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Abstract We consider a generalization of the connected facility loca-
tion problem where the clients must be connected to the open facilities
via shared capacitated (tree) networks instead of independent shortest
paths. This problem arises in the planning of fiber optic telecommuni-
cation access networks, for example. Given a set of clients with positive
demands, a set of potential facilities with opening costs, a set of capac-
itated access cable types, and a core cable type of infinite capacity, one
has to decide which facilities to open, how to interconnect them using a
Steiner tree of infinite capacity core cables, and which access cable types
to install on which potential edges such that these edges form a for-
est and the installed capacities suffice to simultaneously route the client
demands to the open facilities via single paths. The objective is to min-
imize the total cost of opening facilities, building the core Steiner tree
among them, and installing the access cables. In this paper, we devise
a constant-factor approximation algorithm for problem instances where
the access cable types obey economies of scale. In the special case where
only multiples of a single cable type can be installed on the access edges,
a variant of our algorithm achieves a performance guarantee of 6.72.

1 Introduction

We study a generalization of the Connected Facility Location (ConFL) problem
where not only direct connections between clients and open facilities, but also
shared access trees connecting multiple clients to an open facility are allowed.
Accordingly, also more realistic capacity and cost structures with flow-dependent
buy-at-bulk costs for the access edges are considered. The resulting Connected
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Facility Location with Buy-at-Bulk edge costs (BBConFL) problem captures the
central aspects of both the buy-at-bulk network design problem and the ConFL
problem. In this paper, we study the approximability of the BBConFL problem.
Although both the ConFL and the buy-at-bulk network design problem have
been well studied in the past, the combination of them has not been considered
in the literature, to the best of our knowledge.

A typical telecommunication network consists of a backbone network with
(almost) unlimited capacity on the links and several local access networks. In
such a network, the traffic originating from the clients is sent through access
networks to gateway or core nodes, which provide routing functionalities and
access to the backbone network. The backbone then provides the connectivity
among the core nodes, which is necessary to route the traffic further towards
its destination. Designing such a network involves selecting the core nodes, con-
necting them with each other, and choosing and dimensioning the links that are
used to route the traffic from the clients to the selected core nodes.

We model this planning problem as the BBConFL problem. We are given an
undirected graph G = (V, E) with nonnegative edge lengths ¢, € Z>g, € € E,
obeying the triangle inequality, a set F* C V of potential facilities with opening
costs f; € Z>o, 1 € F, and a set of clients D C V with demands d; € Z~¢, j € D.
We are also given K types of access cables that may be used to connect clients
to open facilities. A cable of type i has capacity u; € Z~¢ and cost (per unit
length) 0; € Z>(. Core cables, which are used to connect the open facilities, have
a cost (per unit length) of M € Z>( and infinite capacity. The task is to find
a subset I C F' of facilities to open, a Steiner tree S C F connecting the open
facilities, and a forest £/ C F with a cable installation on its edges, such that
E’ connects each client to exactly one open facility and the installed capacities
suffice to route all clients’ demands to the open facilities. We are allowed to install
multiple copies and types of access cables on each edge of E’. The objective is to
minimize the total cost, where the cost for using edge e in the core Steiner tree
is Mc. and the cost for installing a single access cable of type i on edge e is g;ce.
We also consider the variant with only a single cable type, which we denote by
Single-Cable Connected facility location problem (Single-Cable-ConFL).

The classical ConFL problem is special case of the BBConFL problem with
only one cable type of unit capacity. This problem is well-studied in the litera-
ture. Gupta et al. [10] obtain a 10.66-approximation for this problem, based on
LP rounding. Swamy and Kumar [15] later improved the approximation ratio to
8.55, using a primal-dual algorithm. Using sampling techniques, the guarantee
was later reduced to 4 by Eisenbrand et al. [4], and to 3.19 by Grandoni et al. [7].

The (unsplittable) Single-Sink Buy-at-Bulk problem (u-SSBB) can be viewed
as a special case of the BBConFL problem where the set of interconnected fa-
cilities are given in advance. Several approximation algorithms for u-SSBB have
been proposed in the literature. Using LP rounding techniques, Garg et al. [5]
developed a O(k) approximation, where k is the number of cable types. Hassin
et al. [11] provide a constant factor approximation for the single cable version
of the problem. The first constant factor approximation for the problem with



multiple cable types is due to Guha et al. [9]. Talwar [16] showed that an IP
formulation of this problem has a constant integrality gap and provided a fac-
tor 216 approximation algorithm. Using sampling techniques, the approximation
was reduced to 145.6 by Jothi et al. [12], and later to 40.82 by Grandoni et al. [6].

If we omit the requirement to connect the open facilities by a core Steiner
tree, then the BBConFL problem reduces to a k-cable facility location problem.
For this problem, Ravi et al. [13] provide an O(k) approximation algorithm.

The rest of the paper is structured as follows. In Section 2, we describe our
constant factor approximation algorithm for BBConFL extending the algorithm
of Guha et al. [9] to incorporate also the selection of facilities to open as well as
the Steiner tree (of infinite capacity) interconnecting them. In Section 3, we study
the single cable version of the problem and present a factor 6.72 approximation
algorithm for this problem.

2 Approximating BBConFL

In this section, we present a constant factor approximation algorithm for the
BBConFL, which uses the ideas of Guha’s algorithm [9] for the single sink buy-
at-bulk network design problem to design the access trees of the solution.

First, we define another problem similar to the BBConFL with slightly differ-
ent cost function, called modified-BBConFL. In this problem, each access cable
has a fixed cost of o;, a flow dependent incremental cost of §; = 2—1, and un-
bounded capacity. That is, for using one copy of cable type ¢ on edge e and
transporting D flow unit on e, a cost of (o; + DJ;)ce is incurred.

It is not hard to see that any p-approximation to the modified problem gives
a 2p-approximation to the corresponding original buy-at-bulk ConFL. Further-
more, we will show later that there exist near optimal solutions of the modified
problem that have a nice tree-like structure with each cable type being installed
in a corresponding layer. We will exploit this special structure in our algorithm
to compute approximate solutions for the modified problem and, thereby, also
approximate solutions for the original buy-at-bulk ConFL.

In the modified-BBConFL, we may assume w.l.o.g. that 1 < ... < og and
that §; > ... > k. In addition, we assume that 20 < M. Note that in our and
many other applications, it is natural to assume that o << M.

First, we prune the set of cable types such that all cables are considerably
different. As shown in [9], this can be done without increasing the cost of the
optimal solution too much.

Theorem 1. For a predefined constant o € (0, %), we can prune the set of cables
such that, for any i, we have o;y1 > é -0; and ;41 < a-6; hold and the cost of
the optimal solution increases by at most é

We observe that, as demand along an edge increases, there are break-points
at which it becomes cheaper to use the next larger cable type. For 1 <1 < K,
we define b; such that o;41 4 b;0;41 = 2a(0; + b;9;). Intuitively, b; is the demand
at which it becomes considerably cheaper to use a cable type i + 1 rather than a



cable type i. It has been shown in [9] that the break-points and modified cable
cost functions satisfy the following properties.

Lemma 2. For all i, we have u; < b; < uiy1. For any i and D > b;, we have
Oit1 + D(SH_l <2 Oé(CTi + D(SZ)

Let b = M(S_;K be the edge flow at which the cost of using cable type K and
a core link are the same. Suppose we install cable type i whenever the edge
flow is in the range [b;—1,b;], 1 < i < K, where by = 0. It can be shown that,
if the edge flow is in the range [b;—1,u;], then considering only the fixed cost
o; (times the edge length) for using cable type i on the edge and ignoring the
flow dependent incremental cost will underestimate the true edge cost only by
a factor 2. Similarly, if the edge flow is in [u;, b;], then considering only the flow
dependent cost d; times the flow and ignoring the fixed cost underestimates the
cost by only a factor 2. This means that any solution can be converted to a
layered solution, loosing at most a factor 2 in cost, where layer 4 consists of (i)
a Steiner forest using cable type ¢ and carrying a flow of at least b;_; on each
edge, and (ii) a shortest path forest with each edge carrying a flow of at least
u;. In the following theorem, we define the structural properties of such layered
solutions more formally. As in [9], for sake of simplicity, we assume that there
are extra loop-edges such that property (iii) can be enforced for any solution.

Theorem 3. Modified-BBConFL has a solution with the following properties:

(i) The incoming demand of each open facility is at least by .

(i) Cable i+ 1 is used on edge e only if at least b; demand is routed across e.
(iii) All demand which enters a node, except an open facility, using cable i,

leaves that node using cables i or i+ 1.

(iv) The solution’s cost is at most 2(% + 1) times the optimum cost.
Proof. Consider an optimum solution of the modified-BBConFL. Let T be the
tree connecting the open facilities in the optimum solution. Consider those open
facilities whose incoming demand is less than bx. We can find an unsplittable
flow on the edges of T sending the aggregated demand from these facilities to
some other open facilities such that the resulting solution obeys property (i)
and the total flow on any edge of the Steiner tree is at most by . Therefore the
cost, of closing these facilities and sending the corresponding demands to some
other open facility using access links can be bounded by the core Steiner tree
cost of the optimal solution, so we close these facilities and reroute demands.
Now identify the set of remaining open facilities to a single sink, and update
the edge length metric appropriately. The resulting solution is now a (possibly
sub-optimal) single-sink network design solution. Results in [9] imply that there
is a near-optimal solution to this single-sink instance which obeys the properties
(i) and (iii), with a factor (2 + 1) loss in the total access cable cost. Hence,
we can transform our modified-BBConFL solution to a solution which satisfies
properties (ii)—(iv), too. O

Our algorithm constructs a layered solution with the properties described in
Theorem 3 in a bottom-up fashion, aggregating the client demands repeatedly



and alternating via Steiner trees and via direct assignments (or, equivalently, via
shortest path trees) to values exceeding u; and b;. In phase ¢, we first aggregate
the (already pre-aggregated) demands of value at least b;_1 to values of at least u;
using cable type i on the edges of an (approximate) Steiner tree connecting these
demands. Then we further aggregate these aggregates to values of at least (a
constant fraction of) b; solving a corresponding Lower Bounded Facility Location
(LBFL) problem [8,14,1], where all clients may serve as facilities to aggregate
demand (except for the last phase, where only real facilities are eligible). The
LBFL problem is a generalization of the facility location problem where each
open facility is required to serve a certain minimum amount of demand.

Let D; be the set of demand points we have at the i-th stage. Initially D, =
D. Algorithm 1 describes the steps of the algorithm in more detail.

Algorithm 1
1. Guess a facility r from the optimum solution.
2. For cable type i = 1,2,...., K — 1 Do

- Steiner Trees: Construct a psr-approximate Steiner tree T; on terminals D; U {r}
for edge costs o; per unit length. Install a cable of type ¢ on each edge of this
tree. Root this tree at r. Transport the demands from D; upwards along the tree.
Walking upwards along this tree, identify edges whose demand is larger than u;
and cut the tree at these edges.

- Consolidate: For every tree in the forest created in the preceding step, transfer
the total demand in the root of tree, which is at least u;, back to one of its
sources using a shortest path of cable type i. Choose this source with probability
proportional to the demand at the source.

- Shortest Path: Solve the LBFL problem with clients D1, facility opening cost 0 at
all nodes, facility lower bound b;, and edge costs d; per unit length. The solution
is a forest of shortest path trees. Then route the current demands along these
trees to their roots, installing cables of type i.

- Consolidate: For every root in the forest created in the preceding step, transfer
the total demand in the root of tree, which is at least b;, back to one of its sources
with probability proportional to the demand at that source using a shortest path
with cables of type i. Let D;+1 be the resulting demand locations.

3. For cable type K Do

- Construct a pgr-approximate Steiner tree Tx on terminals Dx U {r} for edge
costs ox per unit length. Install a cable of type K on each edge of this tree. Root
this tree at r. Transport the demands from Dg upwards along the tree. Walking
along this tree, identify edges whose demand is larger than ux and cut the tree
at these edges. For every tree in the created forest, transfer the total demand in
the root of tree back to one of its sources with probability proportional to the
demand at that source via a shortest path, using cables of type K.

- Solve the LBFL problem with clients D1, facility set F', opening costs f;, facility
lower bound bg, and edge costs dx per unit length. We obtain a forest of shortest
path trees. Then route the current demands along these trees to their roots,
installing cables of type K. Let F’ be the set of open facilities.

4. Compute a psr-approximate Steiner tree Teore on terminals F’ U {r} for
edge costs M per unit length. Install the core link on the edges of Teore.




To solve LBFL, we employ the bicriteria uppr-approximation algorithm de-
vised by Guha et al. [8], which relaxes the lower bound on the minimum demand
served by a facility by a factor § = Z;i Here ppyp is the best known approxi-
mation for the facility location problem.

It remains to show that the computed solution is an approximate solution.
Let C}, S*, and O* be the amount paid for cables of type i, for the core Steiner
tree, and for opening facilities in the near-optimal solution, respectively. We
define C; to be the total cost paid for cables of type ¢ in the returned solution.
Let D;- be the demand of node j at stage ¢ of the algorithm. Let T;, P; and
N; be cost incurred in the Steiner tree step, the shortest path step, and the
consolidation steps of iteration 4, respectively. Also, let T} and T} denote the
incremental and the fixed cost components of the Steiner tree step at iteration i.
Analogously, P! and P}!" denote the incremental and the fixed costs incurred in
the shortest path step. Recall that the set of access cable types has been reduced
depending on the constant parameter « € (0, %) How to choose this parameter
appropriately will be discussed later.

The following Lemma carries over from the single sink buy-at-bulk problem
studied in [9] to our problem in a straightforward way.

Lemma 4.

(i) At the end of each consolidation step, every node has E[D}] = d;.
(ii) E[N;] <T;+ P; for each i.
(iii) PE < Pl and T} < TF for each i.

K2

The following lemma bounds the fixed costs of the cables installed in the
Steiner tree phase ¢ of our algorithm.

Lemma 5. E[Tf] < pST(Zj.;ll %(204)"77'0; + ZJK:l adCx + 5aKTIS) for
each 1.

Proof. We construct a feasible Steiner tree for stage i as follows. Consider the
near-optimum solution, and consider only those nodes which are candidate ter-
minals in stage ¢ of our algorithm. We remove all the cables if the total demand
flowing across it is zero. Otherwise we replace the cable with a cable of type 1.
Note that, being in stage ¢, the expected demand on each cable j < ¢ is at least
Bb;. Hence, by Lemma 2, the expected cost of all replacement cables for cables
of type j < i is bounded by %(204)"_3'0;-‘.

Similarly, the expected cost of the replacement cables for the cables j > i are
bounded by o/ _iC;-‘, using the fixed costs scale. Finally, the cost on a core link
used to connect candidate terminals to r is reduced at least by %aK —i18*. Alto-
gether, the expected fixed cost of this Steiner tree, which is a possible solution
to the Steiner tree problem in stage ¢, is bounded by

-1 K 1
1—J J—t vk K—i gx*
j=1 j=i
As we use a pgr-approximation algorithm to solve this Steiner tree problem in
our algorithm, the claim follows. ad



In a similar way, we can also bound the incremental costs of the cables
installed in the shortest path phase i of our algorithm.

Lemma 6. E[P!] < p-prp Z;Zl o'~1 - C5 for each i.

Proof. Consider the forest defined by the edges with cable types 1 to ¢ in the
near-optimum solution and replace all cables of type less than ¢ by cables of type
i. The cost of replacing all cables of type j < i is bounded by a’~7 - C7, using
the incremental costs scale. The resulting tree provides a feasible solution for the
shortest path stage . As our algorithm applies a bicriteria u - ppr-approximation
algorithm to solve the lower bounded facility location problem in this stage, the

claim follows. O

The opening costs and the incremental shortest path costs in the final stage
of our algorithm can be bounded as follows.

Lemma 7. E[Pk + f(F")] < - pro(Si, of 77 CF +0%)

Proof. Now, consider the forest given by all access edges of the near-optimum
solution and replace all cables (of type less than K) by cables of type K. For
each i < K, the incremental cost of the new solution is a fraction a®~* of the
incremental cost of the optimal solution’s cable i portion. The set of facilities
opened in the solution, combined with the cables, constitutes a feasible solution
for the LBFL problem solved in the final stage, and its cost is no more than
Zfil a®=iCr + O*. Using the bicriteria p - ppr-approximation algorithm, the
claim follows. a0

Finally, the cost of the core Steiner tree have to be bounded.
Lemma 8. E[T.ore] < pst (S* + %Zjil(cj* + Cj))
Proof. Let F*, T} . and T}, .., be the set of open facilities, the tree connecting
them, and the forest connecting clients to open facilities in the near-optimum so-
lution, respectively. Let T,cess be the forest connecting clients to open facilities
in the solution returned by the algorithm. We construct a feasible Steiner tree
on F' U {r}, whose expected cost is S* + %ZJK:l(C’]* + C;). In the algorithm’s
solution, each facility I € F’ serves at least a total demand of Sbg. This de-
mand is also served by the set of optimal facilities in the near-optimum solution.
Therefore, at least 8bx demand can be routed between each facility [ € F’ and
the facilities of F* along edges of T, s UTaccess (using the access links). Hence,
we obtain a feasible Steiner tree on F’' U F*, using core links, whose cost is at
most S*—F%Zf:l(Cj—i—Cj). 0

Together, Lemmas 4-8 imply our main result.

Theorem 9. Algorithm 1 is a constant factor approximation for BBConFL.



Proof. By Lemmas 4-6, the total expected cost of access links is bounded by

42 NPFLZO/ JC*JFPST(ZO‘] ZC*JrZ 201 jC*Jr;OéK ZS*)}

W-PFL | PST 2-psr
<4( ) OF 4 Z1PST g
- 1—a+1—a 1—2 Z 11—«

Additionally, using Lemmas 7 and 8, the total cost of installing core links and
opening facilities is bounded by

uprrO* + psrS™ + pst (Z Cr+ ZC’)

Altogether, we obtain a bound of

« [PsT psTy (KPFL + psT *
1prLO +[B +4(1+ ﬁ)( T+ 1_2a }ZC

04D s

for the worst case ratio between the algorithm’s solution and a near optimal
solution, restricted according to Theorem 3, of the modified-BBConFL. With
Theorems 1 and 3, this yields a worst case approximation guarantee of %(é +1)
times the above ratio against an unrestricted optimal solution of the modified-
BBConFL.

Finally, we lose another factor of 2 in the approximation guarantee when
evaluating the approximate solution for the modified-BBConFL with respect to
the original BBConFL problem. For appropriately chosen fixed parameters «,
B, and u, we nevertheless obtain a constant factor approximation algorithm for
BBConFL. a

3 Approximating Single-Cable-ConFL

In this section, we consider a simpler version of the problem, where only multiples
of a single cable type can be installed. Let u > 0 be the capacity of the only cable
type available. We may assume that the cost of this cable is one. The algorithm
presented in this paper can easily be adapted for o > 1.

We obtain an approximation algorithm for this problem by modifying the
algorithmic framework proposed in [7] as shown in Algorithm 2 on the next page.
In this Algorithm, ¢(v, u) denotes the distance between u and v, and ¢(v,U) =
min, ey ¢(v, u). Again, the algorithm uses a constant parameter o € (0, 1], whose
setting will be discussed later.

One easily verifies that Algorithm 2 computes a feasible solution. Clearly,
T’ is a Steiner tree connecting the open facilities F’. The existence of (and a



Algorithm 2
1. Guess a facility r from the optimum solution.

Mark each client j € D with probability quj . Let D’ be the set of marked clients.
2. Compute a psr-approximate Steiner tree 77 on terminals D’ U {r}.

3. Define a FL instance with clients D, facilities F, costs cj; := %c(i,j)7 j €D and
i € F, and opening costs f; := fi + M - c(i, D' U{r}), i € F.
Compute a (Ar, A¢)-bifactor-approximate solution U = (F', o) to this instance,
where o(j) € F’ indicates the facility serving j € D in U.

4. Augment T7 with shortest paths from each i € F' to Ty.
Let T' be the augmented tree.
Output F’ and T’ as open facilities and core Steiner tree, respectively.

5. Compute a psr-approximate Steiner tree 7> on terminals D U {r}.

6. // Using the results in [11,13], we now install capacities to route the clients’ de-
mands to open facilities F'.
- For each j € D with d; > u/2, install [d;/u] cables from j to its closest open
facility in F”.
- Considering only clients with d; < u/2, partition T> into disjoint subtrees such
that the total demand of each subtree not containing r is in [u/2,u] and the total
demand of the subtree containing r is at most u; see [11].
- Install one cable on each edge contained in any subtree.
- For each subtree not containing r, install one cable from the client closest to an
open facility to this facility.

polynomial time algorithm to find) a partition of the tree T into subtrees of
total demand between u/2 and u each, except for the subtree containing r, has
been shown in [11], given that each individual demand is at most u. From that,
it follows immediately that all clients j with d; < u/2 can be routed within their
respective subtree towards the client closest to an open facility and then further
on to this facility without exceeding the capacity v on these edges.

It remains to show that the computed solution is an approximate solution.
Let Of; and Cj; be the (modified) opening and connection costs of the solu-
tion U of the facility location problem solved in Step 3. Furthermore, let I*,
S*, and F* be the set of open facilities, the Steiner tree connecting them, and
the forest connecting the clients to the open facilities in the optimal solution,
respectively. Also let o*(j) € I* be the facility serving j € D in the optimal
solution. The opening costs, cable installation costs, and core Steiner tree costs
of the algorithm’s solution and of the optimal solution are denoted by O,C,T
and O*, C*,T*, respectively. Let c¢(E') := ) . p c. for any £ C E,

Lemma 10. The cable cost induced in Step 6 is at most ¢(Tz) + 2 - CY;.

Proof. Using the result in [11], the total flow on any edge of the Steiner tree Th
induced by grouping the demands into disjoint subtrees is at most u. Thus, one
copy of the cable on all edges in T5 is sufficient to accommodate the flow on the
edges of Ty, which contributes ¢(7%) to the total cable installation cost.

Let Cp,Cs,...,Cr be the sets of clients in each subtree and for each C; let
j¢ € C; be the client which is closest to an open facility in F’. The modified



connection costs in U are

=23 Yelioin+ Y Deliol)
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Since the algorithm sends the total demand of C; via j;, we have

2ea, b 1, 1
Cy 2y ZE (o)) + Y 5elioli) = 5Cac
t

where C'4¢ is the cost of the cables installed by the algorithm between the
subtrees and the closest open facilities and between the large demand clients
and the open facilities. Altogether the total cost of buying cables to route the
traffic is at most ¢(75) +2 - Cy;. O

Lemma 11. The opening and core connection cost of the computed solution
satisfy O +T < Oy + M - ¢(Th).

Proof. Algorithm 2 opens the facilities chosen in the FL solution and connects
these facilities by the tree 7”. Since the modified opening costs f’ in Step 3
include both the original cost for opening F’ and the cost for augmenting T} to
T’, the sum of the opening cost and core connection cost of the final solution
are at most Of; + M - ¢(Th). 0

Lemma 12. The expected cost of T1 is at most 255 (T* + aC™*).

Proof. We obtain a feasible Steiner tree on D’ U {r} by joining the optimal
solution’s Steiner tree S* and the paths connecting each client in D’ with its
corresponding open facility in I* in the optimal solution. The expected cost of
the resulting subgraph is at most

« d; ) T* «
. _J . I* < - . *
RTINS P ey
e€S* j€D
where (4, I*) denotes the length of the path connecting j to its open facility in

I* using edges of F*. The last inequality holds since in ZjeD %J -1(4,I") instead
of installing an integral number of cables on every edge, we install multiples of
% on every edge, which is a lower bound for C*. Thus the expected cost of the

psT-approximate Steiner tree on D' U {r} is at most 25 (T 4 aC*). O
Lemma 13. The cost of Ty is at most psp(T* + C*).
Proof. Clearly S* U F™* defines a feasible Steiner tree on D U {r}. O

Lemma 14. E[O}, + C] < Ap(O* 4+ aC*) + Ao (C* + 28977,

10



Proof. We provide a feasible solution for the facility location problem, whose
expected opening cost is O* + aC* and whose expected connection cost is C* +
98977+ Choose facilities 0*(D’) U {r}. The expected opening cost is at most

(6% dj . .
X L _J . * < * * .
E fi+M Y g ” 1(j,07(4)) <O* + aC

iel* jeD

Now, replace j by several copies of co-located unit-demand clients. In order to
bound the expected connection cost, we apply the core connection game de-
scribed in [4] (see also Lemma 2 in [7]) for ConFL with unit-demand clients,
probability 57— (which is the same to mark each client j € D with probability

g‘/ld;), core S*, mapping ¢ = o*, and w(e) = # which yields
. 0807 w(T*
B Gt (D) U i) < Y0 ) + 2o T
jeD jED M-u
d; 0.807 T* 0.807
< 214, I* : <CT 4 —T7.
_ZUZ(J,I)JFML 3 SO+ =T
jeb ‘“ ad

Theorem 15. For a proper choice of o, Algorithm 2 is an 6.72-approximation
algorithm for Single-Cable-ConFL.

Proof. By Lemmas 10-13, we have
EO+T+C) <0y +2-Cl+ pst(2T* + (a+ 1)C¥).

Applying Lemma 14, we can bound the first two terms, which yields

0.807
E[O+T + C) < psr(2T* 4+ (a+1)C*) + 2[Ap(0O* +aC*) + AC(C*+TT*)]

0.807
= (2Ar)O™ + 2()\07 + ps7)T* + (psr(a+1) + 2(Apa + X)) C* . (1)

Applying Byrka’s (Ap, 1 +2-e~*F)-bifactor approximation algorithm [2] for the
facility location subproblem and the (currently best known) In(4)-approximation
algorithm for the Steiner tree problem [3] and setting o = 0.5043 and Ap =
2.1488, inequality (1) implies E[O + T + C] < 6.72(0* + T* + C*). O

For unit demands, one can derive a stronger bound of ¢(T%)+ Cy for the cable
installation costs using the techniques proposed in [11] for the single sink network
design problem. Adapting Step 6 of the algorithm and adjusting the parameters
«a and Ap accordingly, one easily obtains a 4.57-approximation algorithm for the
Single-Cable-ConFL problem with unit demands.
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