problem definition

Throughout this paper D ⊂ Rd is open, bounded and with Lipschitz boundary. In the
following we write χ := χΩ, for Ω ⊂ D open and with boundary Γ := ∂Ω. Henceforth
we will call Γ also interface and assume it locally to be the graph of a Lipschitz function.
We assume that Ω has at least ε > 0 distance to the boundary ∂D, i.e. d∂D(x) :=
infy∈∂D |x− y| > ε for x ∈ Ω. Moreover, we set Ω+ := Ω and Ω− := D \Ω. Thus we have

Γ = Ω
− ∩ Ω

+
. The set of characteristic function is defined by

X(D) := {χΩ : Ω Lebesque measurable and Ω ⊂ D}. (2.1)

The considerations of the first chapter, namely equations (1.1),(1.5), (1.6), (1.7), lead to
following interface model

− div (A1ε(u
+)) = 0 in Ω+,

− div (A2ε(u
−)) = 0 in Ω−,

−A2ε(u
−)nD = 0 on ΓN ,

u− = 0 on Γ0,

(2.2)

complemented by the transmission conditions

(A1ε(u
+)− A2ε(u

−))n = (β1 − β2)n on Γ, (2.3)

where the displacement field u : D → Rd is the unknown function and n and nD are unit
normal fields along ∂Ω and ∂D, respectively, see [Antman, 2005]. Here, we assume that
ΓN and Γ0 are disjoint parts of the boundary Γ with positive surface measure |Γ0| > 0.
The material is assumed to be isotropic and homogeneous in each phase, such that the
stiffness take the form

Ai(Θ) := 2µiΘ + λtr(Θ)I, Θ ∈ Rn,n, µi, λi > 0,

i = 1, 2. Mathematically, we control χ which describes the distribution of martensite. As
described in the introduction, we choose the cost functional

Ĵ(χ) :=
1

2

∫
Σ

‖u(χ)− ud‖2ds+ αP̂D(χ), (α > 0), (2.4)

where Σ ⊂ Γ \Γ0. The function u(χ) is a solution to (2.2), ud ∈ H1(D,R3) describes the
desired shape of the body.
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The total variation of a function χ ∈ X(D) is defined by

P̂D(χ) := Var(χ,D) := sup
ϕ∈C1c (D;Rd)

‖ϕ‖L∞(D)<∞

∫
D

div (ϕ)χdx.

A subset Ω ⊂ Rd has finite perimeter relative to D ⊂ Rd if PD(Ω) := P̂D(χΩ) < ∞. If
D = Rd then we define P̂(χ) := Var(χ,Rd) and P(Ω) := P̂(χΩ). In other words, a subset
Ω ⊂ D has finite perimeter if the characteristic function χ = χΩ ∈ X(D) belongs to the
space

BV (D) := {f ∈ L1(D)| Var(f,D) <∞}.

Since Ω ⊂ D, we have PD(Ω) = P(Ω). One should keep in mind that a finite perimeter set
Ω ⊂ Rd, PD(Ω) <∞, can have non zero d-dimensional Lebesque measure, i.e. µd(∂Ω) >
0. This is even true for the relative boundary ∂Ω∩D, see [Giusti, 1984, p. 7]. A reference
rich of results concerning spaces of bounded variation is [Ambrosio et al., 2000]. We will
search for optimal solutions in the set

BVχ(D) := {χ ∈ X(D)| χ ∈ BV (D)}.

In the following we will study the problem

min
χ∈BVχ(D)

Ĵ(χ), (2.5)

which we will see has at least one solution.

2.2 Analysis of state system

For each χ ∈ X(D) let us first introduce a bilinear form aχ : H1(D; Rd)×H1(D; Rd)→ R
by

aχ(ϕ,ψ) := a+
χ (ϕ+,ψ+) + a−χ (ϕ−,ψ−), .

where

aiχ(ϕi,ψi) =

∫
D

χΩiAiε(ϕ) : ε(ψ)dx (i ∈ {+,−}).

Then the weak form of the interface problem reads: Seek uχ = u ∈ H1(D; Rd)

aχ(u,ψ) =

∫
D

βχ div (ϕ)dx, for all ϕ ∈ W (2.6)

where
W := {v ∈ H1(D; Rd) : v|Γ0 = 0 in the trace sense}.

Using the characteristic function χ = χΩ (note that µd(Γ) = 0) the last equation can be
rewritten as∫

Ω

A1ε(u) : ε(ϕ)dx+

∫
D\Ω

A2ε(u) : ε(ϕ)dx = β1

∫
Ω

div (ϕ)dx+ β2

∫
D\Ω

div (ϕ)dx.

We have the following result concerning existence and uniqueness of the state equation.
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Theorem 2.1 For given χ ∈ X(D) the equation (2.6) has exactly one weak solution u(χ)
and we have the following apriori bound

‖u(χ)‖H1(D;Rd) ≤ C, (2.7)

where C := max{β1, β2}
√

3|D|/α depends only on β1, β2, |D| and α. Additionally, if the
interface Γ is C2, we have

u(χ)|Ω+ ∈ H2(Ω+; Rd), u(χ)|Ω̂− ∈ H
2(Ω̂−; Rd),

for each Ω̂− ⊂ Ω− such that supy∈∂D |x− y| > 0 for all x ∈ Ω̂−.

Proof : The higher regularity result is a direct consequence of [Costabel et al., 2010,
Theorem 5.3.8]. Here, we show that the equation (2.6) has indeed for every χ ∈ X(D)
a unique solution. This can be seen as follows:1 Since A1, A2 are positive definite with
k1 > k2 > 0 and from Korns inequality (with αK) it follows, that there exist constants
C, α > 0, independent of χ such that for all ϕ ∈ H1(D; Rd)

aχ(ϕ,ϕ) =

∫
D

χA1ε(ϕ) : ε(ϕ)dx+

∫
D

(1− χ)A2ε(ϕ) : ε(ϕ)dx

≥
∫
D

χ(k1 − k2)ε(ϕ) : ε(ϕ)dx︸ ︷︷ ︸
≥0

+

∫
D

k2ε(ϕ) : ε(ϕ)dx

≥ α‖ϕ‖2
H1(D;Rd) (αa := k2αK)

(2.9)

and
aχ(ϕ,ψ) ≤ C‖ϕ‖H1(D;Rd)‖ψ‖H1(D;Rd). (2.10)

Thus the Lemma of Lax Milgram (see [Evans, 1998, p. 297-299, Theorem 1]) guarantees
the unique solvability of the variational problem:

Seek u ∈ W : aχ(u,ϕ) =

∫
D

βχ div (ϕ)dx for all ϕ ∈ W , (2.11)

since ϕ 7→
∫
D
βχ div (ϕ)dx ∈ W−1 according to the estimate∫

D

βχ div (ϕ)dx ≤ max{β2, β1}
√
|D|‖ϕ‖H1(D;Rd). (2.12)

Notice that the constants are independent of Ω. To see the apriori bound, let χ ⊂ X(D)
be any characteristic functions and uχ the corresponding solutions to (2.6). Using (2.9)
we compute

α‖un‖2
H1(D;Rd) ≤ aχn(un,un)

=

∫
D

βχn(x) div (un)dx

≤ C‖un‖H1(D;Rd).

(2.13)

where C := max{β1, β2}
√

3|D|/α depends only on β1, β2, |D| and α. 2

1Note that at this stage of investigation it is by no means necessary to assume that A1, A2 are constant
tensors. Indeed, assume A1, A2 : D → L(R3,3; R3,3) and assuming

For a.e. x ∈ D : Ai(x)G : G ≥ ki||G||2, for all G ∈ Matsym(Rd,d), (2.8)

all calculations remain valid. Similarly, we could assume that β1, β2 ∈ L∞(D) instead of β1, β2 ∈ R+.

6



Remark 2.2 The space X(D) is not closed for the norms of Lp(D) (1 ≤ p <∞) and the
weak convergence of elements of X(D) coincides with the strong convergence if the limit
element is in X(D), cf. [Delfour and Zolésio, 2011].

Next we proof that the function X(D) 3 χ 7→ u(χ) ∈ W , considered as function from
Lq(D)→W for some large q > 2 Lipschitz continuous.

Lemma 2.3 There is a constant C > 0 and q > 2 such that for all χ1, χ2 ∈ X(D)

‖u(χ1)− u(χ2)‖H1(D;Rd) ≤ C‖χ1 − χ2‖Lq(D), (2.14)

where u(χ1),u(χ1) is a solution of (2.6).

Proof : Let χ1, χ2 ∈ X(D) be two characteristic functions. Set ui := u(χi) (i = 1, 2) and
u := u(χ), then we estimate

c‖u1 − u2‖2
H1(D;Rd) ≤

∫
D

Aχ1ε(u1 − u2) : ε(u1 − u2)dx

=

∫
D

(βχ1 − βχ2) div (u1 − u2)dx+

∫
D

(Aχ2 − Aχ1)ε(u2) : ε(u1 − u2)dx

≤ ‖χ1 − χ2‖L2(D)‖u1 − u2‖H1(D;Rd) (2.15)

+ ‖|Aχ2 − Aχ1||ε(u2)|‖L2(D)‖u1 − u2‖H1(D;Rd) ...

Now from [Herzog et al., 2011] we know that ε(u) ∈ L2+γ(D) for some γ > 0. Therefore
dividing (2.15) by ‖u1 − u2‖H1(D;Rd) and estimating the right hand site with the Hölder

inequality with q = 2+γ
2

and q′ := q
q−1

= 2
γ

+ 1, we obtain

‖u1 − u2‖H1(D;Rd) ≤ C(‖β1 − β2‖L2(D) + ‖Aχ2 − Aχ1‖Lq′ (D)‖ε(u2)‖Lq(D)) (2.16)

Finally noting that

|Aχ1 − Aχ2| = |χ1A1 + (1− χ1)A2 − (χ2A1 + (1− χ2)A2)|
≤ |χ1 − χ2|(|A1|+ |A2|)

and

|βχ1 − βχ2| = |χ1β1 + (1− χ1)β2 − (χ2β1 + (1− χ2)β2)|
≤ |χ1 − χ2|(|β1|+ |β2|)

we finish the proof. 2

2.3 Existence of an optimal shape

After the preparations of the last section, we can study the constraint optimization prob-
lem

(Pχ) inf
χ∈BVχ(D)

Ĵ(χ),

Theorem 2.4 For each α > 0 the problem (Pχ) with the cost functional (2.4) admits at
least one solution.
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Proof : Let χΩn = χn ∈ BVχ(D) be a minimizing sequence, Ωn the corresponding sets of
finite perimeter and un = u(χn) the corresponding solutions of (2.6). Let us denote by
j ≥ 0 the infimum of (Pχ). We have

j ≤
∫

Γd

‖ud‖2dx <∞

because P̂D(χ∅) = 0 and u(χ∅) = 0, which implies j < ∞ and therefore there is a c > 0
such that

∀n ∈ N : P̂D(χΩn) ≤ c,

and using Theorem 6.3 p. 247 in [Delfour and Zolésio, 2011] yields that there exists a
subsequence {Ωnk} of {Ωn} still indexed by n and a measurable subset Ω ⊂ D with

P̂D(χΩ) ≤ limn→∞P̂D(χΩn) and χΩn → χΩ in L1(D; Rd), (2.17)

that means in particular χΩ ∈ BVχ(D). Now Theorem 2.3 and (2.17) give us the lower-

semi continuity of the cost Ĵ . 2

3 Necessary optimality condition

3.1 Main result

In this section we are going to make the sensivity analysis for our cost functional. Instead
of introducing the material derivative to derive the shape derivative we are going to use the
saddle point formulation first introduced by Correa-Seeger in [Correa and Seeger, 1985]
and then applied to shape optimization and further developed by Morgan, Zolesio and
Delfour, see [Delfour and Zolésio, 2011] and the references therein. The main contribution
of this work is the derivation of nessacary optimality conditions for our interface problem.

Theorem 3.1 Let Ω ⊂ D be an open set with Lipschitz boundary, which solves the mini-
mization problem (2.17). Then the following nessacary optimality condition for the prob-
lem (Pχ) with J(Ω) := Ĵ(χΩ) holds

dJ(Ω)[V ] ≥ 0 for all admissible V ∈ VD, (3.1)

and the shape derivative of (3.7) exists for all V ∈ VD and is given by

dJ(Ω)[V ] =

∫
D

div (V )Aχε(u) : ε(p)dx−
∫
D

AχS(Du∂V ) : ε(p)dx

−
∫
D

Aχε(u) : S(Dp∂V )dx (3.2)

+

∫
D

βχ div (V ) div (p)dx+

∫
D

βχ(∂V )T : Dpdx+ α

∫
Γ

div Γ(V ) dHd−1,

where S(A) := 1
2
(A + AT ). If the interface Γ is C2, we obtain the following formula
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(Vn := V · n)

dJ(Ω)[V ] =

∫
Γ

(A1(ε(u+)− β1I) : ε(p+)− A2(ε(u−)− β2I) : ε(p−))Vnds

−
∫

Γ

(A1(ε(u+)− β1I)n) · ∂np+ Vnds−
∫

Γ

A1ε(p
+)n · ∂nu+ Vnds

+

∫
Γ

(A2(ε(u−)− β2I)n) · ∂np− Vnds+

∫
Γ

A2ε(p
−)n · ∂nu− Vnds

+ α

∫
Γ

κ VndH
n−1.

(3.3)

The state u and adjoint p are given as the solution of

u ∈ W , aχΩ
(u,ψ) = β1

∫
Ω

div (ψ+)dx+ β2

∫
D\Ω

div (ψ−)dx, ∀ψ ∈ W ,

p ∈ W , aχ(ϕ,p) +

∫
Σ

(u+ − ud)ϕ
+ds = 0, ∀ϕ ∈ W .

3.2 Speed method and Shape derivatives

Let D ⊂ Rd be open, bounded with Lipschitz boundary. For k ≥ 1 we consider the space

VkD := {V ∈ Ck(Rd; Rd) : supp(V ) ⊂ D} (3.4)

and for k =∞, we set V∞D := VD. The flow of the vector field V ∈ VkD is defined for each
x0 ∈ D by ΦV

t (x0) := x(t), where

ẋ(t) = V (x(t)) in (0, τ)

x(0) = x0.
(3.5)

Definition 3.2 (Eulerian semi-derivative) Suppose we are given a shape functional
J : A → R and a flow ΦV

t : D × R → Rd generated by a vector field V ∈ VD. Set
Ωt := Φt(Ω). Then the Eulerian semi-derivative of J at Ω ⊂ D in the direction V is
defined as the limit (if it exists)

dJ(Ω)[V ]
def
= lim

t→0

1

t
(J(Ωt)− J(Ω)) .

The derivative dJ(Ω)[V ] may be non-linear in V in general.

Definition 3.3 Let Ω ⊂ D and D ⊂ Rd open. The functional J is said to be shape
differentiable at Ω if the Eulerian semi-derivative dJ(Ω)[V ] exists for all VD and the map

V 7→ dJ(Ω)[V ] : VD → R, (3.6)

is linear and continuous.

We cite the following special case of a theorem from [Lamboley and Pierre, 2007, p. 3].
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Theorem 3.4 Let A ⊂ D ⊂ Rd be a be a domain, whose boundary ∂A locally is the
graph of a Lipschitz function. Then the shape derivative of the perimeter is given by

∀V ∈ VD : dP(A)[V ] =

∫
∂A

div ∂AV dHd−1,

Hd−1 being the d− 1 dimensional Hausdorff measure in Rd and

div ∂AV := div (V )|∂A −DV νA · νA

the tangential divergence. Moreover, if ∂A is C2 we have

∀V ∈ VD : dP(A)[V ] =

∫
∂A

κ V · n dHd−1,

n being the unit outwarding normal along ∂A and κ the curvature of ∂A.

3.3 Saddle points formulation

We now consider the objective function (2.4), but now we choose explicitly the subset Ω
as variable instead of χ. Again we explicitly write

J(Ω,ϕ) =
1

2

∫
Σ

‖ϕ− ud‖2ds+ αPD(Ω), (3.7)

where we have Ĵ(Ω) = J(Ω,u(Ω)) when u = u(Ω) solves (2.6). Let us rewrite the
minimization problem (2.5) in control type form by introducing the Lagrangian function:

L(Ω,ϕ,ψ) := J(Ω,ϕ) + aχ(ϕ,ψ)−
∫
D

βχ div (ψ)dx,

which can be written as

L(Ω,ϕ,ψ) :=
1

2

∫
Σ

‖ϕ− − ud‖2ds+

∫
Ω

A1ε(ϕ
+) : ε(ψ+)dx+

∫
D\Ω

A2ε(ϕ
−) : ε(ψ−)dx

− β1

∫
Ω

div (ψ+)dx− β2

∫
D\Ω

div (ψ−)dx+ αPD(Ω) (3.8)

One easily verifies

∀ϕ ∈ W : sup
ψ∈W
L(Ω,ϕ,ψ) =

{
J(Ω,u(Ω)) if ϕ = u(Ω)
+∞ if ϕ 6= u(Ω)

and therefore
min
ϕ∈W

sup
ψ∈W
L(Ω,ϕ,ψ) = J(Ω,u(Ω)).

Thus for Ω ⊂ D, we can write the function Ĵ(Ω) as a min-max of a Lagrangian function
L(Ω,ϕ,ψ). Next we will characterize the saddle points of L(Ω,ϕ,ψ).

Definition 3.5 Let A,B be sets and G : A × B → R a map. Then we say a pair
(ū, p̄) ∈ A×B is a saddle point on A×B if

G(ū, p) ≤ G(ū, p̄) ≤ G(u, p̄) ∀u ∈ A ∀p ∈ B.
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By convention p 7→ G(ū, p) has a maximum and u 7→ G(u, p̄) a minimum at p̄ respectively
ū. The saddle points are characterized by the next Lemmata.

Lemma 3.6 A function G on A×B has a saddle point (ū, p̄) on A×B if and only if

sup
p∈B

inf
u∈A

G(u, p) = inf
u∈A

sup
p∈B

G(u, p),

and in this case it is equal to G(ū, p̄).

Proof : See Temam, Ekeland [Ekeland and Temam, 1976]. 2

Lemma 3.7 Let X, Y be two Banach spaces. Let us suppose that A ⊂ X and B ⊂ Y ,
A,B are closed, convex and non-empty. Moreover, let G : A×B → R such that

∀u ∈ A, p 7→ G(u, p) is u.s.c., convex and Gateaux differentiable,

∀p ∈ A, u 7→ G(u, p) is l.s.c., concave and Gateaux differentiable.

Then (ū, p̄) ∈ A×B is a saddle point if and only if〈
∂G

∂u
(ū, p̄), u− ū

〉
≥ 0, ∀u ∈ A,〈

∂G

∂p
(ū, p̄), p− p̄

〉
≤ 0, ∀p ∈ B.

(3.9)

Proof : See Temam, Ekeland [Ekeland and Temam, 1976]. 2

Remark 3.8 When A and B in the previous Lemma are linear spaces, then we have
indeed equality in (3.9).

The Lagrangean enjoys nice properties

• L(Ω,ϕ,ψ) is convex and continuous with respect to the variable ϕ and

• continuous and affine-linear with respect to ψ:

Let (u,p) ∈ W ×W be a point saddle point, that is

inf
ϕ∈W

sup
ψ∈W
L(Ω,ϕ,ψ) = sup

ψ∈W
inf
ϕ∈W
L(Ω,ϕ,ψ) = L(Ω,u,p).

Then by Lemma 3.7 (u,p) satisfies

u ∈ W , ∂Lψ(Ω,u, ψ̂) = 0, ∀ψ̂ ∈ W ,

p ∈ W , ∂Lϕ(Ω, ϕ̂,p) = 0, ∀ϕ̂ ∈ W ,

or equivalently

u ∈ W , aχΩ
(u,ψ) = β1

∫
Ω

div (ψ+)dx+ β2

∫
D\Ω

div (ψ−)dx, ∀ψ ∈ W ,

p ∈ W , aχ(ϕ,p) +

∫
Σ

(u+ − ud)ϕ
+ds = 0, ∀ϕ ∈ W .

(3.10)
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The last equations is called adjoint equation. The strong formuation of the adjoint equa-
tion is as follows

− div (A1ε(p
+)) = 0 in Ω+,

− div (A2ε(p
−)) = 0 in Ω−,

−A2ε(p
−)nD = −(u+ − ud) on Σ,

p− = 0 on Γ0,

−A2ε(p
−)nD = 0 on ∂D \ (Σ ∪ Γ0),

(3.11)

complemented by the transmission condtions

A1ε(p
+)n = A2ε(p

−)n on Γ. (3.12)

3.4 Perturbartion of the domain Ω

Notice that by construction ΦV
t : D → D are bi-Lipschitzian for all t ≥ 0, where V ∈ VD.

Moreover, ΦV
t =: Φt are homeomorphism and Φt(int(D)) = int(D), Φt(∂D) = ∂D. Thus

given v ∈ W 1,p(D; Rd), p ≥ 1, we conclude (see Theorem 2.2.2, p. 52 [Ziemer, 1989]) that

v ◦ Φt ∈ W 1,p(D; Rd) if and only if v ∈ W 1,p(D; Rd)

and therefore
v ◦ Φt ∈ W if and only if v ∈ W .

In the same way we characterized the saddle points of the function L(Ω,ϕ,ψ), we can
characterize the saddle points of the perturbed reparametrized Lagrangean L(Ωt,ϕ,ψ).
As we have seen the objective function J(Ω,u(Ω)) can be written as the min-max of
the Lagrangean L(Ω,ϕ,ψ), which has a saddle point (u,p) completely characterized by
(3.10). We define the new domain Ωt := Φt(Ω). Then a saddle point (ut,pt) of

J(Ωt,u(Ωt)) = min
ϕ∈W

sup
ψ∈W
L(Ωt,ϕ,ψ),

is characterized again by Lemma 3.7 through

ut ∈ W , aχΩt
(ut,ψ) = β1

∫
Ωt

div (ψ+)dx+ β2

∫
D\Ωt

div (ψ−)dx, ∀ψ ∈ W ,

pt ∈ W , aχΩt
(ϕ,pt) +

∫
Σ

(ut − ud)ϕ
−ds = 0, ∀ϕ ∈ W .

(3.13)

The system (3.13) has exactly one solution (ut,pt) ∈ W×W since aχΩt
(·, ·) isW-coercive

and continuous. Note that the spaceW is independent of Ω. The following identity holds

ε(ϕ) ◦ Φt : ε(ψ) ◦ Φt = S(D(ϕ ◦ Φt) · (DΦt)
−1) : S(D(ψ ◦ Φt) · (DΦt)

−1),

12



where S : Rd,d → Rd,d is the symmetrization operator defined as S(A) := 1
2
(A + AT ),

note that S(Dϕ) = ε(ϕ). Thus a change of variables leads to∫
Ω

JtA1S(D(u+
t ◦ Φt)(DΦt)

−1) : S(D(ψ+ ◦ Φt)(DΦt)
−1)dx

+

∫
D\Ω

JtA2S(D(u−t ◦ Φt)(DΦt)
−1) : S(D(ψ− ◦ Φt)(DΦt)

−1)dx

= β1

∫
Ω

DΦ−Tt : D(ψ+ ◦ Φ−1
t )dx+ β2

∫
D\Ω

DΦ−Tt : D(ψ− ◦ Φ−1
t )dx

∀ψ ∈ W ,∫
Ω

JtA1S(D(ϕ+ ◦ Φt)(DΦt)
−1) : S(∂(p+

t ◦ Φt)(DΦt)
−1)dx

+

∫
D\Ω

JtA2S(D(ϕ− ◦ Φt)(DΦt)
−1) : S(D(p−t ◦ Φt)(DΦt)

−1)dx

+

∫
Σ

(u−t ◦ Φt − ud ◦ Φt)ϕ
− ◦ Φtds = 0

∀ϕ ∈ W .

(3.14)

The pull backs ut := Φ∗t (ut) := ut ◦ Φt and pt := Φ∗t (pt) := pt ◦ Φt satisfy therefore∫
Ω

JtA1S(Dut,+(DΦt)
−1) : S(Dψ+(DΦt)

−1)dx

+

∫
D\Ω

JtA2S(Dut,−(DΦt)
−1) : S(Dψ−(DΦt)

−1)dx

= β1

∫
Ω

DΦ−Tt : Dψ+dx+ β2

∫
D\Ω

DΦ−Tt : Dψ−dx

∀ψ ∈ W ,∫
Ω

JtA1S(Dϕ+(DΦt)
−1) : S(Dpt,+(DΦt)

−1)dx

+

∫
D\Ω

JtA2S(Dϕ−(DΦt)
−1) : S(Dpt,−(DΦt)

−1)dx

+

∫
Σ

(ut,− − ud ◦ Φt)ϕ
−ds = 0

∀ϕ ∈ W .

(3.15)

Remark 3.9 Note that since supp(V ) ⊂ D is compactly contained in D we have that Φt

equals the identidy near the boundary and therefore the integral
∫

Σ
(ϕ − ud ◦ Φt)ϕ

−ds is
independent of t.

This system has also exactly one solution due to the one-to-one correspondence to the
equations (3.14). It is convinient to reparametrize the Lagrange function (3.8)

L̃(Ωt,ϕ,ψ) := L(Ωt,ϕ ◦ Φ−1
t ,ψ ◦ Φ−1

t ) (ϕ,ψ ∈ W). (3.16)
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A change of variables gives us

L̃(Ωt,ϕ,ψ) =
1

2

∫
Σ

‖ϕ− − ud‖2ds+

∫
Ω

JtA1S(Dϕ+(DΦt)
−1) : S(Dψ+(DΦt)

−1)dx

+

∫
D\Ω

JtA2S(Dϕ−(DΦt)
−1) : S(Dψ−(DΦt)

−1)dx (3.17)

β1

∫
Ω

DΦ−Tt : Dψ+dx+ β2

∫
D\Ω

DΦ−Tt : Dψ−dx+ αPD(Ωt).

It can easily be seen that the saddle point of L̃ coincides with the solutions of the equations
(3.15). Thus we have

min
ϕ∈W

sup
ψ∈W
L(Ωt,ϕ,ψ) = min

ϕ̃∈W
sup
ψ̃∈W
L̃(Ωt, ϕ̃, ψ̃)

and the saddle points of both Lagrangeans are connected via Φt, i.e. ut = ut ◦ Φ−1
t

and pt = pt ◦ Φ−1
t In order to show that our function is shape differentiable we have to

investigate if the min-max of the function G(t, ϕ̃, ψ̃) := L̃(Ωt, ϕ̃, ψ̃) is differentiable with
respect to t. This problem is devoted to the next section.

3.5 Differentiability of the min-max

In view of the formal relation

dJ(Ω)[V ] =
d

dt

(
min
ϕ∈W

sup
ψ∈W
L̃(Ωt,ϕ,ψ)

)
|t=0

we can obtain the Eulerian derivative, if we can answer the question under which condi-
tions we are allowed to differentiate

min
ϕ∈W

sup
ψ∈W
L̃(Ωt,ϕ,ψ).

Generally, we consider a map

G : [0, τ ]× E × E → R,

for τ > 0 and Banach spaces E and E. For each t ∈ [0, τ ] we define

g(t) := inf
x∈E

sup
y∈F

G(t, x, y), h(t) := sup
y∈F

inf
x∈E

G(t, x, y)

and the sets associated solution sets

E(t) =

{
xt ∈ E : sup

y∈F
G(t, xt, y) = g(t)

}
F (t) =

{
yt ∈ F : inf

x∈E
G(t, x, yt) = h(t)

}
.

Finally we introduce, according to Lemma 3.6, the set of saddle points

S(t) := {(x, y) ∈ E × F : g(t) = G(t, x, y) = h(t)}, (3.18)

S(t) ⊂ E×F by definition. Now we state a result from [Delfour and Zolésio, 2011] which
gives a condition on G that allows us to differentiate g(t) at t = 0. It amounts in asserting
that the set valued maps E(·) and F (·) are continuous in some sense.
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Theorem 3.10 (R. Correa and A. Seeger) Suppose we are given two Banach spaces
E and F with topologies TE and TF on them. Let a real number τ > 0, and the functional

G : [0, τ ]× E × F → R,

be given. Suppose the following conditions

(H1) For all (t, x) ∈ [0, τ ] × E, y 7→ G(t, x, y) is concave and for all (t, y) ∈ [0, τ ] × F ,
x 7→ G(t, x, y) is convex .

(H2) ∂tG(t, x, y) exists for all (t, x, y) ∈ [0, τ ]× E × F .

(H3) For any sequence tn → 0 there exists a subsequence tnk and an element x0 ∈ E,
xnk ∈ E(tnk) such that

(i) xnk → x0 in the TE topology, and

(ii) for all y ∈ F (0),
lim
k→∞
t→0

∂tG(t, xnk , y) = ∂tG(0, x, y).

(H4) For any sequence tn → 0 there exists a subsequence tnk and an element y0 ∈ F ,
ynk ∈ F (tnk) such that

(i) ynk → y0 in the TF topology, and

(ii) for all x ∈ E(0),
lim
k→∞
t→0

∂tG(t, x, ynk) = ∂tG(0, x, y).

Then for each limit (x0, y0) ∈ E(0)× F (0) we have

d

dt
g(t)|t=0 = ∂tG(0, x0, y0).

Remark 3.11 This version of the theorem is a special case of the one in [Delfour and
Zolésio, 2011, p. 556, Theorem 5.1]. The version we present is more appropriate for our
application. In the forthcoming paper [Sturm, 2013], we will show how one can use a
similar result to the above one for non-linear problems.

3.6 Application of Correa-Seeger

We set
G(t,ϕ,ψ) := L̃(Ωt,ϕ,ψ) (ϕ,ψ ∈ W).

and consider vector fields V ∈ VD. We set E := F := H1(D; Rd) and choose for TE the
topology generated by the norm ‖·‖H1(D;Rd) and for TF the weak topology. First note that
(H1) is clearly verifed and it follows by Lemma 3.7 and [Delfour and Zolésio, 2011, p. 556,
Lemma 5.1]

X(t)× Y (t) = S(t)

and
E(t) = {ut}, F (t) = {pt},
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for all t ∈ [0, τ ], where ut,pt are saddle points of G(t, ·, ·) and characterized by (3.15).
Next we verify (H2). Let us turn back to the reparametrized Lagrangean (3.16) and
differentiate this expression

∂tG(t,ϕ,ψ) = α

∫
∂∗Ω

div ∂∗ΩV dH
d−1+

∫
D

Jt div (V (t))AχS(Dϕ(DΦt)
−1) : S(Dψ(DΦt)

−1)dx

−
∫
D

JtAχS(Dϕ(DΦt)
−1∂V (t)) : S(Dψ(DΦt)

−1)dx

−
∫
D

JtAχS(Dϕ(DΦt)
−1) : S(Dψ(DΦt)

−1∂V (t))dx (3.19)

+

∫
D

div (V (t))Jtβχ(DΦ−1
t )T : Dψdx+

∫
D

Jtβχ(∂V (t))T (DΦ−1
t )T : Dψdx

where we use the notation V (t) := V (Φt(x)). By the choice of V ∈ VD we have t 7→
V (Φt(x)), t 7→ DV (t), t 7→ DΦt(x) and t 7→ (DΦt(x))−1 are continuous on the interval
[0, τ ]. Thus (H2) is verified. Now we are going to verify (H3)(i) and (H4)(i). From
Theorem 2.1 we infer that the solutions ut and pt of (3.14) are uniformly bounded in t,
i.e. there are constants C1, C2 > 0 such that

∀t ∈ [0, τ ] : ‖ut‖H1(D;Rd) ≤ C1, ‖pt‖H1(D;Rd) ≤ C2. (3.20)

Lemma 3.12 The pull backs Φ∗t (ut) = ut and Φ∗t (pt) = pt are uniformly bounded, i.e.
there are constants C1, C2 > 0 such that

∀t ∈ [0, τ ] ‖ut‖H1(D;Rd) ≤ C1 ‖pt‖H1(D;Rd) ≤ C2.

Proof : From 3.20, we have
‖ut‖2

H1(D;Rd) ≤ C2
1 (3.21)

but after the change of variables Φt(x) = y we get∫
D

ut · ut +Dut : Dutdx =

∫
D

Jt((ut ◦ Φt)
2 + (Dut) ◦ Φt : (Dut) ◦ Φtdy

=

∫
D

Jt(u
t · ut + (Dut) : Dut(DΦt)

−1 (DΦt)
−T )dy,

(3.22)

where Jt = det(DΦt) > 0 for small t. Setting B(t) := Jt(DΦt)
−1(DΦt)

−T we conclude
there are constants γ1, γ2 such that

∀ζ ∈ Rd, ∀t ∈ [0, t∗] : γ1ζ
2 ≤ ζ ·B(t) · ζ ≤ γ2ζ

2,

γ1 ≤ Jt ≤ γ2,

for some t∗ > 0 small. Thus particularly for t ∈ [0, t∗]

(Dut) : (Dut)B(t) = B(t)(Dut)T : (Dut)T

≥ γ1(Dut)T : (Dut)T

= γ1Dut : Dut.

(3.23)

From (3.21)-(3.23) we conclude

∀t ∈ [0, t∗] : ‖ut‖H1(D;Rd) ≤ C1,
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for some constant C1. 2

Using the previous Lemma, we conclude that for any sequence tn → 0 for n → ∞
there exists a subsequence, still denoted by tn and elements z, q ∈ H1(D; Rd) such that

utn ⇀ z and ptn ⇀ q as n→∞.

Going to the limit in the variational formulation, we conlcude by uniqueness z = u and
q = p.
Indeed we can show the strong convergence of this sequence and thus we verify (H3) and
(H4).

Lemma 3.13 Suppose we are given solutions ut,pt of (3.13) for t > 0 and u,p ∈
H1(D; Rd) a solution of (3.13) for t = 0. Then there is a constant c > 0 such that

‖ut − u‖H1(D;Rd) ≤ ct for small t. (3.24)

Moreover, we have pt ⇀ p in H1(D; Rd) as t→ 0.

Proof : The functions ut, u satisfy∫
D

AχΩ
ε(ut) : ε(ψ)dx+

∫
D

JtAχΩ
S(Dut(DΦt(x))−1) : Dψ(DΦt(x))−1

−AχΩ
ε(ut) : ε(ψ)dx

=

∫
D

βχΩ
div (ψ)dx+

∫
D

(βχΩ
(Jt(DΦt(x))−T − I) : Dψdx

and

u ∈ W ,

∫
D

AχΩ
ε(u) : Dψdx =

∫
D

βχΩ
div (ψ)dx

∀ψ ∈ W ,

and substracting both equations yield∫
D

AχΩ
ε(ut − u) : ε(ψ)dx = −

∫
D

(Jt(AχΩ
S(Dut(DΦt(x))−1))(DΦt(x))−T − ε(ut)) : Dψ

(3.25)+

∫
D

(βχΩ
(Jt(DΦt(x))−T − I) : Dψdx

Now we can estimate

‖(JtAχΩ
S(Dut(DΦt)

−1)(DΦt)
−T − ε(ut))‖L2(D;Rd,d) ≤

+ ‖(DΦt)
−T − I‖L∞(D;Rd,d)‖(JtAχΩ

S(Dut(DΦt)
−1)‖L2(D;Rd,d)

+ |Jt − 1|∞‖AχΩ
S(Dut(DΦt)

−1)‖L2(D;Rd,d)

+ ‖AχΩ
(Dut((DΦt)

−1 − I))‖L2(D;Rd,d)

+ ‖AχΩ
((DΦt)

−T − I)(Dut)T )‖L2(D;Rd,d)

(3.26)
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and

‖(βχΩ
(Jt(DΦt)

−T − I)‖L2(D;Rd) ≤ ‖(βχΩ
((Jt − 1)(DΦt)

−T )‖L2(D;Rd)

+ ‖βχΩ
(DΦ−Tt − I)‖L2(D;Rd)

≤ c1|B(t)− I|∞ + c2|Jt − 1|∞|B(t)|∞
(3.27)

thus inserting ψ = ut − u as test function in (3.25) and using (3.26) and (3.27), we see
that ‖ut − u‖H1(D;Rd) = o(t). 2

Remark 3.14 Note that we could directly conclude from Theorem 2.3 that ut = u(χΩt)→
u(χΩ) = u in H1(D; Rd), since for f ∈ Lq(D) q > 1

lim
t→0

(f ◦ Φt − f) = 0 in Lq(D)

and thus
lim
t→0

(χΩt − χΩ) = lim
t→0

(χΩ ◦ Φt − χΩ) = 0 in Lq(D).

Thus it follows immediately ut = ut ◦ Φt → u in H1(D; Rd).

3.7 Boundary Expression

Now we aim for to differentiate the function

j(t)
def
= L(Ωt,ϕ

t,ψt),

where ϕt = ϕ◦Φ−1
t and ψt = ψ◦Φ−1

t and ϕ,ψ ∈ W . For this, we will apply the following
Corollary from [Henrot and Pierre, 2005, p. 173, Corollaire 5.2.5].

Lemma 3.15 Let Ω ⊂ Rd be open and Φt : Ω→ Rd be a transformation with Φ0(Ω) = Ω,
such that t→ f(t, ·) ∈ L1(Ωt) for t ∈ (0, ε). Assume

t 7→ f(t,Φt(·)) is diffentiable in 0,

then I(t) =
∫

Ωt
f(t,Φt(x))dx is differentiable and when the boundary Γ = ∂Ω is Lipschitz

then we have

I ′(0) =

∫
Ω

f ′(0)dx+

∫
Γ

f(0)(V · n)ds,

with n denoting the unit normal field along Γ.

We have

j(t) :=
1

2

∫
Σ

‖ϕt,− − ud‖2ds+

∫
Ωt

A1ε(ϕ
t,+) : ε(ψt,+)dx+

∫
Φt(D\Ω)

A2ε(ϕ
t,−) : ε(ψt,−)dx

− β1

∫
Ωt

div (ψt,+)dx− β2

∫
Φt(D\Ω)

div (ψt,−)dx+ αPD(Ωt).

Due to the mixed boundary conditions we have just ut,−,pt,− ∈ H2
loc(Φt(D \ Ω); Rd) and

ut,+,pt,+ ∈ H2(Φt(Ω); Rd). Thus the only problematic terms could be the integrals over
Φt(D \ Ω). However, since supp(V ) ⊂ D, Φt is the identity in the vicinity of ∂D, hence
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these terms give no contribution to the derivative. We define Ω̂ = supp(V )∩ (D \Ω) and
apply the theorem to obtain j′(0) = dJ(Ω)[V ] with

dJ(Ω)[V ] =

∫
Γ

κ V · nds+

{∫
Ω̂

A2ε(u̇
−) : ε(p−)dx+

∫
Ω

A1ε(u̇
+) : ε(p+)dx

}
+

{∫
Ω̂

A2(ε(u−)− β2I) : ε(ṗ+)dx+

∫
Ω

A1(ε(u+)− β1I) : ε(ṗ+)dx

}
(3.28)

+

{∫
Γ

(A1(ε(u+)− β1I) : ε(p+)− A2(ε(u−)− β2I) : ε(p−))(V · n−)ds

}
,

where we used the definitions

u̇i =
d

dt
(ui ◦ Φ−1

t )t=0 = −Dui · V,

ṗi =
d

dt
(pi ◦ Φ−1

t )t=0 = −Dpi · V,

(i ∈ {+,−}). In the following we use the tangential gradient ∇Γf of a function f ∈ C1(Γ)
which is defined as

∇Γf := ∇f̃|Γ − (∇f̃ · n)n,

where f̃ is an arbitrary extension of f . This definition is independent of the extension,
cf. [Delfour and Zolésio, 2011, p. 496]. With this definition we introduce the tangential
gradient DΓv of a function v ∈ C1(Γ;R3) by

(DΓv)T = (∇Γv1,∇Γv2,∇Γv3)

The last line in (3.28) has already the right form but the other lines are still volume
integrals. From now on we use the fact that ui,pi ∈ H2

loc(Ωi; R
d) (i ∈ {+,−}) at least

and they satisfy the equations in the strong sense. We start with the first and second line
in (3.28) by applying Gauss and using that ui,pi are strong solutions in the respectively
domains∫

Ω̂

A2(ε(u−)− β2I) : ε(ṗ−)dx+

∫
Ω+

A1(ε(u+)− β1I) : ε(ṗ+)dx

=

∫
Ω̂

div (A2(ε(u−)− β2I)) · ṗ−dx+

∫
Ω

div (A1(ε(u+)− β1I)) · ṗ+dx

−
∫

Γ

A2(ε(u−)− β2I) · ṗ− · ndx+

∫
Γ

A1(ε(u+)− β1I)ṗ+ · ndx

= −
∫

Γ

A2(ε(u−)− β2I) · ṗ− · nds+

∫
Γ

A1(ε(u+)− β1I)ṗ+ · nds

(3.29)

and similarly ∫
Ω̂

A2ε(u̇
−) : ε(p−)dx+

∫
Ω

A1ε(u̇
+) : ε(p+)dx

= −
∫

Ω

div (A1ε(p
+)) · u̇+dx−

∫
Ω̂

div (A2ε(p
−)) · u̇−dx

+

∫
Γ

(A1ε(p
+)u̇+) · nds−

∫
Γ

(A2ε(p
−)u̇−) · nds

=

∫
Γ

(A1ε(p
+)u̇+) · nds−

∫
Γ

(A2ε(p
−)u̇−) · nds.

(3.30)
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Therefore using (3.29) and (3.30) in (3.28) we get

dJ(Ω)[V ] =

∫
Γ

(A1(ε(u+)− β1I) : ε(p+)− A2(ε(u−)− β2I) : ε(p−))(V · n)ds

−
∫

Γ

A2(ε(u−)− β2I)ṗ− · nds+

∫
Γ

A1(ε(u+)− β1I)ṗ+ · nds

+

∫
Γ

(A1ε(p
+)u̇+) · nds−

∫
Γ

(A2ε(p
−)u̇−) · nds+

∫
Γ

κ (V · n)ds.

(3.31)

The tensor product ⊗ between two vectors v,w ∈ Rd is given by (v ⊗w)u := (w · u)v,
where · is the scalar product in Rd. The last two lines are not following the structure
theorem, but we can rewrite this by decomposing Du|Γ = DΓu + (∂nu) ⊗ n into normal
and tangential part. We have ((∂nu) ⊗ n)n = ∂nu and ((∂nu) ⊗ n)T = 0. Here n is the
normal vector along Γ and T such that n · T = 0. Similarly, we define VΓ := V − Vnn,
where Vn = V · n. We have

u̇i = −DuiV = −DΓuiVΓ − Vn∂nui on Γ

ṗi = −DpiV = −DΓp
iVΓ − Vn∂npi on Γ,

and thus we conclude

−
∫

Γ

A2(ε(u−)− β2I)ṗ− · nds+

∫
Γ

(A1(ε(u+)− β1I)ṗ+ · nds

=

∫
Γ

A2(ε(u−)− β2I)n) · ∂np−Vnds−
∫

Γ

(A1(ε(u+)− β1I)n) · ∂np+)Vnds

+

∫
Γ

[
(A2(ε(u−)− β2I)n)− (A1(ε(u+)− β1I)n)

]︸ ︷︷ ︸
=0,transmission condition u,(2.3)

·(DΓpVΓ)ds

=

∫
Γ

A2(ε(u−)− β2I)n) · ∂np−Vnds−
∫

Γ

(A1(ε(u+)− β1I)n) · (∂np+)Vnds,

and similarly ∫
Γ

(A1ε(p
+)u̇+) · nds−

∫
Γ

A2ε(p
−)u̇−nds

= −
∫

Γ

(A1ε(p
+)n) · ∂nu+Vnds+

∫
Γ

A2ε(p
−)n · (∂nu−)Vnds

+

∫
Γ

[
(A2ε(p

−)n)− A1ε(p
+)n)

]︸ ︷︷ ︸
=0,transmission condition p, (3.12)

·(DΓuVΓ)Vnds

= −
∫

Γ

(A1ε(p
+)n) · ∂nu+Vnds+

∫
Γ

A2ε(p
−)n · ∂nu−Vnds.
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Thus

dJ(Ω)[V ] =

∫
Γ

(A1(ε(u+)− β1I) : ε(p+)− A2(ε(u−)− β2I) : ε(p−))Vnds

−
∫

Γ

(A1(ε(u+)− β1I)n) · ∂np+ Vnds−
∫

Γ

A1ε(p
+)n · ∂nu+ Vnds

+

∫
Γ

(A2(ε(u−)− β2I)n) · ∂np− Vnds+

∫
Γ

A2ε(p
−)n · ∂nu− Vnds

+

∫
Γ

κ Vnds.

(3.32)

Now we define for a matrix function A ∈ H1(D; Rn,n), the tangential part as AΓ := A|Γ−
An⊗n, where Γ ⊂ D. Note that for all v,w and C ∈ Rn,n, we have C : v⊗w = v ·Cw.
Then we obtain

dJ(Ω)[V ] =

∫
Γ

[
(A1(ε(u+)− β1I))Γ : εΓ(p+)− (A2(ε(u−)− β2I))Γ : εΓ(p−)

]
Vnds

(3.33)

+

∫
Γ

(A2ε(p
−)n) · ∂nu− Vnds−

∫
Γ

A1ε(p
+)n · ∂nu+ Vnds+

∫
Γ

κ Vnds.

Due to the asymmetry of the transmission conditions for u and p, we obtain a formula
that is not intrinic in the sense that the quatities ∂nu

+ and ∂nu
− in the last line make

only sense as restriction of functions of a bigger domain.

Remark 3.16 A close inspection of the boundary expression shows that the linear elliptic
transmission problem from [Afraites et al., 2007] is contained in our model if β1 = β2 = 0
and the coefficients A1, A2 are only scalars.

Lemma 3.17 In the case A := A1 = A2 we have p ∈ H2(K;Rd) for each K ⊂⊂ D and
the shape derivative (3.32) reduces to

dJ(Ω)[V ] =(β2 − β1)

∫
Γ

div (p)Vnds.

Proof : Since A := A1 = A2 the adjoint p is more regular across the interface, i.e.
Dp+ = Dp− on Γ. Therefore in particular ∂np

+ = ∂np
− and thus the second and third

line in (3.32) cancel out if we use the transmission conditions for u. Let’s have a close
look at the first line in (3.32)∫

Γ

(Aε(u+) : ε(p+)− Aε(u−) : ε(p−))Vnds

=

∫
Γ

(∂u+ : Aε(p)− ∂u− : Aε(p))Vnds

=

∫
Γ

(∂tu
+ : Aε(p)− ∂tu− : Aε(p))Vnds

+

∫
Γ

(∂nu
+ ⊗ n : Aε(p)− ∂nu− ⊗ n : Aε(p))Vnds

=

∫
Γ

(∂nu
+ ⊗ n : Aε(p)− ∂nu− ⊗ n : Aε(p))Vnds
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since DΓu+ = DΓu− on Γ. Note we have for all v, w ∈ Rd and B ∈ Rd,d

v ⊗ w : B = Bw · v,

and thus ∫
Γ

(Aε(u+) : ε(p+)− Aε(u−) : ε(p−))Vnds

=

∫
Γ

(Aε(p)n · ∂nu+ − Aε(p)n · ∂nu−)Vnds.

Using this identity together with ∂np
+ = ∂np

− in (3.32) we get the assertion. 2

4 Numerics

In the first part of this section we assume D ⊂ R2, thus we are dealing with planar
elasticity. We follow the ideas of [Laurain and Privat, 2010]. If the interface Γ = ∂Ω is
smooth it can be approximated by a (smooth) curve γ : [0, 1]→ R2 such that γ([0, 1]) ≈ Γ
in a certain sense.

4.1 Clamped and closed B-Splines and B-Spline surfaces

Let k,N ∈ N be fixed integers, set p = k − 1 and define m = p + N + 1 = N + k. The
N + 1 vectors U0, . . . , UN ∈ R2 will be called control points. Furthermore, we define
recursivly so called basis functions N i

k : [t0, tm]→ R by

N0
i (t)

def
=

{
1 if ti < ti+1 and ti ≤ t ≤ ti+1

0 else

where i = 0, 1, . . . , N and

N r
i (t) =

t− ti
ti+r−1 − ti

N r−1
i (t) +

ti+r − t
ti+r − ti+1

N r−1
i+1 (t)

for r > 0 and i > 1 and the knots (t0, . . . , tN+k) ∈ Rm+1. N r
i (t) are polynomials of degree

r − 1. Then the basis spline (B-Spline) curve γ : [t0, tm]→ R2 is defined by

γ(t) =
N∑
i=0

Nk
i (t)Ui. (4.1)

Remark that since Nk
i (t) = 0 for t ∈ R \ [ti, ti+k] the curve is local in the sense that

if we move the point Ui it affects maximal k curve segments, which makes those curves
attractive for shape optimization problems. We will refer to k as the order of the B-Spline
curve. For an clamped curve, that is a curve where the start and end points are not
nessacarily the same, we choose the knot vector

tj =


0 if j < k
j − k + 1 if k ≤ j ≤ N
N − k + 2 if j > N

(4.2)
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then t runs in [0, n − k + 2]. Then we define the curve γ̂ : [0, 1] → R2 by γ̂(t) =
γ(t(n − k + 2)). This curve is again denoted by γ. Let us assume that γ has no self
intersections, i.e.

For all t1, t2 ∈ [0, 1] : γ(t1) = γ(t2) =⇒ t1 = t2.

This curve satisfies γ(0) = U0 and γ(1) = UN . A closed curve satisfies by definition
γ(0) = γ(1). To close the B-Spline, we choose the knotvector instead of (4.2) as

tj = j/m for j = 0, 1, . . . ,m,

such that tj+1 − tj = 1/m, therefore the knot vector is uniform. Addionally, we have to
overlap k control points as follows

Ui = UN−(k−1)+i i = 0, 1, . . . , k − 1.

This curve is defined on [tk, tm−k] and we have the formula

γ(t) =
N−k∑
i=k−1

Nk
i (t)Ui +

N∑
i=N−k

(Nk
i−(N−k)(t) +Nk

i (t))Ui (4.3)

4.1.1 Clamped B-Spline surface

Let N1, N2, k1, k2 ∈ N+ be fixed and set m1 = p1 + 1 + N1 and m2 = p2 + 1 + N2.
Moreover, let N1×N2 control points Uij ∈ R3 be given. Suppose we have given two know
vectors T1 = (u0, . . . , uN1), T2 = (v0, . . . , vN2) ∈ Rm, where assume that the knot vectors
are defined by (4.2). Then a B-Spline surface ϕ : [u0, uN1 ] × [v0, vN2 ] → R3 is defined as
follows

ϕ(u, v) =

N1∑
i=1

N1∑
i=1

UijN
k2
i (u)Nk2

j (v).

We define then ϕ̂ : [0, 1]×[0, 1]→ R3 by setting ϕ̂(u, v) = ϕ((N1−k1+2)u, (N2−k2+2)v).
We will denote ϕ̂ again ϕ.

4.2 Algorithm

In the planar case, i.e. D ∈ R2, we define a vector field V : Γ→ R2 as follows

V (x, y)
def
= c

N∑
i=0

ciN
k
i (γ−1(x, y))Ũi,

where 1/ci =
∫

Γ
Nk
i (γ−1(x))ds > 0, c =

∑N
i=1 ci and the Ũi‘s are to be determined. We

denote by V̂ (t) = V (γ(t)) : [0, 1]→ R2 the reduced vector field. For the case D ∈ R3 we
define V : Γ→ R3 by

V (x, y, z)
def
= ĉ

N1∑
i=0

N2∑
j=0

ĉijNi,k1(ϕ−1
1 (x, y, z))Nj,k2(ϕ−1

2 (x, y, z))Ũij,
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where 1/ĉij =
∫

Γ
Ni,k1(ϕ−1

1 (x, y, z))Nj,k2(ϕ−1
2 (x, y, z))ds > 0 and ĉ =

∑
i,j ĉij. Note, that

ϕ−1(x, y, z) = (ϕ−1
1 (x, y, z), ϕ−1

2 (x, y, z)). Let us denote

g(Γ) = (A1(ε(u+)− β1I) : ε(p+)− A2(ε(u−)− β2I) : ε(p−))

− A1(ε(u+)− β1I) · n) · (∂np+ − ∂np−)− (A1ε(p
+) · n)(∂nu

+ − ∂nu−) + ακ,

plugging this Ansatz into the shape derivative (3.32), we obtain for the clamped curve
the formula in 2D

dJ(Ω)[V ] =
N∑
i=0

Ũi

∫ 1

0

g(Γ)(γ(s))Nk
i (s)Jγ̇(s)ds,

since n(s) = J γ̇(s)
|Jγ̇(s)| , J =

(
0 1
−1 0

)
. For the closed curve, we have the formula

dJ(Ω)[V ] =
N−k∑
i=k−1

Ũi

∫ 1

0

g(Γ)(γ(s))(Nk
i (s)Jγ̇(s)ds

+
N∑

i=N−k+1

Ũi

∫ 1

0

g(Γ)(γ(s))(Nk
i (s) +Ni−(N−k),k(s))Jγ̇(s)ds.

For a clamped B-Spline surface, we have

dJ(Ω)[V ] =
N∑
i=0

Ũij

∫ 1

0

∫ 1

0

g(Γ)(ϕ(u, v))Nk1
i (u)Nj,k2(v)

∂ϕ(u, v)

∂u
× ∂ϕ(u, v)

∂u
dudv

since n(u, v) = ∂ϕ(u,v)
∂u
× ∂ϕ(u,v)

∂u
/|∂ϕ(u,v)

∂u
× ∂ϕ(u,v)

∂u
|.

To find a decent direction, that is dJ(Ω)[V ] ≤ 0, we achieve

Ũi = −
∫ 1

0

g(Γ)(γ(s))Nk
i (s)Jγ̇(s)ds, (i = 0, . . . , N) (4.4)

for the clamped curve. For the closed curve, we choose

Ũi = −
∫

Γ

g(Γ)(γ(s))Nk
i (s)Jγ̇(s)ds, (i = k − 1, . . . , N − k)

Ũi = −
∫

Γ

g(Γ)(γ(s))(Nk
i (s) +Ni−(N−k),k(s))γ̇(s))ds, (i = N − k + 1, . . . , N)

(4.5)

and for the clamped surface we choose

Ũij = −
∫ 1

0

∫ 1

0

g(Γ)(ϕ(u, v))Nk1
i (u)Nk2

j (v)
∂ϕ(u, v)

∂u
× ∂ϕ(u, v)

∂u
dudv, (4.6)

for i = 0, . . . , N1 and j = 0, . . . , N2.

Remark 4.1 Since for our numerical examples we need not closed surfaces we won’t work
them out in detail here, but mention that they exist and one gets similar formula like (4.5).

24



Note that we have the following relation between the moved curve Γt = γ([0, 1]) +
αV (γ([0, 1])) and the moved control points

γ(t) + αV (γ(t)) =
N∑
i=0

Nk
i (t)(Ui + αŨi). (α > 0)

We have a similar formula for the B-Spline surface ϕ(u, v) : [0, 1]× [0, 1]→ R3

ϕ(u, v) + αV (ϕ(u, v)) =

N1∑
i=0

N2∑
j=0

Nk
i (u)Nk

j (v)(Uij + αŨij). (α > 0)

Thus by moving the control points by means of (4.4), (4.5) or (4.6) depending which
dimension and curve type we have at hand, we may move the interface Γ. Here the
(mean) curvature of the curve γ = (γ1, γ2) at t ∈ (0, 1) is computed using the well known
formula

κ(t) =
γ̇1(t)γ̈2(t)− γ̇2(t)γ̈1(t)

|γ̇(t)|3
.

for the surface ϕ : [0, 1] × [0, 1] → R3 the (mean) curvature H = 1
2
(K1 + K2), where

K1, K2 are the principal curvatures, can be computed by

H =
Gl − 2Fm+ En

EG− F 2
,

where E = |ϕu|2, G = |ϕv|2, F = ϕu · ϕv and l = N · ϕuu, n = N · ϕvv, m = N · ϕuv.
Since Γ depends on the control points U0, · · · , UN we write

J(Ω, U0, . . . , UN) = J(Ω,Γ).

To summarise, we have developed the following algorithm:

1 Initialize the control points U0, . . . , UN which give us γ(t) and set

J0
def
= J(Ω0, U0, . . . , UN).

2 Calculate Ũ0, . . . , ŨN using the shape derivative.

3 Set Ûi = Ui + ηŨi and decrease η until J1 − J0 ≤ −λη
∑N

k=1 |Uk − Ûk|2 where

J1
def
= J(Ω, Û0, . . . , ÛN). (Usually η = ζβa, a an integer, β ∈ [0, 1], ζ positive.)

%1 %2 λ µ
7850 kg 7770 kg 1.5 · 1011 Pa 7.5 · 1011 Pa

Table 1: Material data for a plain carbon steel.
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4.3 Numerical results

In this section, we will give two numerical results computed by the algorithm presented
in the last section. We will use cubic B-Spline curves to model the interface, i.e. we
choose k = 4 in the last subsection. Moreover we choose A2 = A1 = A and β2 = 0 and
β1 = (1 + ν)α 1

2
, where ν is the shear contraction number and α = %1

%2
− 1, i.e.

σχ = Aε(u)− (1 + ν)α
1

2
χI

= λ div (u)I + 2µε(u)− (1 + ν)α
1

2
χI.

In this way, we achieve that no stresses occur if there is only one phase present, i.e. if
Ω = ∅ then χ = 0 a.e. on D and thus σχ = 0. For the discretization, we use the Finite
Element Method with linear elements as implemented in the FE/FV toolbox PDELib.
The material data correspond to a plain carbon steel, see Table 1.

4.3.1 Spherification of an ellipse

In the first example, we consider a work piece, whose reference configuration is a quarter
ellipsoid with periodic boundary conditions.i.e. we set uy = 0 on the x-axes and ux = 0
on the y-axes. On the curved part of the boundary we impose homogenous Neumann
boundary conditions. Our goal is to to change the ellipse to a quarter circle. For this
example we take the following cost functional

J(Ω)
def
=

∫
Σ

(‖u(x) + x‖ −R)2dx,

where R > 0 denotes the desired radius of the circle and u(x)+x is the actual deformation
of the material point x ∈ D and Σ denotes the curved part of the boundary. Unfortunately,
since the densities in different steel phases only differ by less than 1%, the ellipticity
is hardly visible by eye. The major axis is in the x− and the minor axis in the y−
direction. Figure 2 shows the y− component of the adjoint p for several iterations of the
optimisation algorithm. Since the derivative of the cost functional acts as a force in the
adjoint equation and the y− component of the ellipse has to be pushed upwards to obtain
a circle this quantity is especially relevant.
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Figure 2: Several iterations for py with p = (px, py).

Figure 4.3.1 shows the convergence history and Figure 4 a comparison between initial and
final shape. As said before, since we have chosen to magnify the displacement, the final
shape looks rather like an ellipse with minor on the x− axis. But a closer look reveals
that the interface which initially was a small circle looks like a quarter cross section of
a barbell, which is due to the fact that around the y− axis more material with a lower
density is necessary to achieve a circular shape.

Figure 3: Convergence history for the spherification of an ellipsoid.

4.3.2 Straightening of a wavy block

As the second example we consider a rectangular domain D with a wavy upper surface.
We assume Dirichlet boundary conditions on the bottom and Neuman conditions on the
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Figure 4: Initial and optimal shape.

Figure 5: Triangulation of the wavy block.

top and on the sides and use the cost functional

J(Ω) =

∫
Σ

|uy −R|2ds

Figure 6: Initial (left) and optimal shape (right).

The goal is to straighten the upper surface. The initial and final block shape are depicted
in Figure 6. Unfortunately, since the densities in different steel phases only differ by less
than 1%, the waviness of the upper surface is hardly visible. In the optimal shape on the
right-hand side the displacement has been magnified to show the effect, hence the surface
looks even more wavy. However, this is an artefact due to the magnification. Figure 8
shows the magnified shape of the upper boundary for several iterations of the optimisation
algorithm and one can indeed observe, how the surface gradually straightens.
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Figure 7: Several iterations of py with p = (px, py).

Finally, Figure 7 shows several iterations for the y− component of the adjoint variable,
where the gradient acts as a force term on the upper boundary,

Figure 8: Surface shape of the wavy block for different iteration steps.

5 Conclusion

In this paper we have discussed a transmission problem for a mechanical equilibrium
problem for subdomains with different densities. A future challenge will be the study of
interface problems for nonlinear elasticity, which do not allow for a direct application of
the Correa-Seeger theorem.
For other scalar nonlinear problems it has been shown recently that the application of the
Correa-Seeger theorem can be justified by the material derivative method [Sturm, 2013].
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In less regular situations, which do not allow for a rigorous derivation of boundary sup-
ported shape gradients it is of interest to use the distributed representation of the shape
derivative. In a forthcoming paper [Sturm and Laurain, 2013] it will be shown that this
approach allows for a straight-forward numerical realisation with level-set methods.
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