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Zusammenfassung

This note is concerned with a nonlinear diffusion problem of phase-field type, consis-
ting of a parabolic system of two partial differential equations, complemented by Neumann
homogeneous boundary conditions and initial conditions. The system arises from a mo-
del of two-species phase segregation on an atomic lattice [22]; it consists of the balance
equations of microforces and microenergy; the two unknowns are the order parameter rho
and the chemical potential mu. Some recent results obtained for this class of problems
is reviewed and, in the case of a nonconstant and nonlinear atom mobility, uniqueness
and continuous dependence on the initial data are shown with the help of a new line of
argumentation developed in [12].

1 About the model and the mathematical problem

This paper deals with a phase field system that is addressed and investigated in a rather general
framework. A special situation was already considered and mathematically studied in [9, 10]
from the viewpoint of well-posedness and long time behavior. The two papers [11] and [14] are
devoted to the optimal control problems for distributed and boundary controls, respectively. The
recent contributions [12] and [13] are related to what we are going to discuss and review in this
note. As to modeling issues, two directly relevant antecedents have been the papers by Fried
& Gurtin [17] and Gurtin [19], while [22], the paper that inspired our research cooperation, led
us to begin by studying a system of Allen-Cahn type for phase segregation processes without
diffusion [7, 8].
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1.1 The nonstandard phase-field system in a simplified form

The initial and boundary value problem introduced in [9] consists in looking for two fields, the
chemical potential µ and the order parameter ρ, that solve

ε ∂tµ+ 2ρ ∂tµ+ µ ∂tρ−∆µ = 0 in Ω× (0, T ), (1.1)

δ ∂tρ−∆ρ+ f ′(ρ) = µ in Ω× (0, T ), (1.2)

∂nµ = ∂nρ = 0 on Γ× (0, T ), (1.3)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω, (1.4)

where Ω denotes a bounded domain in R3 with sufficiently smooth boundary Γ, T > 0, and
where ε and δ stand for two positive parameters. Moreover, the nonlinearity f is a double-well
potential defined in (0, 1), whose derivative f ′ is singular at the endpoints ρ = 0 and ρ = 1: a
relevant example is

f(ρ) = α {ρ ln(ρ) + (1− ρ) ln(1− ρ)}+ β ρ (1− ρ), (1.5)

with some positive constants α and β; according to whether or not α ≥ β/2, it turns out that f
is convex in the whole of [0, 1] or exhibits two wells with a local maximum at ρ = 1/2.

The nonstandard phase field model (1.1)–(1.4) can be regarded as a variant of the classic
Cahn-Hilliard system for diffusion-driven phase segregation by atom rearrangement:

∂tρ− κ∆µ = 0 , µ = −∆ρ+ f ′(ρ). (1.6)

As to differences between (1.1) and (1.6)1, we point out that the former equation, in which the
mobility coefficient κ > 0 has been taken equal to 1, contains a group of terms involving time
derivatives, with two unpleasant nonlinearities. Moreover, (1.2) differs from (1.6)2 due to the
presence of the viscous contribution δ ∂tρ, and keeping the coefficient δ positive is crucial for
our analysis. Equations (1.1)–(1.2) actually have the structure of a phase field system [5, 21],
in which the chemical potential µ appears in the place of the more usual temperature variable.
Note that, in general, those equations cannot be combined into one higher-order equation, as is
instead customarily done with the equations in (1.6) so as to obtain the well-known Cahn-Hilliard
equation

∂tρ = κ∆(−∆ρ+ f ′(ρ)). (1.7)

1.2 Generalization of Cahn-Hilliard equation according to Fried and Gur-
tin

In [17, 19] a broad generalization of (1.7) was devised, along three directions:

(i) to regard the second of (1.6) as a balance of microforces:

div ξ+ π + γ = 0, (1.8)
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where the distance microforce per unit volume is split into an internal part π and an
external part γ, and the contact microforce per unit area of a surface oriented by its
normal n is measured by ξ · n in terms of the microstress vector ξ;3

(ii) to regard the first equation of (1.6) as a balance law for the order parameter :

∂tρ = − div h + σ, (1.9)

where the pair (h , σ) is the inflow of ρ;

(iii) to demand that the constitutive choices for π, ξ,h , and the free energy density ψ, be
consistent in the sense of Coleman and Noll [6] with an ad hoc version of the Second
Law of Continuum Thermodynamics:

∂tψ + (π − µ)∂tρ− ξ · ∇(∂tρ) + h · ∇µ ≤ 0, (1.10)

that is, a postulated “dissipation inequality that accommodates diffusion” (cf. equation (3.6)
in [19]).

In [19], the following list of constitutive prescriptions was shown to be consistent with (iii):

ψ = ψ̂(ρ,∇ρ), π̂(ρ,∇ρ, µ) = µ− ∂ρψ̂(ρ,∇ρ), ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ). (1.11)

Within this framework, let also

h = −M∇µ, with M = M̂ (ρ,∇ρ, µ,∇µ), (1.12)

where the tensor-valued mobility mapping M̂ should satisfy the residual dissipation inequality

∇µ · M̂ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

With the help of (1.8), (1.9), (1.11), and on account of h = −M∇µ, one recovers a general
equation for diffusive phase segregation processes:

∂tρ = div
(
M∇

(
∂ρψ̂(ρ,∇ρ)− div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ
))

+ σ.

Then, the Cahn-Hilliard equation (1.7) is obtained by taking

ψ̂(ρ,∇ρ) = f(ρ) +
1

2
|∇ρ|2, M = κ1 , (1.13)

and letting the external distance microforce γ and the order parameter source term σ be identi-
cally null.

3Let us point out that in [16] the balance of microforces is stated in the form of a principle of virtual powers for
microscopic motions.
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1.3 An alternative generalization of Cahn-Hilliard equation

In [22], a modifed derivation, with respect to Fried-Gurtin’s approach to phase-segregation mo-
deling, was proposed. While the crucial step (i) was retained, both the order parameter balance
(1.9) and the dissipation inequality (1.10) were dropped and replaced, respectively, by the mi-
croenergy balance

∂tε = e+ w, e := − div h + σ, w := −π ∂tρ+ ξ · ∇(∂tρ), (1.14)

and the microentropy imbalance

∂tη ≥ − div h + σ, h := µh , σ := µσ. (1.15)

As a new feature in this approach, the microentropy inflow (h , σ) was deemed proportional to
the microenergy inflow (h , σ) through the chemical potential µ, a positive field; consistently,
the free energy was defined to be

ψ := ε− µ−1η, (1.16)

with the chemical potential playing the same role as the coldness in the deduction of the heat
equation.4

Combining (1.14)-(1.16) yields

∂tψ ≤ −η∂t(µ−1) + µ−1 h · ∇µ− π ∂tρ+ ξ · ∇(∂tρ), (1.17)

an inequality that replaces (1.10) in restricting à la Coleman-Noll the possible constitutive choi-
ces. On taking all of the constitutive mappings delivering π, ξ, η, and h , dependent in principle
on ρ,∇ρ, µ,∇µ, and on choosing

ψ = ψ̂(ρ,∇ρ, µ) = −µ ρ+ f(ρ) +
1

2
|∇ρ|2, (1.18)

compatibility with (1.17) implies that we must have:
π̂(ρ,∇ρ, µ) = −∂ρψ̂(ρ,∇ρ, µ) = µ− f ′(ρ),

ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ) = ∇ρ,

η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ)= −µ2ρ

 (1.19)

together with

ĥ(ρ,∇ρ, µ,∇µ) = Ĥ (ρ,∇ρ, µ,∇µ)∇µ, ∇µ · Ĥ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

We now choose for Ĥ the simplest expression H = κ1 , implying a constant and isotropic
mobility, and once again we assume that the external distance microforce γ and the source σ

4As much as absolute temperature is a macroscopic measure of microscopic agitation, its inverse - the coldness
- measures microscopic quiet ; likewise, as argued in [22], the chemical potential can be seen as a macroscopic
measure of microscopic organization.
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are null. Then, with the use of (1.19) and (1.16), the microforce balance (1.8) and the energy
balance (1.14) become, respectively,

∆ρ+ µ− f ′(ρ) = 0 (1.20)

and
2ρ ∂tµ+ µ ∂tρ− div(κ∇µ) = 0, (1.21)

a nonlinear system for the unknowns ρ and µ.

1.4 Insertion of the two parameters ε and δ

Compare now the systems (1.20)–(1.21) and (1.6): needless to say, (1.20) is the same ‘static’
relation between µ and ρ as (1.6)2. However, (1.21) is rather different from (1.6)1, for more than
one reason:

(R1) (1.21) is a nonlinear equation, while ∂tρ− κ∆µ = 0 is linear;

(R2) the time derivatives of both ρ and µ are present in (1.21);

(R3) in front of both ∂tµ and ∂tρ there are nonconstant factors that should remain nonnegative
during the evolution.

Thus, the system (1.20)–(1.21) deserves a careful analysis. We must confess that at the begin-
ning we boldly attacked this problem as it was, prompted to optimism by the previous successful
outcome of the joint cooperation for the papers [7, 8]. Actually, in [7, 8] we tackled the system of
Allen-Cahn type derived via the approach in [22] for no-diffusion phase segregation processes.
By the way, the evolution problem ruled by (1.20)–(1.21) turned out to be too difficult for us.
Therefore, we decided to study its regularized version (1.1)–(1.4) (note that κ has been taken
equal to unity in (1.1)): in fact, this initial-boundary value problem is arrived at by introducing the
extra terms ε ∂tµ in (1.21) and δ ∂tρ in (1.20), then by supplementing the obtained equations
(1.1) and (1.2) with homogeneous Neumann conditions (1.3) at the body’s boundary (where ∂n

denotes the outward normal derivative), and with the initial conditions (1.4).

Of course, the positive coefficients ε and δ are intended to be small. The introduction of the
ε−term is motivated by the desire to have a strictly positive coefficient as a factor of ∂tµ in
(1.21), in order to guarantee the parabolic structure of equation (1.1). As to the δ−term, we
can say that it transforms (1.20) into an Allen-Cahn equation with source µ; in fact, it is a sort
of regularization already employed in various procedures involving the so-called viscous Cahn-
Hilliard equation (examples can be found in [2, 3, 18, 20, 23] and references therein).

On the one hand, the presence of the term δ ∂tρ with a positive δ is very important for our
analysis; on the other hand, nonuniqueness may occur if δ = 0. For instance, take ρ0 = 1/2, µ0

constant, and look for a space-independent solution (which is in agreement with homogeneous
Neumann boundary conditions (1.3)). Then, we have that

d

dt

(
(ε+ 2ρ)1/2 µ

)
= 0
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and simply f ′(ρ) = µ. Hence, the solution has the form

µ = z0 (ε+ 2ρ)−1/2 and f ′(ρ) = z0 (ε+ 2ρ)−1/2,

for some given constant z0. Now, choose the potential f such that

f ′(r) = z0 (ε+ 2 r)−1/2 for r ∈ [1/3, 2/3],

and pick any smooth/irregular ρ : [0, T ]→ [1/3, 2/3] with ρ(0) = 1/2. We then get infinitely
many smooth/irregular solutions! This of course means that uniqueness is out of question; and
that, moreover, there is no control on the regularity of solutions in time.

We point out that such a modified system, with positive ε and δ, turns out to be a phase field
model with a nonstandard equation (1.1) for the chemical potential µ, while quite often phase
field systems use temperature (in place of chemical potential) and order parameter as variables.

Concerning a physical interpretation of the regularizing perturbations we introduced, to motivate
the presence of δ ∂tρ is relatively easy. All we need to do in order to let this term appear in the
microforce balance is to add ∂tρ to the list of state variables we considered to analyze the
constitutive consequences of (1.17). This measure brings in the typical dissipation mechanism
of Allen-Cahn nondiffusional segregation processes, where dissipation depends essentially on
(∂tρ)2, in addition to Cahn-Hilliard’s |∇µ|2− dissipation (cf. [22]), thus opening the way to split
the distance microforce additively into an equilibrium and a nonequilibrium part, with πeq =
−∂ρψ̂(ρ,∇ρ, µ) = µ− f ′(ρ) the equilibrium part, just as in (1.19)1, and with πneq = −δ ∂tρ
the nonequilibrium part.

As far as the the introduction of ε ∂tµ is concerned, we can say that (formally) the desired term
can be made to appear in (1.1) by modifying the choice of the free energy in (1.18) as follows:

ψ = −µ
(
ρ+

ε

2

)
+ f(ρ) +

1

2
|∇ρ|2. (1.22)

By the way, in [9] we could prove existence and uniqueness of the solution to the initial boundary
value problem (1.1)–(1.4) with ε > 0 and in [10] we discussed the asymptotic behavior of such
solutions as ε ↘ 0 by showing a suitable convergence to a (weaker) solution of the limiting
problem with ε = 0. Thus, in some respect, we can avoid the use of the parameter ε, an issue
we expand and make precise in the following subsection.

1.5 Various generalizations

In the first place, we are interested in the generalization of the free energy (1.22). We work in two
directions. We extend f(ρ) by allowing f to be the sum of a convex and lower semicontinuous
function, with proper domainD(f1) ⊂ R, and of a smooth function f2 with no convexity proper-
ties (to allow for a double or multi-well potential f ). We point out that in this case f1 need not be
differentiable in its domain and, in place of f ′1 , one should take the subdifferential β := ∂f1 in
the order parameter equation. In general, β := ∂f1 is only a graph, not necessarily a function,
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and may include vertical (and horizontal) lines as in the example β = ∂I[0,1], i.e.,

η ∈ ∂I[0,1](u) if and only if η


≤ 0 if u = 0

= 0 if 0 < u < 1

≥ 0 if u = 1

, (1.23)

which corresponds to the potential

f1(u) = I[0,1](u) =

{
0 if 0 ≤ u ≤ 1

+∞ elsewhere
. (1.24)

Therefore, f1 is not required to be smooth so that its subdifferential β might be multi-valued.
The other important modification we make in the free energy (1.22) is that of allowing in the
first coupling term a general smooth function, say h(ρ), as factor of −µ in (1.22), with the only
restriction that h(ρ) be bounded from below by a positive constant. Then, it could be

h(ρ) ≥ ε

2
(1.25)

to maintain the same notation, and this lower bound should hold at least for the significant values

of ρ belonging to the domain of f1; actually, this was the case for h(ρ) = ρ +
ε

2
in the interval

[0, 1], which is the effective domain of the potential f in (1.5) (the same domain as in (1.24)).
An interesting remark of Alexander Mielke, when one of us was lecturing on our results, was
that the behavior of

h(ρ) = ρ+ small parameter

in a right neighbourhood of 0 (h(ρ) ≈ 0) differs from that in a left neightbourhood of 1 (h(ρ) ≈
1). Instead, assuming only a boundedness from below for h allows many other instances like,
e.g., a specular behavior around the extremal points of the domain of f . On the other hand, we
stress the fact that f1 is just supposed to be proper, convex and lower semicontinuous; hence,
any form of double-well or multi-well potential, possibly defined on the whole of R, may result
from the free energy

ψ = ψ̂(ρ,∇ρ, µ) = −µh(ρ) + f1(ρ) + f2(ρ) +
1

2
|∇ρ|2. (1.26)

In this respect, we also cover the case of a free energy ψ which is convex or not with respect to
ρ according to whether or not the chemical potential µ is greter or less than a critical value µc;
e.g., this is the case with f1 given as in (1.24) and

h(ρ) = ρ(1− ρ), f2(ρ) = + µc ρ(1− ρ).

There is also a third novelty in our approach. Indeed, the mobility factor κ appearing in (1.21)
(cf. also the choice for Ĥ prior to (1.21)) is no longer assumed to be constant, but rather a
nonnegative, continuous and bounded, nonlinear function of µ. In particular, to prove existence
of solutions we may let κ(µ) degenerate at µ = 0: indeed, in our model the chemical potential
µ is required to take nonnegative values, so that 0 remains critical for µ. The details of such
an existence proof are developed in [12], a paper to which we refer frequently in the present
note. Let us also mention that in the recent paper [13] an existence theory is presented for a
variation of the problem (1.27)–(1.30) below, where the conductivity κ in (1.27) may depend on
both variables µ and ρ.
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1.6 Aim of this contribution

In this paper, we recall the existence result of [12] and sketch the basic steps of the proof;
moreover, in the case when the function µ 7→ κ(µ) is Lipschitz continuous and bounded from
below by a positive constant, we prove uniqueness and continuous dependence on initial data.
This result is new and follows the line of argumentation devised in [12] for the case of κ constant.

We set (cf. (1.25))

g(u) := h(u)− ε

2
≥ 0 for all u ∈ D(f1),

and take ε = δ = 1 for the sake of simplicity. The problem we deal with is:(
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ− div

(
κ(µ)∇µ

)
= 0 in Ω× (0, T ), (1.27)

∂tρ−∆ρ+ ξ + f ′2(ρ) = µg′(ρ) , with ξ ∈ β(ρ), in Ω× (0, T ), (1.28)

(κ(µ)∇µ) · n |Γ = ∂nρ|Γ = 0 on Γ× (0, T ), (1.29)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω. (1.30)

Clearly, how to select ξ in β(ρ) is part of the problem. For (1.27)–(1.30) we can prove a well-
posedness result. In particular, we think that our continuous dependence proof is a nice piece
of work, since it can handle the presence of a multivalued graph β (with vertical segments as,
e.g., in (1.23)) and only exploits the monotonicity property of β. This was not the case for the
uniqueness technique used in [9], since there the difference of two equations (1.1) was tested by
the time derivative of the difference of the two ρ components, a procedure that strongly conflicts
with nonsmooth potentials.

The longtime behavior of the system (1.1)–(1.4) and the structure of the ω-limit set have been
analyzed in [9] and in [10]; the latter paper also deals with the ε = 0 problem, as already
mentioned. The two papers [11] and [14] are concerned with the study of two optimal control
problems for systems similar to (1.1)–(1.4); precisely, in [11] a distributed control problem is
investigated, while [14] focuses on a boundary control problem.

In this paper, we concentrate on existence and uniqueness. In the next section, we state our
assumptions and our results. The existence of a solution to problem (1.27)–(1.30) is proved in
the Section 3. In Section 4, we show some regularity properties of the solutions. The last section
is devoted to the proof of the continuous dependence of the solution on the initial data.

2 Main results

Let Ω be a bounded connected open set in R3 with smooth boundary Γ (lower-dimensional
cases can be treated with minor changes). We introduce a final time T ∈ (0,+∞) and set
Q := Ω× (0, T ). Moreover, we set

V := H1(Ω), H := L2(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}, (2.1)

and endow these spaces with their standard norms, for which we use a self-explanatory notation
like ‖ · ‖V . For p ∈ [1,+∞], we write ‖ · ‖p both for the usual norm in Lp(Ω) and for the norm
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in Lp(Q), since no confusion can arise. Moreover, any of the above symbols for norms is used
even for any power of these spaces. We remark that the embeddings W ⊂ V ⊂ H are
compact, since Ω is bounded and smooth. As V is dense in H , we can identify H with a
subspace of V ∗ in the usual way.

We now introduce the structural assumptions on our system. Firstly, since the chemical poten-
tial is expected to be at least nonnegative, we assume that the function κ is defined just for
nonnegative arguments; moreover, we require that

κ : [0,+∞)→ R is locally Lipschitz continuous, (2.2)

κ∗, κ
∗ ∈ (0,+∞) and µ∗ ∈ [0,+∞), (2.3)

κ(r) ≤ κ∗ for every r ≥ 0 and κ(r) ≥ κ∗ for every r ≥ µ∗, (2.4)

K(r) :=

∫ r

0

κ(s) ds for r ≥ 0 (2.5)

(note that, under the above assumptions, K is strictly increasing). As to the other data, we
assume that f = f1 + f2 and that

f1 : R→ [0,+∞] is convex, proper, lower semicontinuous, (2.6)

f2 : R→ R and g : R→ [0,+∞) are C2 functions, (2.7)

f ′2 , g, and g′ are Lipschitz continuous, (2.8)

β := ∂f1 and π := f ′2 , (2.9)

µ0 ∈ V, ρ0 ∈ W, µ0 ≥ 0 and ρ0 ∈ D(β) a.e. in Ω, (2.10)

there exists some ξ0 ∈ H such that ξ0 ∈ β(ρ0) a.e. in Ω, (2.11)

where D(f1) and D(β) (⊆ D(f1)) denote the effective domains of f1 and β, respectively. It
is known that any proper, convex and lower semicontinuous function is bounded from below by
an affine function (see, e.g., [1, Prop. 2.1, p. 51]). Hence, assuming f1 ≥ 0 looks reasonable,
because one can suitably modify the smooth perturbation f2 by adding a straight line to it.
Another positivity condition, g ≥ 0, is needed on the set D(β), while g can take negative
values outside of D(β). Finally, since f1 obeys (2.6) and f2 is smooth, assumptions (2.10)–
(2.11) imply that f(ρ0) ∈ L1(Ω).

Let us discuss the a priori regularity we ask for any solution (µ, ρ, ξ) to our problem. As (1.28)
reduces for any given µ to a rather standard phase-field equation, it is natural to look for pairs
(ρ, ξ) that satisfy

ρ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.12)

ξ ∈ L∞(0, T ;H), (2.13)

and solve the strong form of the relative subproblem, namely,

∂tρ−∆ρ+ ξ + π(ρ) = µ g′(ρ) and ξ ∈ β(ρ) a.e. in Q, (2.14)

ρ(0) = ρ0 a.e. in Ω. (2.15)

9



We note that (2.12) also incorporates the Neumann boundary condition for ρ (see (2.1) for the
definition of W ).

The situation is different for the component µ : in case of uniform parabolicity, i.e., if µ∗ = 0, the
coefficient κ(µ) is bounded away from zero, and we require that

µ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ), µ ≥ 0 a.e. in Q, (2.16)

div
(
κ(µ)∇µ

)
∈ L2(0, T ;H), (2.17)

so that µ satisfies∫
Ω

(
1 + 2g(ρ(t))

)
∂tµ(t) v +

∫
Ω

µ(t) g′(ρ(t)) ∂tρ(t) v (2.18)

+

∫
Ω

κ(µ(t))∇µ(t) · ∇v = 0 for every v ∈ V and for a.a. t ∈ (0, T ),

µ(0) = µ0 a.e. in Ω. (2.19)

Thus, equation (1.27) holds in a strong sense:(
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ− div

(
κ(µ)∇µ

)
= 0 a.e. in Q, (2.20)

whereas the related Neumann boundary condition in (1.29) continues to be understood in the
usual weak sense. Furthermore, we observe that (2.16)–(2.18) imply further regularity for µ
whenever κ is smoother, thanks to the regularity theory of quasilinear elliptic equations.

Such a formulation is too strong when µ∗ is allowed to be positive, because sufficient information
cannot be obtained on the gradient ∇µ and the time derivative ∂tµ. In this case, we rewrite
equation (2.20) as

∂t
(
1 + 2g(ρ)µ

)
− µg′(µ)∂tρ−∆K(µ) = 0, (2.21)

and require lower regularity:

µ ∈ L∞(0, T ;H), µ ≥ 0 a.e. in Q, K(µ) ∈ H1(0, T ;H) ∩ L∞(0, T ;V ), (2.22)

(1 + 2g(ρ))µ ∈ H1(0, T ;V ∗). (2.23)

On accounting for the initial and Neumann boundary conditions, we replace (2.18)–(2.19) by

〈∂t
(
(1 + 2g(ρ))µ

)
(t), v〉 −

∫
Ω

(
µg′(ρ)∂tρ

)
(t) v +

∫
Ω

∇K(µ(t)) · ∇v = 0

for every v ∈ V and for a.a. t ∈ (0, T ), (2.24)(
(1 + 2g(ρ))µ

)
(0) =

(
1 + 2g(ρ0)

)
µ0. (2.25)

Note that the middle term of (2.24) is meaningful: let us explain why. First, we have that g′(ρ) ∈
C0(Q), because the continuity of ρ,

ρ ∈ C0([0, T ];C0(Ω)) = C0(Q), (2.26)
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follows directly from (2.12) and the compact embedding W ⊂ C0(Ω) (see, e.g., [24, Sect. 8,
Cor. 4]). Next, (2.22) and the embedding V ⊂ L4(Ω) imply that K(µ) ∈ L∞(0, T ;L4(Ω));
consequently, µ ∈ L∞(0, T ;L4(Ω)), as K(r) behaves like r for large |r| (see (2.4)). Finally,
(2.12) ensures that ∂tρ ∈ L∞(0, T ;H), whence µg′(ρ)∂tρ ∈ L∞(0, T ;L4/3(Ω)), and v
is in L4(Ω) whenever v ∈ V . We remark that in this framework (2.21) is only satisfied in a
distributional sense.

Here are our results. The first establishes the existence of a weak solution in the general case
and the equivalence of strong and weak formulations in the case µ∗ = 0; the proof will be
outlined in Section 3.

Theorem 2.1. Assume (2.2)–(2.9) and (2.10)–(2.11). Then, there exists at least one triplet
(µ, ρ, ξ) such that

(µ, ρ, ξ) satisfies (2.12)–(2.13), (2.22)–(2.23)

and solves problem (2.14)–(2.15), (2.24)–(2.25). (2.27)

Moreover, if µ∗ = 0 then any triplet(µ, ρ, ξ) as in (2.27) fulfills also (2.16)–(2.19).

Notice that, due to (2.26), no further assumption is needed to ensure the boundedness of ρ. As
to the first component, we have the following boundedness result.

Theorem 2.2. Assume (2.2)–(2.9), (2.10)–(2.11), and let

µ0 ∈ L∞(Ω). (2.28)

Then, the component µ of any triplet (µ, ρ, ξ) complying with (2.27) is essentially bounded.

The next result holds if we assume that µ∗ = 0.

Theorem 2.3. Assume (2.2)–(2.9), (2.10)–(2.11), µ∗ = 0, and

K(µ0) ∈ W. (2.29)

Then,
K(µ) ∈ W 1,p(0, T ;H) ∩ Lp(0, T ;W ) for every p ∈ [1,+∞), (2.30)

where µ is the first component of any triplet (µ, ρ, ξ) being as in (2.27).

Observe that (2.29) implies (2.28), due to the three-dimensional embedding W ⊂ L∞(Ω)
and the strict monotonicity of K−1 (see (2.5)). Uniqueness is a consequence of the following
continuous dependence result.

Theorem 2.4. Assume (2.2)–(2.9) and µ∗ = 0. Let (µ0,i, ρ0,i), i = 1, 2, be two sets of initial
data satisfying (2.10)–(2.11) and (2.29), and let (µi, ρi, ξi), i = 1, 2, be two corresponding
triplets fulfilling (2.27) (with the obvious modifications of initial conditions). Then, there exists a
constant C , depending on the data through the structural assumptions, such that

‖µ1 − µ2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ρ1 − ρ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ C {‖µ0,1 − µ0,2‖H + ‖ρ0,1 − ρ0,2‖H} . (2.31)
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Henceforth, we make repeated use of the notation

Qt := Ω× (0, t) for t ∈ [0, T ]. (2.32)

Moreover, we account for the well-known embedding V ⊂ Lp(Ω) for 1 ≤ p ≤ 6 and the
related Sobolev inequality:

‖v‖p ≤ CΩ‖v‖V for every v ∈ V and 1 ≤ p ≤ 6, (2.33)

where C depends on Ω only; Hölder inequality and the elementary Young inequality

ab ≤ εa2 +
1

4ε
b2 for every a, b ≥ 0 and ε > 0 (2.34)

are also frequently employed. Finally, throughout the paper we use a small-case italic c for
different constants that may only depend on Ω, the final time T , the shape of the nonlinearities
f and g, and the properties of the data involved in the statements; the symbol cε denotes a
constant that depends also on the parameter ε. The meaning of c and cε might change from
line to line and even in the same chain of inequalities, whereas those constants that we need to
refer to are always denoted by capital letters, just like CΩ in (2.33).

3 Existence

In this section we sketch the proof of Theorem 2.1, referring to [12] for details.

Approximation. The approximating problem is based on a time delay in the right-hand side
of equation (2.14). A translation operator Tτ : L1(0, T ;H) → L1(0, T ;H) is considered,
depending on a time step τ > 0 : for v ∈ L1(0, T ;H) and for a.a. t ∈ (0, T ), we set:

(Tτv)(t) := v(t− τ) if t > τ and (Tτv)(t) := µ0 if t < τ ; (3.1)

and we replace µ by Tτµ in (2.14). At the same time, we modify the equation for µ. Precisely,
we force uniform parabolicity and allow the solution to take negative values. Accordingly, we
define κτ : R→ R and the related function Kτ to be

κτ (r) := κ(|r|) + τ and Kτ (r) :=

∫ r

0

κτ (s) ds for r ∈ R. (3.2)

Then, the approximating problem involves the following equations:(
1 + 2g(ρτ )

)
∂tµτ + µτ g

′(ρτ ) ∂tρτ − div
(
κτ (µτ )∇µτ

)
= 0 a.e. in Q, (3.3)

∂tρτ −∆ρτ + ξτ + π(ρτ ) = (Tτµτ ) g
′(ρτ ) and ξτ ∈ β(ρτ ) a.e. in Q, (3.4)

supplemented by homogeneous Neumann boundary conditions for both µτ and ρτ , and by the
initial conditions µτ (0) = µ0 and ρτ (0) = ρ0. It can be easily shown (cf. [12, Lemma 3.1]) that
such an initial and boundary value problem has a unique solution (µτ , ρτ , ξτ ), which satisfies
the analogues of (2.12)–(2.13) and (2.16)–(2.17).
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Our aim is now to let τ tend to zero in order to obtain a limit triplet (µ, ρ, ξ) complying with
(2.27). Our proof uses compactness arguments and relies on a number of uniform-in-τ a priori
estimates. In performing the estimates, τ can be taken as small as desired; it will be convenient
to assume τ ≤ κ∗. In order to make the formulas more readable, we omit the index τ in the
calculations, and write µτ and ρτ only when each estimate is established.

First a priori estimate. We test (3.3) by µ and observe that[(
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ

]
µ =

1

2
∂t
[
(1 + 2g(ρ))µ2

]
.

Thus, by integrating over (0, t), where t ∈ [0, T ] is arbitrary, we obtain:∫
Ω

(
1 + 2g(ρ(t))

)
|µ(t)|2 +

∫
Qt

κτ (µ)|∇µ|2 =

∫
Ω

(1 + 2g(ρ0))µ2
0 .

Hence, on recalling that g ≥ 0 and that, in view of (2.4), κ2
τ (r) ≤ 2κ∗κτ (r) for every r ∈ R,

we are led to
‖µτ‖L∞(0,T ;H) + ‖Kτ (µτ )‖L2(0,T ;V ) ≤ c. (3.5)

An analogous test by −µ− = min{µ, 0}, and the nonnegativity of µ0, allow us to deduce that
µ− = 0, whence

µτ ≥ 0 a.e. in Q.

Moreover, as K has a linear growth and thanks to (3.1) and (2.10), it follows from (3.5) that

‖Kτ (µτ )‖L∞(0,T ;H) + ‖Tτµτ‖L∞(0,T ;H) + ‖TτKτ (µτ )‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.6)

The Sobolev inequality (2.33) and estimate (3.5) entail ‖Kτ (µτ )‖L2(0,T ;L6(Ω)) ≤ c; conse-
quently,

‖µτ‖L2(0,T ;L6(Ω)) ≤ c, (3.7)

for (2.4) implies that Kτ (r) ≥ κ∗r − c for every r ≥ 0.

Second a priori estimate. Add ρ to both sides of (3.4) and test by ∂tρ, so as to obtain that∫
Qt

|∂tρ|2 +
1

2
‖ρ(t)‖2

V +

∫
Ω

f1(ρ(t))

=
1

2
‖ρ0‖2

V +

∫
Ω

f(ρ0) +
1

2

∫
Ω

(
ρ2(t)−2f2(ρ(t))

)
+

∫
Qt

g′(ρ)(Tτµ)∂tρ

≤ c+ c

∫
Ω

|ρ(t)|2 +
1

4

∫
Qt

|∂tρ|2 + c‖Tτµ‖2
L∞(0,T ;H),

for every t ∈ [0, T ]. In view of the chain rule and Young’s inequality (2.34), we have that

c

∫
Ω

|ρ(t)|2 ≤ c

∫
Ω

|ρ0|2 +
1

4

∫
Qt

|∂tρ|2 + c

∫ t

0

‖ρ(s)‖2
H ds.

Hence, as f1 is nonnegative, from (3.6) and the Gronwall lemma we infer that

‖ρτ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖f1(ρτ )‖L∞(0,T ;L1(Ω)) ≤ c. (3.8)
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Third a priori estimate. Rewrite (3.4) as

−∆ρ+ β(ρ) 3 −∂tρ− π(ρ) + (Tτµ)g′(ρ)

and note that the right-hand side is bounded in L2(0, T ;H), thanks to (2.8)–(2.9) and to the
previous estimates. By a standard argument, that consists in testing formally by either −∆ρ or
β(ρ) and using the regularity theory for elliptic equations, we first recover that

‖∆ρ(s)‖2
H + ‖ξ(s)‖2

H ≤ 2‖−∂tρ(s)− π(ρ(s)) + ((Tτµ)g′(ρ))(s)‖2
H (3.9)

for a.a. s ∈ (0, T ); finally, we conclude that

‖ρτ‖L2(0,T ;W ) ≤ c and ‖ξτ‖L2(0,T ;H) ≤ c. (3.10)

Fourth a priori estimate. As this estimate is rather long and technical, let us just describe
how it can be obtained, referring to [12, Section 4] for details. The aim is improving estimates
(3.8) and (3.10). By proceeding formally, in particular, by writing β(ρ) in place of ξ and treating
β like a smooth function, one can differentiate (3.4) with respect to time and test the resulting
equation by ∂tρ:

1

2

∫
Ω

|∂tρ(t)|2 +

∫
Qt

|∇∂tρ|2 +

∫
Qt

β′(ρ)|∂tρ|2

=
1

2

∫
Ω

|(∂tρ)(0)|2 −
∫
Qt

(π′(ρ)− g′′(ρ)(Tτµ)) |∂tρ|2 +

∫
Qt

g′(ρ)∂t(Tτµ) ∂tρ

≤ 1

2

∫
Ω

|(∂tρ)(0)|2 + c

∫
Qt

(1 + Tτµ)|∂tρ|2 +

∫
Qt

g′(ρ)∂t(Tτµ) ∂tρ. (3.11)

Now, the term difficult to control is the last one on the right-hand side. We compute ∂tµ from (3.3),
then integrate by parts and repeatedly use the Hölder, Sobolev, and Young inequalities, so as
to obtain: ∫

Qt

g′(ρ)∂t(Tτµ) ∂tρ =

∫ t−τ

0

∫
Ω

∂tµ(s) g′(ρ(s+ τ))∂tρ(s+ τ) ds

=

∫ t−τ

0

∫
Ω

κτ (µ)(s)∇µ(s) · ∇∂tg(ρ(s+ τ))

1 + 2g(ρ(s))
ds

−
∫ t−τ

0

∫
Ω

g′(ρ(s)) g′(ρ(s+ τ))

1 + 2g(ρ(s))
µ(s)∂tρ(s)∂tρ(s+ τ) ds; (3.12)

the last two integrals are treated separately, taking the structural assumptions into account. In
the subsequent computations, one takes advantage of the compact embedding V ⊂ L4(Ω)
and of the regularity theory for linear elliptic equations. In particular, exploiting (3.9) entails that

‖∇ρ(s)‖2
V ≤ c

(
‖ρ(s)‖2

V + ‖∆ρ(s)‖2
H

)
≤ c
(
‖∂tρ(s)‖2

H + 1
)
,

an inequality that turns out to be helpful in the control of one of the terms. At the end, we arrive
at ∫

Ω

|∂tρ(t)|2 +

∫
Qt

|∇∂tρ|2 ≤ c

∫ t

0

φ(s)‖∂tρ(s)‖2
H ds+ c,

where φ(s) := ‖µ(s)‖2
4 + ‖∇Kτ (µ)(s)‖2

H + ‖∇(TτKτ (µ))(s)‖2
H ;
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hence, as φ ∈ L1(0, T ) by (3.5)–(3.7), we can apply the Gronwall lemma and conclude that

‖∂tρτ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.13)

As a consequence, note that −∆ρ+ ξ = −∂tρ− π(ρ) + g′(ρ)Tτµ belongs to L∞(0, T ;H)
due to (3.5) and (3.13). Therefore, by (3.9), both −∆ρ and ξ are in L∞(0, T ;H). Thanks to
elliptic regularity, we conclude that

‖ρτ‖L∞(0,T ;W ) ≤ c and ‖ξτ‖L∞(0,T ;H) ≤ c. (3.14)

Fifth a priori estimate. Test (3.3) by ∂tKτ (µ) = κτ (µ)∂tµ and obtain∫
Qt

(1 + 2g(ρ))κτ (µ)|∂tµ|2 +
1

2

∫
Ω

|∇Kτ (µ(t))|2

=
1

2

∫
Ω

|∇Kτ (µ0)|2 −
∫
Qt

g′(ρ)∂tρ µ ∂tKτ (µ) (3.15)

for every t ∈ (0, T ). The first term on the left-hand side can be estimated from below, as
follows:∫

Qt

(1 + 2g(ρ))κτ (µ)|∂tµ|2 ≥
∫
Qt

κ2
τ (µ)

2κ∗
|∂tµ|2 =

1

2κ∗

∫
Qt

|∂tKτ (µ)|2. (3.16)

On the right-hand side, the first term is trivial due to (2.10)1; as to the second one, by the Young,
Hölder, and Sobolev inequalities we have that

−
∫
Qt

g′(ρ)∂tρ µ ∂tKτ (µ) ≤ 1

4κ∗

∫
Qt

|∂tKτ (µ)|2 + c

∫ t

0

‖µ(s)‖2
4‖∂tρ(s)‖2

4 ds

≤ 1

4κ∗

∫
Qt

|∂tKτ (µ)|2 + c

∫ t

0

‖µ(s)‖2
4‖∂tρ(s)‖2

V ds. (3.17)

Next, observe that (2.4) yields Kτ (r) ≥ κ∗r − c∗ for every r ≥ 0, where c∗ depends only on
the structural assumptions. Hence, on recalling (3.6), we deduce that

‖µ(s)‖2
4 ≤ c

(
‖Kτ (µ)(s)‖2

4 + 1
)
≤ c
(
‖Kτ (µ)(s)‖2

V + 1
)

≤ c‖∇Kτ (µ)(s)‖2
H + c‖Kτ (µ)(s)‖2

H + c ≤ c‖∇Kτ (µ)(s)‖2
H + c (3.18)

for a.a. s ∈ (0, T ). By combining (3.16)–(3.18) with (3.15), we obtain that

1

4κ∗

∫
Qt

|∂tKτ (µ)|2 +
1

2

∫
Ω

|∇Kτ (µ(t))|2 ≤ c+ c

∫ t

0

‖∂tρ(s)‖2
V

(
‖∇Kτ (µ)(s)‖2

H +1
)
ds.

In view of (3.13), we can apply the Gronwall lemma and conclude that

‖Kτ (µτ )‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c. (3.19)
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Moreover, arguing as for (3.7) and (3.6), we derive that

‖µτ‖L∞(0,T ;L6(Ω)) + ‖Tτµτ‖L∞(0,T ;L6(Ω)) ≤ c. (3.20)

Sixth a priori estimate. Writing (3.3) as ∂t
(
(1 + 2g(ρ))µ

)
= ∆Kτ (µ) + g′(ρ)µ ∂tρ and

then testing by v ∈ L1(0, T ;V ) leads to∣∣∣∣∫
Q

∂t
(
(1 + 2g(ρ))µ

)
v

∣∣∣∣ =

∣∣∣∣−∫
Q

∇Kτ (µ) · ∇v +

∫
Q

g′(ρ)µ ∂tρ v

∣∣∣∣
≤ ‖Kτ (µ)‖L∞(0,T ;V )‖v‖L1(0,T ;V ) + ‖∂tρ‖L∞(0,T ;H)‖µ‖L∞(0,T ;L4(Ω))‖v‖L1(0,T ;L4(Ω))

≤
(
‖Kτ (µ)‖L∞(0,T ;V ) + c‖∂tρ‖L∞(0,T ;H)‖µ‖L∞(0,T ;L4(Ω))

)
‖v‖L1(0,T ;V ).

Hence, (3.13) and (3.19)–(3.20) enable us to infer that

‖∂t
(
(1 + 2g(ρτ ))µτ

)
‖L∞(0,T ;V ∗) ≤ c. (3.21)

Passage to the limit. On setting ζτ := (1 + 2g(ρτ ))µτ and recalling the a priori estimates, it
turns out that there exist a triplet (µ, ρ, ξ), with µ ≥ 0 a.e. inQ, and functions k and ζ such that

µτ → µ weakly star in L∞(0, T ;L6(Ω)), (3.22)

ρτ → ρ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (3.23)

ξτ → ξ weakly star in L∞(0, T ;H), (3.24)

Kτ (µτ )→ k weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ), (3.25)

ζτ → ζ weakly star in W 1,∞(0, T ;V ∗) ∩ L∞(0, T ;L6(Ω)), (3.26)

at least for a susequence τ = τi↘0. By (3.23), (3.25), and the compact embeddings W ⊂
C0(Ω) and V ⊂ H , we can apply well-known results (see, e.g., [24, Sect. 8, Cor. 4]) and infer
that

ρτ → ρ strongly in C0(Q), (3.27)

Kτ (µτ )→ k strongly in C0([0, T ];H) and a.e. in Q. (3.28)

Now, convergences (3.24) and (3.27) imply that ξ ∈ β(ρ) a.e. in Q, as is well known (see, e.g.,
[4, Prop. 2.5, p. 27]). By (3.27), we also recover the Cauchy condition (2.15) and the fact that
φ(ρτ ) → φ(ρ) strongly in C0(Q) for every continuous function φ : R → R; of course, this
property can be applied to g, g′, and π (see (2.8)). From (3.22) and (3.20), it is not difficult to
check that Tτµτ → µ weakly star in L∞(0, T ;L6(Ω)); hence, the product Tτµτg

′(ρτ ) has
the weak star limit µg′(ρ) in L∞(0, T ;L6(Ω)) and (2.14) can follow from (3.4).

Next, we check that µτ converges to µ a.e. in Q. Note that K−1
τ converges to K−1 uniformly

on [0, R] for every R > 0. Hence, (3.28) implies µτ → K−1(k) a.e. in Q, and a comparison
with (3.22) enables us to deduce that K−1(k) = µ (whence k = K(µ)) and

µτ → µ strongly in Lp(0, T ;Lq(Ω)), for every p < +∞ and q < 6, (3.29)
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and a.e. in Q (the Egorov theorem is used here). Then, we can also infer that ζτ converges to
(1+2g(ρ))µ a.e. inQ, whence ζ = (1+2g(ρ))µ by comparing with (3.26). On the other hand,
(3.26) implies that ζτ → ζ strongly in C0([0, T ];V ∗), thus, ζτ (0) → ζ(0) strongly in V ∗, so
that the Cauchy condition (2.25) is verified.

It remains for us to identify the limit of µτg′(ρτ )∂tρτ : we show that it weakly converges to
µg′(ρ)∂tρ in some Lp-type space. By choosing, e.g., p = 2, q = 4 in (3.29) and exploiting
the weak star convergence of ∂tρτ in L∞(0, T ;H) (see (3.23)) and the uniform convergence
of g′(ρτ ), we deduce that µτg′(ρτ )∂tρτ → µg′(ρ)∂tρ weakly in L2(0, T ;L4/3(Ω)). At this
point, it is straightforward to derive (2.24) in an integrated form, namely,∫ T

0

〈∂t
(
(1 + 2g(ρ))µ

)
(t), v(t)〉 dt−

∫
Q

µg′(ρ)∂tρ v +

∫
Q

∇K(µ) · ∇v = 0 (3.30)

for any v ∈ L2(0, T ;V ) ⊂ L2(0, T ;L4(Ω)), whence the time-pointwise version (2.24).

End of the proof of Theorem 2.1. Here, we check the last part of the statement of Theo-
rem 2.1. In the case µ∗ = 0, we have κ(r) ≥ κ∗ for every r ≥ 0. This implies that the inverse
function K−1 : [0,+∞)→ [0,+∞) is Lipschitz continuous. Hence, (2.22) yields

µ = K−1(K(µ)) ∈ H1(0, T ;H) ∩ L∞(0, T ;V ),

i.e., (2.16) holds. In particular, we can write

∇K(µ) = κ(µ)∇µ and ∂t
(
(1 + 2g(ρ))µ

)
= µ ∂t(1 + 2g(ρ)) + (1 + 2g(ρ))∂tµ

and thus replace the weak formulation by the strong one. Next, we point out that (2.18) implies
that (2.20) holds in the sense of distributions, whence (2.17) follows by comparison. Finally,
(2.19) is a consequence of (2.25) and the continuity of µ from [0, T ] to H .

4 Regularity properties

In this section, we prove Theorems 2.2 and 2.3 and make some remarks on the regularity of
solutions. To achieve the first result, we adapt the arguments used in [9, 12].

Proof of Theorem 2.2. Set µ∗0 := max {1, ‖u0‖∞}. We would like to test (2.24) by (µ−k)+,
for some constant k greater than µ∗0. We have to check that (µ − k)+ is an admissible test
function, which is not obvious since∇µ might not exist in the usual sense.

Now, thanks to (2.4)–(2.5), K is a strictly increasing mapping from [0,+∞) onto itself and
K−1 is Lipschitz continuous on the interval [s∗,+∞), where s∗ := K(µ∗). Therefore, we
can choose a strictly increasing map K∗ : [0,+∞) → [0,+∞) that is globally Lipschitz
continuous and coincides with K−1 on [s∗,+∞). Hence, we have K∗(K(r)) = r for every
r ≥ µ∗ and K∗(K(r)) < µ∗ for r < µ∗. It follows that (r − k)+ = (K∗(K(r)) − k)+ for
every r ≥ 0 if k ≥ µ∗. On the other hand,K∗(K(µ)) ∈ H1(0, T ;H)∩L2(0, T ;V ) by (2.22).
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Hence, (µ−k)+ enjoys the same regularity and is an admissible test function in (2.24) provided
that k ≥ µ∗. Thus, from now on we assume k ≥ max{µ∗0, µ∗}. We have from (2.24) that∫ t

0

〈∂t
[
(1 + 2g(ρ))µ

]
(s), (µ(s)− k)+〉 ds+

∫
Qt

∇K(µ) · ∇(µ− k)+

=

∫
Qt

µ ∂tg(ρ) (µ− k)+

for every t ∈ [0, T ]. A simple rearrangement yields:∫ t

0

〈∂t
[
(1 + 2g(ρ))(µ− k)

]
(s), (µ(s)− k)+〉 ds+

∫
Qt

∇K(µ) · ∇(µ− k)+ (4.1)

=

∫
Qt

∂tg(ρ) |(µ− k)+|2 − k
∫
Qt

∂tg(ρ) (µ− k)+.

Note that 1/(1+2g(ρ)) ∈ H1(0, T ;V )∩L∞(0, T ;W ), in view of (2.12) and our assumptions
on g (cf. (2.7)–(2.8)). Then, we can apply the ‘chain-rule’ Lemma 5.1 in [12] to deduce that∫ t

0

〈∂t
[
(1 + 2g(ρ))(µ− k)

]
(s), (µ(s)− k)+〉 ds =

∫
Qt

(µ− k)∂t
[
(1 + 2g(ρ))(µ− k)+

]
=

∫
Qt

2∂tg(ρ) |(µ− k)+|2 +

∫
Qt

(µ− k)(1 + 2g(ρ)) ∂t(µ− k)+

=
1

2

∫
Qt

∂t
[
(1 + 2g(ρ))|(µ− k)+|2

]
+

∫
Qt

∂tg(ρ) |(µ− k)+|2.

On the other hand, we have that

∇(µ− k)+ = ∇µ = ∇K−1(K(µ)) = (K−1)′(K(µ))∇K(µ) =
1

κ(µ)
∇K(µ)

almost everywhere in the set where µ ≥ k. Furthermore, we observe that (µ(0) − k)+ = 0
a.e. in Ω on account of k ≥ µ∗0. Hence, (4.1) yields

1

2

∫
Ω

(1 + 2g(ρ(t)))|(µ(t)− k)+|2 +

∫
Qt

κ(µ)|∇(µ− k)+|2 = −k
∫
Qt

∂tg(ρ) (µ− k)+.

As g is nonnegative and κ(r) ≥ κ∗ for r ≥ k (because k ≥ κ∗), it follows that

1

2

∫
Ω

|(µ(t)− k)+|2 + κ∗

∫
Qt

|∇(µ− k)+|2 ≤ k

∫
Qt

|∂tg(ρ)| (µ− k)+.

At this point, we can repeat the argument used in [9]: indeed, the analog of (2.14) is never used
there, and the whole proof is based just on the regularity ∂tρ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).
In the present case, we have to exploit the same regularity for ∂tg(ρ), an easy consequence
of (2.12) and (2.8).
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Remark 4.1. The property µ ∈ L∞(Q) may lead to additional regularitity for ρ, of course
under suitable assumptions on the initial data. Indeed, note that (2.14) yields:

∂tρ−∆ρ+ ξ = µg′(ρ)− π(ρ) ∈ L∞(Q).

So, if we let inf ρ0 and sup ρ0 belong to the interior ofD(β) (assuming that it is not empty, the
significant case), one can easily derive that ξ ∈ L∞(Q). Indeed, one can formally multiply by
|ξ|p−1 sign ξ and estimate ‖ξ‖p uniformly with respect to p, if the assumption on ρ0 is satisfied.
This implies that

ρ ∈ W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) for every p < +∞,

provided that ρ0 is smooth enough. However, no further regularity can be proved, in general,
since (2.14) cannot be differentiated.5

Proof of Theorem 2.3. By virtue of (2.26), it turns out that g(ρ) is continuous and g′(ρ) is
bounded. Moreover, thanks to Theorem 2.2, µ is bounded too, because µ0 = K−1(K(µ0))
fulfills (2.28) by virtue of (2.29).

We point out that (2.20) can be seen as a uniformly parabolic linear equation for w = K(µ),
with continuous coefficients and a right-hand side belonging to L∞(0, T ;H). Indeed, as ∂tµ =
(κ(µ))−1∂t(K(µ)), we have that

∂tw −
κ(µ)

1 + 2g(ρ)
∆w = − µ g

′(ρ) ∂tρ

1 + 2g(ρ)
.

Therefore, recalling that w0 := K(µ0) ∈ W and applying the optimal Lp-Lq-regularity results
(see, e.g., [15, Thm. 2.3]), we infer (2.30) and Theorem 2.3 is proved.

Let us remark that (2.30) holds under an assumption on w0 that is actually weaker than w0 ∈
W . The optimal condition involves a proper Besov space and gives a similar result for a fixed p.
We are going to exploit (2.30) just with p = 4 in the proof of our continuous dependence result.
As µ∗ = 0 and

κ∗|∇µ| ≤ κ(µ)|∇µ| = |∇K(µ)| a.e. in Q,

(2.30) implies that
|∇µ| ∈ L4(0, T ;L6(Ω)); (4.2)

this regularity is used for |∇µi|, i = 1, 2 in the proof of Theorem 2.4 here below.

5Unless β has a special form, for instance (compute the derivative of the convex part of (1.5)) ,

β(ρ) = ln
ρ

1− ρ
,

like in [9]. By the way, in this case the condition ξ ∈ L∞(Q) is equivalent to inf ρ > 0 and sup ρ < 1.
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5 Continuous dependence

In this section, we prove Theorem 2.4. We point out that, under the assumptions of this theo-
rem, both solutions (µ1, ρ1, ξ1) and (µ2, ρ2, ξ2) satisfy the regularity properties stated in Theo-
rems 2.2 and 2.3. In particular, the following estimate holds true (cf. (4.2) and (2.12)):

2∑
i=1

{
‖µi‖L4(0,T ;W 1,6(Ω)) + ‖ρi‖L4(0,T ;W 1,6(Ω))

}
≤ c, (5.1)

for some constant c depending only on the data of the problems, including the initial values
(µ0,i, ρ0,i), i = 1, 2.

As a general strategy for both solutions, we rewrite equation (2.20) in the form

∂t
(
µ/α(ρ)

)
− α(ρ) div

(
κ(µ)∇µ

)
= 0, (5.2)

where the function α : R→ (0,+∞) is defined by

α(r) :=
(
1 + 2g(r)

)−1/2
for r ∈ R. (5.3)

More precisely, let us consider the variational formulation of (5.2) that accounts for the homoge-
neous Neumann boundary condition and involves a related unknown function, namely,

z :=
µ

α(ρ)
,

with ∫
Ω

∂tz(t) v +

∫
Ω

κ
(
α(ρ(t)) z(t)

)
∇
(
α(ρ(t)) z(t)

)
· ∇
(
α(ρ(t))v

)
= 0

for a.a. t ∈ (0, T ) and for every v ∈ V . (5.4)

We point out that, for i = 1, 2, the functions zi := µi/α(ρi) are bounded, since both µi and ρi
are. Indeed, (2.26) holds and Theorem 2.2 can be applied (recall (2.29) and (2.28)). Moreover,
from (5.1) we can easily deduce that

2∑
i=1

‖zi‖L4(0,T ;W 1,6(Ω)) ≤ c (5.5)

as well. For the sake of convenience, for i = 1, 2 we set

ai := α(ρi), κi := κ(µi)

and observe that (zi, ρi) satisfy (5.4). In order to simplify formulas and make the proof more
readable, let us adopt the notation:

µ := µ1 − µ2, ρ := ρ1 − ρ2, ξ := ξ1 − ξ2, z := z1 − z2 , a := a1 − a2,

µ0 := µ0,1 − µ0,2, ρ0 := ρ0,1 − ρ0,2, and z0 :=
µ0,1

α(ρ0,1)
− µ0,2

α(ρ0,2)
.
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Note that z0 is the initial value of the difference z1 − z2.

It is our intention to prove the preliminary estimate∫
Ω

|z(t)|2 +

∫
Qt

|∇(a1z)|2 +

∫
Ω

|ρ(t)|2 +

∫
Qt

|∇ρ|2 ≤ c

{∫
Ω

|z0|2 +

∫
Ω

|ρ0|2
}
, (5.6)

and then to explain how to derive (2.31) from (5.6). Here, c depends on the structure and on
an upper bound of the norms of the initial data involved in our assumptions. Indeed, in the
subsequent estimates, the (varying) value of the constant c depends on some norms of the
considered solutions, e.g., through ‖zi‖∞. However, such norms can be estimated in terms of
an upper bound of the quantities that appear in (2.10)–(2.11), (2.28) and (2.29).

We proceed as follows. Having written (5.4) for both solutions and chosen v = z1 − z2 in the
difference, we integrate over (0, t), for an arbitrary t ∈ (0, T ). At the same time, we consider
(2.14) for both solutions and test the difference by ρ1 − ρ2, integrating over Qt. Finally, we take
a suitable linear combination of the resulting equalities and perform a number of estimates that
lead us to apply the Gronwall lemma. However, before starting, we recall a list of inequalities
that follow from the boundedness and the Lipschitz continuity of α, α′, and 1/α (cf. (2.7)–(2.8))
and from the Lipschitz continuity of κ. Indeed, in spite of (2.2), here we may assume κ globally
Lipschitz continuous, as both µ1 and µ2 are bounded. We easily infer that

|a| = |α(ρ1)− α(ρ2)| ≤ c|ρ|,
|∇a| = |α′(ρ1)∇ρ+

(
α′(ρ1)− α′(ρ2)

)
∇ρ2| ≤ c|∇ρ|+ c|∇ρ2| |ρ|,

|∇ai|+ |∇a−1
i | ≤ c|∇ρi|,

|κ1 − κ2| ≤ c|µ|,
|µ| ≤ |a| |z1|+ a2|z| ≤ c|a|+ c|z| ≤ c|ρ|+ c|z|,
|∇z| = |∇

(
a1z /a1

)
| ≤ c|∇(a1z)|+ c|∇ρ1| |z|.

In what follows, we will repeatedly use these inequalities without alerting the reader. Let us state
a lemma that we proved in [12, Section 6].

Lemma 5.1. For each ϕ ∈ L4(0, T ;L6(Ω)), we have that∫
Qt

ϕ2(|z|2 + |ρ|2) ≤ ε

∫
Qt

(
|∇(a1z)|2 + |∇ρ|2

)
+ cε

∫ t

0

(
1 + ‖∇ρ1(s)‖4

6 + ‖ϕ(s)‖4
6

)(
‖z(s)‖2

2 + ‖ρ(s)‖2
2

)
ds, (5.7)

for every ε > 0 and every t ∈ [0, T ].

Let us start our program and, in order to make the argument more transparent, let us deal just
with the first equation, if only for a while. We have that

1

2

∫
Ω

|z(t)|2 +

∫
Qt

(
κ1∇(a1z1) · ∇(a1z)− κ2∇(a2z2) · ∇(a2z)

)
=

1

2

∫
Ω

|z0|2.
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It is convenient to transform the last integrand on the left-hand side as follows:

κ1∇(a1z1) · ∇(a1z)− κ2∇(a2z2) · ∇(a2z)

= κ1|∇(a1z)|2 + κ1∇(a1z2) · ∇(a1z)− κ2∇(a2z2) · ∇(a2z)

= κ1|∇(a1z)|2 + κ1∇(az2) · ∇(a1z) + κ1∇µ2 · ∇(a1z)− κ2∇µ2 · ∇(a2z).

= κ1|∇(a1z)|2 + κ1∇(az2) · ∇(a1z) + κ1∇µ2 · ∇(az) + (κ1 − κ2)∇µ2 · ∇(a2z).

Then, thanks to assumption (2.4) with µ∗ = 0, the above equality yields:

1

2

∫
Ω

|z(t)|2 + κ∗

∫
Qt

|∇(a1z)|2 − 1

2

∫
Ω

|z0|2

≤ −
∫
Qt

κ1∇(az2) · ∇(a1z)−
∫
Qt

κ1∇µ2 · ∇(az)

−
∫
Qt

(κ1 − κ2)∇µ2 · ∇(a2z), (5.8)

where each term on the right-hand side has to be estimated separately. First, it is straightforward
to obtain

−
∫
Qt

κ1∇(az2) · ∇(a1z) ≤ κ∗
4

∫
Qt

|∇(a1z)|2 + c

∫
Qt

(
z 2

2 |∇a|2 + a2|∇z2|2
)

≤ κ∗
4

∫
Qt

|∇(a1z)|2 + c

∫
Qt

(
|∇ρ|2 + |∇ρ2|2 |ρ|2

)
+ c

∫
Qt

|∇z2|2 |ρ|2

≤ κ∗
4

∫
Qt

|∇(a1z)|2 + C1

∫
Qt

|∇ρ|2 + c

∫
Qt

(
|∇ρ2|2 + |∇z2|2

)
|ρ|2, (5.9)

where we have denoted by C1 the constant we want to refer to. As to the second term, we
deduce that

−
∫
Qt

κ1∇µ2 · ∇(az) ≤ κ∗
∫
Qt

|∇µ2|
(
|a| |∇z|+ |z| |∇a|

)
≤ c

∫
Qt

|∇µ2|
(
|∇(a1z)| |ρ|+ |z| |∇ρ1| |ρ|+ |z| |∇ρ|+ |z| |∇ρ2| |ρ|

)
≤ κ∗

4

∫
Qt

|∇(a1z)|2 + c

∫
Qt

|∇µ2|2 |ρ|2 +

∫
Qt

|∇ρ|2

+ c

∫
Qt

|∇µ2|2 |z|2 + c

∫
Qt

(
|∇ρ1|2 + |∇ρ2|2

)
|ρ|2. (5.10)
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For the third and last term, we argue as follows:

−
∫
Qt

(κ1 − κ2)∇µ2 · ∇(a2z)

≤ c

∫
Qt

|µ| |∇µ2| |∇(a2z)| ≤ c

∫
Qt

(
|ρ|+ |z|

)
|∇µ2|

(
|a2| |∇z|+ |z| |∇ρ2|

)
≤ c

∫
Qt

(
|ρ|+ |z|

)
|∇µ2|

(
|∇(a1z)|+ |∇ρ1| |z|+ |z| |∇ρ2|

)
≤ κ∗

4

∫
Qt

|∇(a1z)|2 + c

∫
Qt

|∇µ2|2
(
|ρ|2 + |z|2

)
+ c

∫
Qt

|∇µ2|
(
|∇ρ1|+ |∇ρ2|

)
|z|
(
|ρ|+ |z|

)
≤ κ∗

4

∫
Qt

|∇(a1z)|2 + c

∫
Qt

(
|∇µ2|2 + |∇ρ1|2 + |∇ρ2|2

)(
|ρ|2 + |z|2

)
.

Next, we deal with the second equation. Testing the difference of (2.14) by ρ yields:

1

2

∫
Ω

|ρ(t)|2 +

∫
Qt

|∇ρ|2 +

∫
Qt

ξρ

=

∫
Qt

(
µ1g

′(ρ1)− µ2g
′(ρ2)− π(ρ1) + π(ρ2)

)
ρ+

1

2

∫
Ω

|ρ0|2. (5.11)

We note that the product ξρ in the left-hand side is nonnegative by monotonicity, while the first
integrand on the right-hand side can be estimated as follows:(

µ1g
′(ρ1)− µ2g

′(ρ2)− π(ρ1) + π(ρ2)
)
ρ

≤
(
|µ| |g′(ρ1)|+ |µ2| |g′(ρ1)− g′(ρ2)|+ |π(ρ1)− π(ρ2)|

)
|ρ|

≤ |g′(ρ1)| |µ| |ρ|+ c|µ2| |ρ|2 + c|ρ|2 ≤ c
(
|µ|2 + |ρ|2

)
≤ c
(
|z|2 + |ρ|2

)
.

Now, on inspecting the coefficients of the integral
∫
Qt
|∇ρ|2 in the right-hand sides of (5.9)

and (5.10), it appears convenient to multiply (5.11) by C1 + 2 and then add it to (5.8). Having
done this, it is straightforward to deduce that∫

Ω

|z(t)|2 +

∫
Qt

|∇(a1z)|2 +

∫
Ω

|ρ(t)|2 +

∫
Qt

|∇ρ|2

≤ c

∫
Qt

(
|∇µ2|+ |∇ρ1|+ |∇ρ2|+ |∇z2|+ 1

)2 (|z|2 + |ρ|2
)

+ c

∫
Ω

|z0|2 + c

∫
Ω

|ρ0|2.

At this point, we observe that (5.1) and (5.5) allow us to apply Lemma 5.1 with ϕ = |∇µ2| +
|∇ρ1| + |∇ρ2| + |∇z2| + 1. After such an application, we choose ε > 0 small enough and
use the Gronwall lemma. Thus, we obtain (5.6). Now, we easily check that

|µ| ≤ c|ρ|+ c|z|,
|∇µ| = |∇ (a1 z + z2 a)| ≤ c|∇(a1z)|+ c|∇z2| |ρ|+ z2|∇a|
≤ c|∇(a1z)|+ c (|∇z2|+ |∇ρ2|) |ρ|+ c|∇ρ|
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almost everywhere in Q and

|z0| ≤ c(1/a1)|µ0|+ c z0,2|a| ≤ c (|µ0|+ |ρ0|)

in Ω. By combining these inequalities with (5.6), we obtain the estimate∫
Ω

|µ(t)|2 +

∫
Qt

|∇µ|2 +

∫
Ω

|ρ(t)|2 +

∫
Qt

|∇ρ|2

≤ c

∫
Qt

(
|∇z2|+ |∇ρ2|

)2 |ρ|2 + c

∫
Ω

|µ0|2 + c

∫
Ω

|ρ0|2.

Hence, we can apply once more the Gronwall lemma and plainly conclude that (2.31) holds
true.
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