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Abstract

In the connected facility location problem with buy-at-bulk edge costs we are given
a set of clients with positive demands and a set of potential facilities with opening
costs in an undirected graph with edge lengths obeying the triangle inequality.
Moreover, we are given a set of access cable types, each with a cost per unit length
and a capacity such that the cost per capacity decreases from small to large cables,
and a core cable type of infinite capacity. The task is to open some facilities and
to connect them by a Steiner tree using core cables, and to build a forest network
using access cables such that the edge capacities suffice to simultaneously route all
client demands unsplit to the open facilities. The objective is to minimize the total
cost of opening facilities, building the core Steiner tree, and installing the access
cables. In this paper, we devise a constant-factor approximation algorithm for this
problem based on a random sampling technique.
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1 Introduction

In this paper we study a new network design problem, Connected Facility Lo-
cation with buy-at-bulk edge costs (BBConFL), which arises in the design of
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fiber optic telecommunication access networks. In this context, the telecom-
munication network consists of a regional backbone network and several local
access networks. The traffic originating from the clients is sent through the
access networks towards the gateway nodes, which provide routing function-
alities and access to the backbone. The backbone network consists of very
high speed links of (almost) unlimited capacity between the core nodes, which
are used to route the traffic further towards its destination. Designing such a
network involves selecting the gateway nodes, connecting them to each other,
and choosing and dimensioning the links from the clients to this core network.

We model the scenario above as the BBConFL problem. We are given an
undirected graph G = (V,E) with nonnegative edge lengths ce ∈ Z≥0, e ∈ E,
obeying the triangle inequality, a set F ⊂ V of facilities with opening costs
fi ∈ Z≥0, i ∈ F , and a set of clients D ⊂ V with demands dj ∈ Z>0, j ∈ D.
We are also given K types of cables that may be used in the access network
connecting clients to open facilities. A cable of type i has capacity ui ∈ Z>0

and cost (per unit length) σi ∈ Z≥0. Core links, which are used to connect the
open facilities, have a cost (per unit length) of M ∈ Z≥0. The task is to find
a subset I ⊆ F of facilities to open, a Steiner tree S ⊆ E connecting the open
facilities I, and a forest E ′ ⊆ E with a cable installation on its edges, such that
E ′ connects all clients D to the open facilities I and the installed capacities
suffice to simultaneously route all client demands to the open facilities. We
are allowed to install multiple copies and types of access cables on each edge
of E ′. The objective is to minimize the total cost, where the cost for using
edge e in the Steiner tree is Mce and the cost for installing a single cable of
type i on edge e is σice.

The (unsplittable) Single-Sink Buy-at-Bulk problem (u-SSBB) is a special
case of BBConFL where |F | = 1. The first constant factor approximation
for u-SSBB was proposed by Guha et al. [1]. Talwar [2] improved the factor
to 216, using an LP rounding technique. Exploiting the random-sampling
framework by Gupta et al. [3], which is also used in our approach, the factor
was later reduced to 145.6 in [4], and then to 40.82 by Grandoni et al. [5].

Also, the Connected Facility Location problem (ConFL) can be considered
as a special case of BBConFL with only one cable type of unit capacity. ConFL
has received a lot of attention in the literature; see e.g., [6,7,8,9]. The current
best 3.19-approximation for ConFL is due to Grandoni et al. [9].

If we omit the requirement to connect the open facilities by a core Steiner
tree, then the BBConFL problem reduces to a k-cable facility location problem.
For this problem, Ravi et al. [10] provide an O(k) approximation extending
the algorithm of Guha et al. [1].

In this paper we present a randomized constant factor approximation al-
gorithm for BBConFL, which is a natural generalization of the two NP-hard
problems u-SSBB and ConFL.
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2 Preliminaries

Let δi = σi/ui be the cost per capacity of cable type i. We can assume w.l.o.g.
that ui < ui+1 and σi+1 > σi for all i. In addition, we assume that σK < M ,
which is natural in our and many other applications. Furthermore, we assume
that all values ui and σi are powers of 2. This can be easily enforced increasing
the cost of any solution by factor of at most 4 and it permits to use the demand
redistribution technique introduced by Jothi et al. [4].

Lemma 2.1 ([4]) Let T be a tree with each edge having capacity U . For each
vertex v in T , let x(v) < U be the demand originating at v. Assume all values
U and x(v), v ∈ T , are powers of 2. There is an efficient randomized algorithm
that computes a flow on T that respects the edge capacities and redistributes
the demands (without splitting any demand) such that each vertex receives a

new demand x̂(v) ∈ {0, U} and, moreover, Pr[x̂(v) = U ] = x(v)
U

for all v ∈ T .

We can also assume that u1 = σ1 = 1 and that each value dj, j ∈ D, is a
power of 2, losing another factor of at most 2 in the approximation ratio.

For the sake of simplicity, we finally assume w.l.o.g. that dj = 1 for all j,
replacing j by several copies of co-located unit-demand clients. The algorithm
presented in this paper can easily be adapted to ensure that those demands
travel together along the same path towards an open facilities; see [4] for
additional details. By adding dummy demands, we can assume that also the
number of demands |D| is a power of 2.

3 Approximating BBConFL

Extending the algorithm proposed in [3] using techniques from [4,8], we de-
veloped an approximation algorithm for BBConFL.

Our algorithm, shown on page 4, builds the solution in a bottom-up manner
in K stages. Starting with all demand nodes D1 = D in Step 1, in stage
i of Step 2 it aggregates the demands from the demand nodes Di into a
smaller, randomly sampled node set Di+1 using only cables of type i and
i + 1. Eventually, in Steps 3–7, the demands are aggregated from the nodes
in Dk to a randomly sampled subset of the facilities, which is then connected
by a core Steiner tree.

One easily verifies that the algorithm runs in polynomial time. To analyze
its performance, we introduce some further notation. Let OPT denote an
optimal solution with cable cost C∗ =

∑K
j=1C

∗
j , where C∗j is the amount paid

for cables of type j in OPT , core Steiner cost S∗, and opening cost O∗. Let F ∗

and T ∗core denote the set of open facilities and the Steiner tree connecting them
in OPT , respectively. For each j ∈ D, let σ∗(j) be the facility j is assigned
to in OPT . The following lemma has been shown in [3].
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Algorithm 1

1. Let D1 = D. Guess a facility r to open in the solution.

2. For stage i = 1, 2, ..., K − 1 do

- Mark each client in Di with prob. σi
σi+1

. Let D
′
i be the marked clients.

- Construct a ρST -approximate Steiner tree Ti spanning terminals Fi =
D

′
i ∪ {r}. Install cable type i+ 1 on each e ∈ Ti.

- For each k ∈ Di, send its demand to the nearest j ∈ Fi via a shortest
path, using cables of type i. Let di(j) be demand aggregated at j ∈ Fi.

- Redistribute demands x(j) := di(j) mod ui+1, j ∈ Fi, within tree Ti of
capacity ui+1 (cf. Lemma 2.1). The corresponding flow is supported
by cables of type i+1. Let d̄i(j) be the demand aggregated at node j.

- For each j ∈ Fi, let Di(j) ⊆ Di be the nodes sending demand to j
in stage i (including j itself, if j 6= r). Partition Di(j) into groups
of ui+1

ui
nodes. Send the total demand ui+1 in each group back to a

random member of that group via shortest paths, installing cables of
type i+ 1. Let Di+1 be the resulting demand locations.

3. Compute a ρFL-approximate solution U = (FU , σU) to the unconnected
facility location problem on DK and the edge cost per unit length σK .

4. Mark each client in DK with prob. σK
M

. Let D
′
K be the marked clients.

5. Open facility i ∈ FU if some client in σ−1U (i) is marked. Let I be the set
of open facilities.

6. Compute a ρST -approximate Steiner tree TK on terminals FK = D
′
K ∪

{r}. Construct a tree T
′
K on I by adding the shortest path between every

j ∈ D′
K and the corresponding open facility σU(j) ∈ I.

7. Connect each client in DK to a closest open facility in I ∪ {r} using
cables of type K.

Lemma 3.1 For every client j ∈ D and stage i, Pr[j ∈ Di] = 1/ui.

The expected cost of the optimal Steiner tree on Fi can be bounded as follows.

Lemma 3.2 Let T ∗i be the optimal Steiner tree on Fi and c(T ∗i ) its cost. Then

E[c(T ∗i )] ≤ 1

M
S∗ +

∑
t>i

1

σt
C∗t +

δi
σi+1

∑
t≤i

1

δt
C∗t

Proof. We construct a feasible Steiner tree T on Fi as follows. First, add the
optimal Steiner tree T ∗core and all edges with cable type i+1 or higher in OPT
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to T . The resulting subgraph has cost at most 1
M
S∗ +

∑
t>i

1
σt
C∗t .

Then, we add all missing edges from the paths P ∗j connecting each client
j ∈ Fi with σ∗(j) in OPT . Note that these edges have cable type t ≤ i in
OPT. For simplicity, suppose only one cable type t ≤ i is installed on edge e.
Then e ∈ T if and only if j ∈ Fi for some j ∈ D where e ∈ P ∗j . Since each
j ∈ Fi with probability 1

ui

σi
σi+1

, it follows from the Union Bound that e ∈ T
with probability at most ut

ui

σi
σi+1

. Thus the expected cost of adding these edges

is at most δi
σi+1

∑
t≤i

1
δt
C∗t . Extracting a tree spanning Fi from T , we obtain

E[c(T ∗i )] ≤ E[c(T )] ≤ 1

M
S∗ +

∑
t>i

1

σt
C∗t +

δi
σi+1

∑
t≤i

1

δt
C∗t 2

Let Ai be the total cost incurred in Stage i of Step 2 of the algorithm. The
following lemma, shown by Gupta et al. [3], applies also to our problem.
(Again, T ∗i denotes the optimal Steiner tree on Fi.)

Lemma 3.3 E[c(Ai)] ≤ σi+1(ρST + 3)E[c(T ∗i )]

Let OU be the opening costs and CU be the connection costs of the solution
to the unconnected facility location problem UFL computed in Step 3.

Lemma 3.4 E[OU + CU ] ≤ ρFL(O∗ +
∑K

i=1
δK
δi
C∗i )

Proof. We obtain a feasible solution for UFL by connecting each client j ∈
DK to its BBConFL optimal facility σ∗(j) ∈ F ∗. Its expected cost is at most

O∗ + σK · E
[∑
j∈DK

l(j, F ∗)
]

= O∗ + δK
∑
j∈D

l(j, F ∗) ≤ O∗ +
∑

i=1,...,K

δK
δi
C∗i .

The last inequality follows from the fact that
∑

j∈D l(j, F
∗) ≤

∑K
i=1

ui
σi
C∗i ,

where l(j, F ∗) is the shortest path distance from j to σ∗(j) ∈ F ∗. 2

Lemma 3.5 The cost of cable installation in Step 7 of the algorithm satisfies
E[C] ≤ 2

∑K
i=1

δK
δi
C∗i + 0.807S∗ + CU .

Proof. We apply the core connection game described in [8] with clients DK ,
core T ∗core, mapping σ = σ∗, w(e) = c(e), and probability σK

M
. This yields

E
[∑
j∈DK

σK · l(j, I ∪ {r})
]
≤ 2

σK
uK

∑
j∈D

l(j, F ∗) + σK
0.807

σK/M
· S
∗

M
+ CU .

With
∑

j∈D l(j, F
∗) ≤

∑K
i=1

ui
σi
C∗i , we obtain the claimed bound. 2

For the Steiner tree T ′K computed in Step 6 we obtain the following bound.

Lemma 3.6 E[T
′
K ] ≤ ρST

M

(
S∗ +

∑K
i=1

δK
δi
C∗i
)

+ 1
M
CU

Proof. We construct a feasible Steiner tree on the marked clients in D
′
K by

augmenting the optimal Steiner tree T ∗core by the shortest paths from each
client in D

′
K to T ∗core. This tree has expected cost at most
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1

M
S∗ + E

[∑
j∈D′

K

l(j, F ∗)
]

=
1

M
S∗ +

σK
uK ·M

∑
j∈D

l(j, F ∗) .

Thus the expected cost of a ρST -approximate Steiner tree on D
′
K is at most

ρST

M

(
S∗ +

∑K
i=1

δK
δi
C∗i
)
. Furthermore, the expected cost of connecting each

client j ∈ D′
K to σU(j) ∈ F is at most σK

M

∑
j∈DK

l(j, FU) = 1
M
CU . Altogether,

we obtain the claimed bound. 2

Together, Lemmas 3.2–3.6 imply our main result.

Theorem 3.7 Algorithm 1 is a constant approximation for BBConFL.

References

[1] S. Guha, A. Meyerson, K. Munagala. A constant factor approximation for the
single sink edge installation problems. In Proc. of STOC 2001, pages 383-388.

[2] K. Talwar. The single-sink buy-at-bulk LP has constant integrality gap. In Proc.
of IPCO 2002, pages 475-486.

[3] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation
algorithms for network design. In Proc. of STOC 2003, pages 365-372.

[4] R. Jothi, B. Raghavachari. Improved approximation algorithms for the single-
sink buy-at-bulk network design problem. In Proc. of SWAT 2004, pages 336-348.

[5] F. Grandoni and T. Rothvoß. Network design via core detouring for problems
without a core. In Proc. of ICALP 2010, pages 490-502.

[6] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a
virtual private network: A network design problem for multicommodity flow. In
Proc. of STOC 2001, pages 389-398.

[7] C. Swamy and A. Kumar: Primal-dual algorithms for connected facility location
problems. Algorithmica 40, pages 245-269, 2004.

[8] F. Eisenbrand, F. Grandoni, T. Rothvoß, G. Schäfer. Connected facility location
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