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Abstract. We present a linear time approximation algorithm with a
performance ratio of 1/2 for finding a maximum weight matching in an
arbitrary graph. Such a result is already known and is due to Preis [7].
Our algorithm uses a new approach which is much simpler than the one
given in [7] and needs no amortized analysis for its running time.

Keywords. approximation algorithms, analysis of algorithms, graph al-
gorithms, maximum weight matching

1 Introduction

A matching M in a graph G = (V, E) is a subset of the edges E of G such
that no two edges in M are incident. Finding a matching of maximum size in
a graph is a fundamental problem in algorithmic graph theory which has many
applications. The fastest algorithm known today for solving this problem is due
to Micali and Vagirani [4][8] and has a running time of O(y/|V[|E|).

In this paper we are interested in algorithms for the weighted matching
problem. The problem is defined as follows: Let G = (V, E) be a graph and
w : E — Ry be a function which assigns a weight to each of the edges of
G. Then the weight w(F') of a subset F' C E of the edges of G is defined as
w(F) := ) ,cpw(e). Now the weighted matching problem is to find a matching
M in G that has maximum weight.

The fastest algorithm known today for solving the weighted matching prob-
lem in general graphs is due to Gabow [2] and has a running time of O(|V||E|+
|V|?log|V|). Under the assumption that all edge weights are integers in the
range [1...N] Gabow and Tarjan [3] presented an algorithm with running time
O/ |V]1log(|[V])a(|E|, |V])|E|log(N|V|), where « is the inverse of Ackermann’s




Greedy Matching (G = (V, E),w : E — Ry)

M:=0
while E # () do begin

let e be the heaviest edge in E

add e to M

remove e and all edges incident to e from E
end
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Figure 1: The greedy algorithm for finding maximum weight matchings.

function. For many practical problems involving very large graphs such run-
ning times can be too costly. Examples are the refinement of FEM nets [5]
and the partitioning problem in VLSI-Design [6]. Therefore one is interested
in approximation algorithms for the weighted matching problem which ideally
have linear running time.

One other reason why one is interested in simple approximation algorithms,
is that implementing polynomial time exact algorithms for the weighted match-
ing problem is a very tedious task [1].

The quality of an approximation algorithm for solving the weighted match-
ing problem is measured by its so called performance ratio. An approximation
algorithm has a performance ratio of c, if for all graphs it finds a matching with
a weight of at least ¢ times the weight of an optimal solution.

It is easily seen that the greedy algorithm shown in Figure 1 is an approxi-
mation algorithm for the weighted matching problem with a performance ratio
of 1/2. The greedy algorithm can be implemented with a running time as fast as
O(|E|log|V]) if the edges of G are sorted in a preprocessing step by decreasing
weight.

In [7] Preis improved upon the simple greedy approach by making use of the
concept of a so called locally heaviest edge. This way he obtained an approxi-
mation algorithm for the weighted matching problem with a performance ratio
of 1/2 and a running time of O(|E|). In this paper we use a new approach to
get another such algorithm that has two advantages compared to the algorithm
in [7]: Our algorithm is much simpler and needs no amortized analysis to prove
its linear running time.

2 The Path Growing Algorithm

Our new algorithm with a performance ratio of 1/2 for finding a maximum
weight matching in a graph is shown in Figure 2. Because the main idea involves
growing a set of vertex disjoint paths in the given graph, we call it the Path
Growing Algorithm. The Path Growing Algorithm starts with a path of length
0, i.e. a single vertex, and tries to extend the current path in one direction for as
long as possible. The path is always extended along the heaviest edge currently
available. Once the heaviest edge has been chosen all other edges incident to
the current vertex are deleted to ensure that the paths are vertex disjoint. If



PathGrowingAlgorithm (G = (V,E),w: E — R} )
1 My =0, My:=0,i:=1
2 while E # () do begin
3 choose z € V of degree at least 1 arbitrarily
4 while z has a neighbor do begin
5 let {z,y} be the heaviest edge incident to z
6 add {z,y} to M;
7 1:=3—1
8 remove z from G
9 =y
10 end
11 end
12 return max(w(M;), w(Ms))

Figure 2: The Path Growing Algorithm for finding maximum weight matchings.

it is no longer possible to extend the current path by an edge, a new path is
started in a new vertex. This process goes on until all vertices of the graph
belong to some path (possibly of length 0).

The edges of all these paths are collected in the two sets M; and My. Due
to line 7 of the algorithm the edges of the paths are alternately inserted into
M; and Ms. Therefore both of these sets contain no incident edges and are
matchings. Of these two matchings the one having larger weight is returned.

3 The running time is linear
Theorem 1 The Path Growing Algorithm has running time O(|E|).

Proof. Every vertex of the graph is processed at most once in the while-loop
in lines 4-10 because after being processed, it will be removed from G in line 8.
Finding the heaviest edge incident to some vertex = and removing z from G can
easily be done in time proportional to the degree of z. By always starting paths
from among end vertices of an edge one can ensure that no vertex of degree
zero will ever be processed. The number of vertices of degree at least 1 in G
is O(|E|). Therefore the total running time of the Path Growing Algorithm is
bounded by the sum of the degrees of the vertices in V' which is O(|E|). O

4 The performance ratio is 1/2
Theorem 2 The Path Growing Algorithm has a performance ratio of 1/2.

Proof. For the analysis of the performance ratio we will assign each edge of
the graph to some vertex of the graph in the following way. Whenever a vertex
is removed in line 8 of the algorithm all edges which are currently incident to
that vertex z are assigned to z. This way each edge of G is assigned to exactly



one vertex of G. Note that there might be vertices in G that have no edges
assigned to them.

Now consider a maximum weight matching M in G. As M must not contain
two incident edges, all edges of M are assigned to different vertices of G. In each
step of the algorithm the heaviest edge that was currently incident to vertex
z is chosen in line 5 of the algorithm and added to M; or Ms. Therefore the
weight of M1 U M, is at least as large as the weight of M. As

—_

max(w(My), w(Mp)) > %w(MluMg) > S w(M)

the weight returned by the Path Growing Algorithm is at least half the weight
of the optimal solution. O

5 Concluding remarks

It is easy to construct examples of graphs showing that 1/2 is the worst case
performance ratio of the Path Growing Algorithm. However, there are several
ways to improve on the performance ratio of this algorithm in practice.

First note that a matching returned by the Path Growing Algorithm is
not necessarily a maximal matching. Therefore, in a postprocessing phase one
can extend the matching found by the Path Growing Algorithm to a maximal
matching in O(|E|).

Secondly, instead of returning one of the matchings My or My as the solution
one can return a maximum weight matching for each path computed by the Path
Growing Algorithm. Such a maximum weight matching can be computed in
linear time for trees and therefore also for paths by a dynamic programming
approach.
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