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Abstract

We study the incremental facility location problem, wherein we are given an instance
of the uncapacitated facility location problem. We seek an incremental sequence
of opening facilities and an incremental sequence of serving customers along with
their fixed assignments to facilities open in the partial sequence. Our aim is to
have the solution obtained for serving the first ` customers in the sequence be
competitive with the optimal solution to serve any ` customers. We provide an
incremental framework that provides an overall competitive factor of 8 and a worst
case instance that provides the lower bound of 3. The problem has applications in
multi-stage network planning.
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1 Introduction

The problem studied is motivated by the need to deploy telecommunication
networks in phases due to budget, time or resource restrictions. In practical
situations, problems arising in network planning require incremental solutions
that help planners to build the network in stages in the most efficient way. The
uncapacitated facility location problem (UFLP) with metric assignment cost
has a long line of research [1,3,8]. The best approximation guarantee known
for this problem is 1.48 [5]. The problem has also been studied in incremental
settings [7,6] but prior work involve in different settings compared to one
considered in our work. The authors in previous work were interested in a
nested sequence of facilities and a threshold sequence for the scaling of the
assignment costs. A solution in the sequence is a solution corresponding to a
specific scaling factor, which could be inferred from the threshold sequence.
Each solution in the sequence serves all customers and we differ from them in
our problem definition.

The incremental facility location problem (IncFLP) is based on the robust
facility location problem (RFLP) [2]. In that problem, we are given a set F
of potential facility locations and a set R of customers. We are also given a
service cost cS : R × F → R+,a facility opening cost cF : F → R+ and a
number ` of customers to be connected. We seek a set of facilities F ∗ and a
set customers R∗ incurring minimal cost with |R∗| ≥ `. We denote the robust
facility location problem with given number ` by `-RFLP.

An instance of IncFLP comprises of the same input as the RFLP without
the number `. Let n the number of customers in the instance. We seek nested
sets of facilities, customers and assignment edges between them such that for
all ` = 1, . . . , n, the induced solutions of the `-RFLPs are k-approximative for
some k.

We need more notation to make this precise: For a subset of facilities
L ⊆ F , we denote the total facility cost of this set by cF (L). We denote
the service cost obtained by serving a set of customers M ⊆ R by a set of
facilities L ⊆ F by cS(M,L) =

∑
j∈M cS(j, L), where cS(j, L) is the cost of the

cheapest assignment of customer j to a facility in L. For an edge subset E, let
cS(M,L,E) =

∑
j∈M cS(j, L,E), where cS(j, L,E) is the cost of the cheapest

assignment of customer j to a facility in L existing in E. Let m = |F | be the
number of facilities and n = |R| the number of customers.

In the incremental version, the goal is to give a sequence to serve customers

R1 ( R2 ( · · · ( Rn = R



where |R`| = ` and a sequence to open facilities

F1 ⊆ F2 ⊆ · · · ⊆ Fn

such that the customers in R`\R`−1 could be assigned only to facilities in F`,
assuming R0 = ∅. The objective is to minimize the competitive ratio of the
sequence. The competitive ratio of a sequence is defined as

max
`=1...n

cF (F`) +
∑n

`=1 cS(F`, R`\R`−1)

OPT`
,

where OPT` is the optimal cost of the `-RFLP.

Let A be an approximation algorithm for the RFLP. In our approximation
algorithm, we will treat A as a black-box. By writing (Z,M) = A(F,R, `)
we mean that A takes as input the set of potential facilities locations F ,
the set of customers R and an integer, ` ≤ n, number of customers to be
served. It produces the output (Z,M), where Z ⊆ F is the set of facilities
opened and M ⊆ R, |M | = ` is the set of customers served by the facilities
in Z. The algorithm does not need to return the actual assignment as it is
easily computable. We are now ready to provide our incremental framework
FacInc(F,R).

2 Algorithm FacInc(F,R)

We start with a solution to the uncapacitated facility location problem ob-
tained from any approximation algorithm. Let F ′ ⊆ F be the set of facilities
opened in this solution. The algorithm runs in two phases. The first phase
constructs good partial solutions and in the second phase these partial so-
lutions are glued together to construct an incremental solution. Let D(F,R)
denote the solution obtained from the solution (F,R) by removing exactly one
customer with the highest service cost (ties broken arbitrarily) and removing
any unused facilities (if any) from the solution.

Incremental Phase:

1: Initialize: k = 1, Fn = F ′, Rn = R
2: for ` = (n− 1) to 1 do
3: (F`, R`) = D(F`+1, R`+1) and (LO,MO) = A(F,R, `)
4: if cF (F`) + cS(F`, R`) ≥ 2cF (LO) + cS(MO, LO) then
5: F` = LO

6: R` = MO



7: k = k + 1
8: end if
9: end for

10: Let K = k

We call the point when the “If” condition in step 4 passes as a refinement
point. We have a total of K such refinement points. We shall reverse the
indexing of the solutions from 1 to K, in the increasing fashion (smallest to
largest), in order to help us present the analysis with clarity. Let us denote
these solutions as (F1, R1), (F2, R2), . . . , (FK , RK). Now (F1, R1) and (FK , RK)
have the least and most number of customers respectively. Let rk be the
number of customers served in the kth refinement point solution. Note that
we can construct good solutions (within some constant factor of the optimal)
from (Fk, Rk) to serve ` = (rk−1 + 1) . . . rk customers. In the second phase, we
glue these partial solutions together to construct an incremental solution. We
denote by J(F,R, k) the set of k customers from the set R with the cheapest
service cost when assigned to the facilities in F and we denote such a service
cost by cS(F,R, k).

Refinement Phase:

1: Initialize: R̃0 = R0, F̃0 = F0

2: for k = 0 to K − 1 do
3: F̃k+1 = F̃k ∪ Fk+1

4: Let Jk+1 = J(F̃k+1, Rk+1\R̃k, rk+1 − rk)
5: R̃k+1 = R̃k ∪ Jk+1

6: end for

We now have our incremental sequence of customers and facilities:

R̃0 ⊆ R̃1 · · · ⊆ R̃K−1 ⊆ R̃K = R (1)

F̃0 ⊆ F̃1 · · · ⊆ F̃K−1 ⊆ F̃K (2)

We are yet to explain why this is an incremental sequence at the non-
refinement or intermediate points. We will do this later.



3 Analysis

We would first like to show that for all k = 1, . . . , K, the following inequality
holds:

cF (F̃k) + cS(F̃k, R̃k) ≤ 2cF (A(F,R, rk)) + cS(A(F,R, rk)) (3)

where A is the approximation algorithm used as our black-box. Our refinement
condition at step 4 of the refinement phase implies

2cF (Fk) + cS(Fk, Rk) ≤ cF (Fk+1) + cS(Fk+1, Rk+1, rk),∀k ∈ {1 . . . K − 1} (4)

Lemma 3.1

2cF (Fk) + cS(Fk, Rk) + cF (Fk+1) + cS(Fk+1, Rk+1 \ R̃k, rk+1 − rk)

≤ 2cF (Fk+1) + cS(Fk+1, Rk+1), for all k ∈ {0, . . . , K − 1}

Proof. Add cF (Fk+1) + cS(Fk+1, Rk+1 \ R̃k, rk+1 − rk) to both sides of the
refinement condition 4. The right hand side is then equal to

2cF (Fk+1) + cS(Fk+1, Rk+1, rk) + cS(Fk+1, Rk+1 \ R̃k, rk+1 − rk)

≤ 2cF (Fk+1) + cS(Fk+1, Rk+1, rk+1) = 2cF (Fk+1) + cS(Fk+1, Rk+1).

The inequality is due to the observation that the cost of choosing the cheapest
rk customers and some rk+1 − rk customers from the set Rk+1 must be less
than the cost of choosing all rk+1 customers. 2

Lemma 3.2

2cF (F1) + cS(F1, R1) +
k∑

j=2

[
cF (Fj) + cS(Fj, Rj \ R̃j−1, rj − rj−1)

]
≤ 2cF (Fk) + cS(Fk, Rk), for all k ∈ {0, . . . , K} (5)

The left hand side is obviously an upper bound to the cost of the incre-
mental solution.

Proof. For k = 1, the claim is true from Lemma 3.1. Let the claim be proven
for k. We prove it for k + 1 and we know that (5) is true for k. We have to



show

2cF (F1) + cS(F1, R1) +
k+1∑
j=2

[
cF (Fj) + cS(Fj, Rj \ R̃j−1, rj − rj−1)

]
≤ 2cF (Fk+1) + cS(Fk+1, Rk+1)

By Lemma 3.1, we know that

2cF (Fk) + cS(Fk, Rk) + cF (Fk+1) + cS(Fk+1, Rk+1 \ R̃k, rk+1 − rk)

≤ 2cF (Fk+1) + cS(Fk+1, Rk+1)

By applying the induction hypothesis, we get

2cF (F1) + cS(F1, R1) +
k+1∑
j=2

[
cF (Fj) + cS(Fj, Rj \ R̃j−1, rj − rj−1)

]
≤ 2cF (Fk) + cS(Fk, Rk) + cF (Fk+1) + cS(Fk+1, Rk+1 \ R̃k, rk+1 − rk)

≤ 2cF (Fk+1) + cS(Fk+1, Rk+1)

2

We need to show that we can upper bound the incremental solution at
intermediate points (non-refinement points) as well. In order to do this, we
first need to explain how to retrieve an incremental solution at these points
from the incremental solution we constructed. If we notice the incremental
solution (1) and (2), we only specified the nested subsets of customers and
facilities at the refinement points. Let us construct the customer set Jk+1

in step 4 of the refinement phase in the following equivalent way: iteratively
augment R̃k by one customer until the size of the set reaches rk+1. We denote
this set after p augmentations by R̃p

k+1. Let Rp
k+1 ⊂ Rk+1, be the subset of

customers of size p = rk+1, . . . , rk+1, that we accepted in the refinement phase
(If condition fails) and F p

k+1 ⊂ Fk+1 be the set of facilities that are serving
these customers in that accepted solution. In each iteration, the new customer
is picked from the set Rp

k+1\R̃
p−1
k and note that at least one such customer

exist, since the cardinalities of these two sets differ exactly by 1. Now, we are
ready to prove the following Lemma (which is similar to Lemma 3.1).

Lemma 3.3 For all p = |Rk|+ 1, . . . , |Rk+1|, we have the following true,

2cF (Fk) + cS(Fk, Ri) + cF (F p
k+1) + cS(F p

k+1, R
p
k+1 \ R̃

p−1
k , 1)

≤ 2cF (Fk+1) + cS(F p
k+1, R

p
k+1).



Proof. The proof is identical to the proof of Lemma 3.1. The additional
thing to observe is the fact that the sets F rk+1

k+1 ⊆ · · · ⊆ F p
k+1 ⊆ · · · ⊆ F

rk+1

k+1

are nested, since we only close down a facility if it is not serving any more
customers. Hence, when we picked a customer from the set Rp

k+1\R̃
p−1
k , we

can pick the facility from the set F p
k+1 that was serving this customer into

our incremental solution. The rest of the arguments are similar to proof of
Lemma 3.1. 2

Now, with Lemma 3.3 and Lemma 3.2, we have established the following
theorem.

Theorem 3.4 For all p = rk + 1, . . . , rk+1 and for all k ∈ {0, . . . , K − 1},
we have the following true,

2cF (F1) + cS(F1, R1) +
k∑

j=2

[
cF (Fj) + cS(Fj, Rj \ R̃j−1, rj − rj−1)

]
+cF (F p

k+1) + cS(F p
k+1, R

p
k+1 \ R̃

p−1
k , 1)

≤ 2cF (Fk+1) + cS(F p
k+1, R

p
k+1).

4 Lower bound

The lower bound here imply the price we need to pay for seeking an incre-
mental solution. The instances we present cannot have any sequence that can
have a competitive factor less than 3. We give a family of instances, which
yield a lower bound of at least 2.99 for m ≥ 200, as can be evaluated compu-
tationally. The ratio for this construction does not seem to exceed a value of
3.

Let there be n facilities. Each facility has zero-cost-connections to a set
Ri with 2i customers. All sets Ri are mutually disjoint. The connection cost
of all other connections is some constant M � 0. We refer to the facility
together with its customers of zero service cost as a cluster.

Let x0, . . . , xm−1 be rest facility opening costs. Consider the following
system of linear inequalities:

xi+1 +
i−1∑
j=0

xj ≥ α · xi ∀i = 1, . . . ,m− 1.

α is the achieved minimal competitive ratio by these inequalities. As an
example, for m = 4 this system is feasible for α = 2.246, but infeasible for



1.0 2.246 4.044516 5.837982936

0
0 0

Fig. 1. Lower bound example for m = 4, α = 2.246. All assignment costs are zero.

α = 2.247. So by setting the facility costs to a solution of this system, we get
a lower bound of 2.246.

The intuitive explanation behind these inequalities is the following. Sup-
pose one looks for a solution of the RFLP with ` = 2k customers. To keep
the competitive ratio down below, one needs to open the first cluster, as the
second cluster is α times as expensive. The following inequalities give an in-
centive to opening the clusters one by one in the order of their size, as the
competitive ratio for the sequence is immediately as bad as α as soon as one
skips a cluster.

An example for m = 4, α = 2.246 can be seen in Figure 1.

5 Robust facility location problem

The best known approximation guarantee known for the robust facility loca-
tion problem is 2 [4]. The LP has an integrality gap of 2 even after parametric
pruning. This worst case example works on an instance with zero service cost,
so we cannot hope to exploit the unequal guarantees that we achieved from
our framework for the facility and service cost. This is the best one could hope
to achieve with the known techniques to solve the facility location problem.
If we plug in the algorithm of Jain et.al. [4] in our framework above, we can
solve the incremental version that guarantees a competitive factor 8. For the
worst case instance presented in section 4, the `-RFLP could solved exactly
as it is a knapsack problem with the budget being ` and our guarantee could
be improved to 4 for these instances.
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