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Abstract

This paper presents efficient computational techniques for solving an optimiza-
tion problem in cardiac defibrillation governed by the monodomain equations. Time-
dependent electrical currents injected at different spatial positions act as the control.
Inexact Newton-CG methods are used, with reduced gradient computation by adjoint
solves. In order to reduce the computational complexity, adaptive mesh refinement for
state and adjoint equations is performed. To reduce the high storage and bandwidth
demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compres-
sion technique for storing trajectory data is applied. An adaptive choice of quantiza-
tion tolerance based on error estimates is developed in order to ensure convergence.
The efficiency of the proposed approach is demonstrated on numerical examples.
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1 Introduction

Ventricular fibrillation has been recognized as an important problem for clinical and theo-
retical research, due to the fact that it is a most dangerous and life threatening situation if
not treated immediately to avoid sudden cardiac death. The termination of these cardiac
arrhythmia is achieved by applying a strong electrical shock, a process called defibrillation.
Today, many lives are saved by implantable defibrillation devices detecting the onset of
fibrillation automatically. The unexpected and sudden application of a strong shock, how-
ever, is quite painful for the patient. Thus, there is a demand for designing shocks with
as small an amplitude as possible while still extinguishing fibrillation. Computationally,
it is therefore important to determine the time-dependent amplitude of an applied electri-
cal field, which is able to damp gradients of transmembrane voltage in the system. This
can be formulated as an optimal control problem governed by the monodomain equations
describing the cardiac dynamics.

The optimal control of such models was already investigated in [25, 24, 22], where
spatially distributed controls where studied. The optimization deals with the extinction
of a single excitation wave as well as the termination of re-entry waves. As in practical
situations distributed controls are difficult to implement, the present paper addresses
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a finite number of time-dependent controls which are spatially piecewise constant over
different parts of the computational domain.

For the numerical realization of the optimal control problem by gradient methods,
the solution of the adjoint equation, which is backward in time, is needed. Since the
adjoint equation depends on the forward solution, the latter has to be stored. So-called
checkpointing methods have been developed to reduce the storage demand, at the cost of
multiple solves of the state equations, see e.g. [17]. In [35] a computationally inexpensive
method for lossy compression of state trajectories was proposed, and compared to other
approaches. In this paper, we extend the algorithm in several ways for the application
to the cardiac defibrillation problem. As this is a nonlinear problem, an extended error
estimation for estimating the quantization error’s impact on the accuracy of the reduced
gradient is derived. Here we shall use a Newton-CG method. For this purpose the action
of the reduced Hessian on a given vector is computed by solving a linearized state equation
as well as a second adjoint equation, incurring the need to store two additional trajectories,
the adjoint and linearized state solutions. To keep the storage and memory bandwidth
demands low, compression has to be applied here too. We investigate the influence of
lossy compression on the convergence behavior.

Another important feature of this paper which is intimately related with compression
is spatial grid adaptivity. For the direct problem space-time adaptivity of the monodomain
equations was developed in e.g. [4, 13]. In the context of optimal control is was previously
investigated in [24].

This paper is organized as follows. Section 2 summarizes the monodomain model
used in this paper. In Section 3, we present the necessary optimality conditions for the
optimization problem at hand. In Section 4 we briefly describe the basic compression
method, before the error estimates and an adaptive compression technique are derived.
Details of the implementation of our methods as well as numerical results are presented
in Section 5.

2 Cardiac Modelling

The electrical activity of the heart is described by the well known monodomain or bidomain
models [19, 28, 32]. The dynamics of the intra- and extracellular potentials are described
by a set of reaction-diffusion equations and the ionic activity is expressed by ordinary
differential equations. The present work is restricted to the optimal control of monodomain
model equations. The monodomain model can be considered to approximate the more
complex bidomain model fairly well in many situations [26, 29]. The governing equations
of the monodomain model are described by the following equations.

∂v

∂t
= ∇ · σ∇v − Iion(v, w) + χΩcIe(t) in Q (1)

∂w

∂t
= G(v, w) in Q, (2)

where v : Q → R is the transmembrane voltage, w : Q → Rn represents the ionic current
variables, σ : Ω ∈ R2 → R2×2 denotes the intracellular conductivity tensor, and Q =
Ω× (0, T ) denotes the space-time cylinder.

The time dependent extracellular current density stimulus Ie(t) is the control variable
which has a spatial support on the control domain Ωc ⊂ Ω. Further χΩc denotes the
extension by zero operator from Ωc to Ω. The term Iion(v, w) describes the current density
through the ionic channels of the cell membranes. The function G(v, w) determines the
evolution of the gating variables given by an electrophysiological cell model.

Since two decades, a variety of ionic models has been proposed to describe the cardiac
electrical phenomenon in detail. In our computations, a simplified two variable model,
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namely the Rogers-McCulloch variant of the Fitzhugh-Nagumo (FHN) model [30] is con-
sidered, where Iion(v, w) is cubic in terms of the transmembrane potential v and linear in
terms of the gating variable w.

Iion(v, w) = gv
(
1− v

vth

)(
1− v

vp

)
+ η1vw , (3)

G(v, w) = η2

( v
vp
− η3w

)
, (4)

where g, η1, η2, η3 are positive real coefficients, vth is a threshold potential and vp the peak
potential.

In the absence of a conductive bath both intracellular and extracellular domains are
electrically isolated along the tissue boundaries and homogeneous Neumann boundary
conditions are appropriate to reflect this fact. Here the initial and boundary conditions
are chosen as

σ∇v · η = 0 on ∂Ω× [0, T ] (5)

v(x, 0) = v0 and w(x, 0) = w0 on Ω , (6)

where v0 : Ω→ R denotes the initial transmembrane potential, w0 : Ω→ Rn is the initial
gating variables at time t = 0 and η stands for the outer normal to Ω.

We introduce some standing assumptions and the proper function space setting. It
is assumed that the boundary of Ω is Lipschitz continuous and piecewise C1 and that
the conductivity tensor σ has W 1,∞-coefficients and is uniformly elliptic. Further, let
v0, w0 ∈ L2(Ω) and Ie ∈ L2(0, T ). Then it is known (see e. g. [5, 23]), that (1) – (6) admit
a weak solution pair (v, w) satisfying the a-priori estimate

‖v‖2C([0,T ],L2(Ω)) + ‖v‖2L2((0,T ),H1(Ω)) + ‖v‖4L4(Q) + ‖∂v∂t ‖
4
3

L
4
3 ((0,T ),(H1)∗)

+ ‖w‖2C([0,T ],L2(Ω))

+‖∂w∂t ‖
2
L2((0,T ),(H1)∗) ≤ C (1 + ‖v0‖2L2(Ω) + ‖w0‖2L2(Ω) + ‖Ie‖2L2((0,T ),H1(Ω)∗))

(7)
where the constant C is independent of v0, w0 and Ie. If, moreover, w0 ∈ L4(Ω) and
Ie ∈ L∞(0, T ), then the weak solution is unique.

3 Optimization

We are considering the following optimal control problem:
min J(v, Ie) ,

s.t. e(v, w, Ie) = 0 in Q ,
(8)

where as before v : Q→ R is the transmembrane voltage, w : Q→ R is the gating variable,
and the extracellular current Ie acts as a control variable in the optimal control problem.
The coupled system of PDE and ODE constraints together with initial and boundary
conditions is represented by e(v, w, Ie) = 0. The existence of a solution to the system (1)
– (6), the optimal control problem and its optimality system are discussed in this section.

As described in the previous section, the formal constraint e(v, w, Ie) = 0 in (8) admits
a solution (v(Ie), w(Ie)) as a function of Ie. We need to turn to the definition of the cost
functional next. Here we aim at the resting potential of the transmembrane voltage in
the observation domain Ωobs and thus to track to zero voltage, with the control acting on
a control domain Ωc ⊂ Ω. We therefore use the following cost functional where the con-
trol objective consists in dampening out possible excitation waves of the transmembrane
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voltage in the observation domain Ωobs by applying extracellular current in the control
domain Ωc:

J(v, Ie) =
1

2

∫ T

0

∫
Ωobs

|v|2 dx dt+
α

2

∫ T

0
|Ie|2 dt. (9)

Here α is the weight of the cost of the control, which is used to penalize the influence
of the control. With the help of the a-priori estimate (7) existence of a solution to (8)
subject to (1) – (6), and |Ie(t)| ≤ γ for a.e. t ∈ (0, T ) and any γ > 0 follows by standard
arguments. The numerical realization is based on the optimality system which is given
next.

Optimality system

The formal derivation of the optimality system is based on the Lagrangian functional given
by

L : X1 ×X2 × L∞(0, T )× L4((0, T ), H1(Ω))× L2((0, T ), L2(Ω))× L2(Ω)× L2(Ω)→ R

L(v, w,Ie, p, q, p̃, q̃) = J(v, Ie) +

∫ T

0

∫
Ω

(
−∂w
∂t

+G(v, w)

)
q dΩ dt

+

∫ T

0

∫
Ω

(
∇ · σ∇v − ∂v

∂t
− Iion(v, w) + χΩcIe

)
p dΩ dt+

∫
Ω

(v(0)− v0)p̃ dΩ

+

∫
Ω

(w(0)− w0)q̃ dΩ,

where
X1 = L2((0, T ), H1(Ω)) ∩W 1, 4

3 ((0, T ), (H1)∗) ∩ C([0, 1], L2(Ω))

and
X2 = L2((0, T ), L2(Ω)) ∩W 1,2((0, T ), L2(Ω)) ∩ C([0, 1], L2(Ω)).

The first order optimality system is obtained by taking variations to the Lagrangian
functional and invoking the appropriate Green identities. The complete optimality system
is given as follows.

State equations

∂v

∂t
= ∇ · σ∇v − Iion(v, w) + Ie(x, t) in Q (10)

∂w

∂t
= G(v, w) in Q. (11)

Adjoint equations

∂p

∂t
= −∇ · σ∇p+ [Iion]vp+Gvq − v|Ωobs

in Q , (12)

∂q

∂t
= −[Iion]wp−Gw(v, w)q in Q. (13)

Optimality condition

αIe + PU (

∫
Ωc

p dx) = 0 , a.e. in (0, T ) (14)
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The subscripts v and w denote the partial derivatives with respect to these variables, and
PU denotes the projection onto the closed interval U = [−γ, γ]. Further we obtain the

terminal conditions: p(T ) = 0, q(T ) = 0 in Ω, (15)

boundary conditions: σ∇p · η = 0 on ∂Ω× [0, T ] , (16)

and p(0) = −p̃ and q(0) = −q̃. These computations were made rigorous in [23] and we
have:

Proposition 3.1 (First order necessary optimality conditions). Let (v, w, Ie) de-
note a local minimizer of (8) under the constraint |Ie| ≤ γ a.e. in (0, T ). Then there
exist adjoint states p ∈ L2(0, T ;H2(Ω)) ∩W 1,2(0, T ;L2(Ω)), and q ∈ C1([0, T ], L2(Ω)) ∩
C0([0, T ], L2(Ω)) satisfying the optimality system (1) – (6) together with (10)-(14). More-
over the gradient of the reduced mapping j(Ie) : Ie 7→ J(v(Ie), Ie) is given by αIe +
PU (

∫
Ωc
p(Ie)) dx).

In the numerical realization we use a Newton method to minimize the reduced func-
tional j. Since the construction of the complete Hessian matrix is infeasible for this type
of large scale problems we need to address the evaluation of the Hessian j′′(Ine ) of j at Ine
at iteration level n of the Newton algorithm in direction δIe. For this purpose we recall
from e.g. [18, 20] that j′′(Ie) can be represented as

j′′(Ie) = T (Ie)
∗ L(v, w, Ie, p, q)T (Ie), (17)

where we dropped the last two variables p̃, q̃ from the Lagrangian since they do not con-
tribute to the Hessian, and

T (Ie) =

(
ey(y(Ie), Ie)

−1eIe(y(Ie), Ie)
Id

)
.

Here y(Ie) = (v(Ie), w(Ie)) and Id denotes the identity operator. Considering the structure
of the Hessian given in (17) we see that due to the appearance of T (Ie) and its adjoint we
need to consider an additional linearized primal and a second pair of dual equations.

Linearized primal equations

∂δv

∂t
= ∇ · (σ∇δv)− ([Iion]v δv + [Iion]w δw) + χΩcδIe in Q , (18)

∂δw

∂t
=

η2

vp
δv − η2η3δw in Q , (19)

with homogeneous initial and Neumann boundary conditions, and

Adjoint-for-Hessian equations

∂δp

∂t
= −∇ · σ∇δp+ [Iion]vδp+

η2

vp
δq + z1 in Q , (20)

∂δq

∂t
= −[Iion]wδp+ η2η3δq + z2 in Q , (21)

with homogeneous initial and Neumann boundary conditions. Here z1, and z2 arise from
the computation of the second derivative of the Lagrangian and are given by z1 = δv|Ωobs−
[Iion]vvpδv − η1 δw p and z2 = −η1 δv p.

We refer e.g. to [20, 24] for details. Below we summarize the computations that are
needed for the evaluation of the Hessian j′′(Ine ) in direction δIke :
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1. solve the linearized primal equations Eqs. (18) and (19) for δv, δw using δIke

2. solve the adjoint equation Eqs. (20) and (21) using the computed (z1, z2) as right
hand side

3. finally evaluate the action of j
′′

on δIke i.e −
∫

Ωc
δp+ αδIe

Remark 3.2. Let us heuristically discuss a second order sufficient optimality condition at
a local minimizer Ie of (8) with associated states (v, w) = (v(Ie), w(Ie)). The second
derivative of j at Ie in directions (δIe, δIe) can be expressed as

j′′(Ie)(δIe, δIe) = α

∫ T

0
|δIe(t)|2 dt+

∫
Q
|δv(δIe)|2 dx dt+

∫
Q
v(Ie)δ

2v(δIe, δIe)| dx dt,

where δv(δIe) denotes the first component of the first variation of (v, w) at Ie in direction
δIe, which satisfies (18) (19), and δ2v(δIe, δIe) stands for the first component of the second
variation of (v, w) at Ie in direction (δIe, δIe). Putting aside the point that the second
order condition needs only to hold on the kernel of the linearization of e, we note that, in
view of the fact that δ2v(δIe, δIe) is of the order of |δIe|2, positive definiteness of j′′(Ie)
depends on the norm of |v(Ie)|. A small norm of v(Ie) increases the chance of a second
order sufficient optimality condition to hold.

4 Compressed Trajectory Storage

The numerical realization of the optimality system is demanding, both with respect to
computation and storage. In order to reduce the demand in storage size and bandwidth,
we apply lossy compression to the computed FE trajectories. In this section, we briefly
describe the main ingredients of the lossy compression method, and derive error estimates
for the reduced gradient as well as the Hessian-vector-multiplication.

The lossy compression algorithm consists of two main parts: quantization and predic-
tion. We consider the spatial discretization by a nested family T0 ⊂ · · · ⊂ Tl of triangu-
lations, constructed from an initial triangulation T0 of a polygonal domain Ω ⊂ Rd. The
set of nodes on level j is denoted by Nj .

Quantization. For a given δ > 0, we define the quantization Qδ : R→ Z as

Qδ(y) :=

⌊
y + δ

2δ

⌋
,

the reconstruction Q†δ : Z→ R is given by

Q†δ(i) := 2δi.

This yields for the quantization error |y −Q†δ(Qδ(y))| ≤ δ.

Prediction. Values yk of coarse level nodes are quantized directly to ik = Qδ(yk), yield-

ing a reconstructed value ŷk := Q†δ(ik). For new nodes xk ∈ Nj\Nj−1 on level j > 0, we
make use of the grid hierarchy and quantize and store only the deviation of yk from a
prediction Pk(ŷl : l ∈ Nj−1) obtained from reconstructed values ŷl of lower level nodes.
For simplicity, here we use linear interpolation between coarser grid nodes adjacent to xk,
which is the usual multigrid prolongation operator. The prediction increases the frequency
of small numbers in the coefficients to be stored, such that subsequent entropy coding re-
duces the amount of data to be stored quite effectively. More details on the algorithmic
procedure can be found in [35].

Below we denote the reconstructed functions with ·̂, and the errors induced by lossy
compression by ε·, e.g. v̂ = v + εv.
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4.1 Inexact reduced gradient

For a scalar, linear state equation, the influence of the lossy compressed state trajectories
on the reduced gradient was analyzed in [35]. In particular, a computational upper bound
on the error could be obtained using the maximum principle. The strategy for adaptive
selection of quantization tolerances sketched there for a simple steepest descent algorithm
is extended to semilinear systems and the Newton-CG method in [14].

Let y = (v, w) and y(Ie) be the solution of the state equations (10), (11) for a given
control Ie. Then the reduced gradient is given by

j′(Ie) = JIe(y(Ie), Ie) + eIe(y(Ie), Ie)
? ey(y(Ie), Ie)

−? (−Jy(y(Ie), Ie))︸ ︷︷ ︸
=:λ

.

As lossy compression is used, instead of the exact state only the reconstructed, inexact
state ŷ = (v + εv, w + εw) is available, leading to an inexact reduced gradient

ĵ′(Ie) = JIe(ŷ(Ie), Ie) + eIe(ŷ(Ie), Ie)
? ey(ŷ(Ie), Ie)

−? (−Jy(ŷ(Ie), Ie))︸ ︷︷ ︸
=:λ̃

.

For the error in the reduced gradient we have

εj′ = ĵ′(Ie)− j′(Ie) = eIe(ŷ, Ie)
?
(
λ̃− λ

)
= eIe(ŷ, Ie)

?ελ, (22)

using that JIe , eIe are independent of y. Thus the error in the reduced gradient is deter-
mined by the error in the solution of the adjoint equation.

From [14] we adapt the following theorem for the adaptive choice of the state quanti-
zation tolerance to our problem:

Theorem 4.1. Denote by εmax
λ an upper bound for the error in the adjoint for a state

quantization error εmax
y ≡ 1. Let

ξ := ‖eIe(ŷ, Ie)?εmax
λ ‖ , (23)

and θ ≤
∥∥j′(Inext

e )
∥∥ be an estimate for the norm of the reduced gradient of the next Newton

iteration. If the quantization tolerance δnext fulfills

δnext ≤
θ TOLgrad

ξ
, (24)

then
∥∥εj′, next

∥∥ ≤ TOLgrad

∥∥j′(Inext
e )

∥∥.

Remark 4.2. Assuming linear convergence of the optimization algorithm,

θ̃ =

∥∥ĵ′((Ie)i)∥∥2∥∥ĵ′((Ie)i−1)
∥∥

can be chosen as a computationally available approximation for θ, for i > 1.

To use Theorem 4.1, we need to derive a computationally available worst case error
estimate εmax

λ . An important tool for this purpose is a comparison technique for the
reaction-diffusion systems (see e.g. [6]). In the following, for vectors y, z ∈ Rm, y ≥ z is
defined as yi ≥ zi ∀i = 1, . . . ,m. Other relations etc. are also defined component-wise.

Definition 4.3. A function g : Rm → Rm is quasi-monotone non-decreasing, if each
component gi(y) is non-decreasing in yj for each i 6= j.
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Let us consider, for a moment, the abstract semilinear problem

∂y1

∂t
−∇ · σ∇y1 = g1(y) in Q

∂y2

∂t
= g2(y) in Q,

(P)

together with homogeneous initial- and Neumann-boundary conditions.

Definition 4.4. A function y is a sub-solution to (P), if in the differential equations,
initial- and boundary conditions “≤” holds instead of “=”. y is a super-solution, if “≥”
holds instead of “=”.

We introduce an auxiliary problem (P) by replacing the reaction-function g(y) in (P)
by a super-reaction function g, satisfying g(y) ≥ g(y) ∀y ∈ Rm. The following two results
are given in [6]:

Theorem 4.5. Let g be a quasi-monotone non-decreasing, uniformly Lipschitz continuous
super-reaction function . Let y be a super-solution of the auxiliary problem (P) and y a
sub-solution of (P). Then y ≤ y in Ω× [0, T ].

The next Lemma shows how to construct a super-reaction function.

Lemma 4.6. Let g be defined by

gi(y) = sup
{z|y≤z≤y, zi=yi}

gi(z)

for some sub-solution y. Then g(y) ≥ g(y) ∀y, g is uniformly Lipschitz continuous,
provided g is, and is quasi-monotone non-decreasing.

Returning to the defibrillation setting, we denote in the following by Îion the evaluation
of the function Iion(v, w) for inexact states v̂, ŵ.

Lemma 4.7. Denote by εv, εw then the quantization errors for the solution of the state
equations (10), (11). The errors εp = p̂− p, εq = q̂ − q in the solutions p, q of the adjoint
equations (12), (13) fulfill

∂εp
∂t

+∇ · σ∇εp −
(

[Îion]vp̂− [Iion]vp
)
−Gvεq = −εv|Ωobs

in Q , (25)

∂εq
∂t

+
(

[Îion]wp̂− [Iion]wp
)

+Gwεq = 0 in Q , (26)

with homogeneous terminal and boundary conditions.

Proof. Linearity of the equations (12), (13).

Using Taylor expansion, we get

[Iion]vp ≈
(

[Îion]v − [Îion]vvεv − [Îion]vwεw

)
p

[Iion]wp ≈
(

[Îion]w − [Îion]wvεv − [Îion]ww︸ ︷︷ ︸
=0

εw

)
p.

Combined with the time transform τ = T − t (and minor abuse of notation) to get a
system similar to (P), the error equations are

∂εp
∂t
−∇ · σ∇εp = −[Îion]vεp −Gvεq + εv|Ωobs

− [Îion]vvεvp− [Îion]vwεwp in Q, (27)

∂εq
∂t

= [Îion]wεp +Gwεq + [Îion]wvεvp in Q. (28)
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Using the abbreviations

a(x, t) = −[Îion]v(x, t)

b(x, t) = −η2/vp = const < 0

c(x, t) = χΩobs
(x)εv(x, t)− [Îion]vv(x, t)εv(x, t)p(x, t)− η1εw(x, t)p(x, t)

d(x, t) = η1v̂(x, t)

e(x, t) = −η2η3 = const < 0

f(x, t) = η1εv(x, t)p(x, t),

we can formulate the reaction function g(y) as

g1(y1, y2) = ay1 + by2 + c, g2(y1, y2) = dy1 + ey2 + f. (29)

In our case the transmembrane potential v̂ and thus d(x, t) may be negative. Moreover,
we have

∂g1

∂y2
= b < 0 .

Hence g is not quasi-monotone non-decreasing. With the aid of Lemma 4.6 and a sub-
solution y, we construct a super-reaction function:

g1(y) = sup
{z|y≤z≤y, z1=y1}

g1(z) = ay1 + c+ sup
{z2|y2≤z2≤y2}

bz2
b<0
= ay1 + c+ by

2

g2(y) = sup
{z|y≤z≤y, z2=y2}

g2(z) = ey2 + f + sup
{z1|y1≤z1≤y1}

dz1.
(30)

With regard to error estimation, we modify g given by (30) further, replacing c and f by
upper bounds

c(x, t) = χΩobs
(x)εmax

v + |[Îion]vvp(x, t)|εmax
v + |η1p(x, t)|εmax

w

f(x, t) = |η1p(x, t)|εmax
v ,

(31)

where εmax
· ≡ 1 are upper bounds for the quantization error of the state solutions.

Moreover, we need to derive a sub-solution y to problem (P) with right-hand-side (29).
For simplicity, y should be constant in time and space.

Lemma 4.8. Let εmax
v , εmax

w > 0 and

c(x, t) = −
(
εmax
v +

∥∥[Îion]vvp
∥∥
L∞(Ω×(0,T ))

εmax
v + η1 ‖p‖L∞(Ω×(0,T )) ε

max
w

)
f(x, t) = −η1 ‖p‖L∞(Ω×(0,T )) ε

max
v .

Then the constant function y =
(
0,min{−c/b, −f/e}

)T
is a sub-solution to (P) with

right-hand-side (29).

Proof. As y is constant in x, and t, the derivatives vanish. It remains to show that
0 ≤ ay

1
+ by

2
+ c and 0 ≤ dy

1
+ ey

2
+ f . As b, e < 0, by definition c, f ≤ 0, and thus

y
2
≤ 0. We have:

ay
1

+ by
2

+ c = bmin{−c/b, −f/e}+ c ≥ bmin{−c/b, −f/e}+ c{
= −c+ c = 0, if − c/b ≤ −f/e
= −b(f/e) + c ≥ −b(c/b) + c ≥ 0, if − c/b > −f/e,
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and

dy
1

+ ey
2

+ f = emin{−c/b, −f/e}+ f ≥ emin{−c/b, −f/e}+ f{
= −e(c/b) + f ≥ −e(f/e) + f ≥ 0, if − c/b ≤ −f/e
= −f + f = 0, if − c/b > −f/e.

With this sub-solution at hand, we note for the super-reaction function g, that

sup
{z1|0≤z1≤y1}

dz1 ≤ sup
{z1|0≤z1≤y1}

|d|z1 = |d|y1.

Thus we set
g1(y) = ay1 + by

2
+ c

g2(y) = |d|y1 + ey2 + f.
(32)

Denote by εmax
p , εmax

q the solution of the adjoint error equations (27),(28) with modified
right-hand-side (32). Then, using Theorem 4.5, we get that

εp ≤ εmax
p , εq ≤ εmax

q .

Remark 4.9. In order to choose a suitable quantization tolerance δ for encoding the state
trajectory (governing εv, εw), we have to solve the error equation before solving the state
equations (10), (11). In that case, v̂, ŵ needed for evaluating the coefficient functions are
not known. Moreover, the exact solution p of the adjoint equation, without quantization
errors, is not available. Thus we have to use estimates/heuristics for the unknown quanti-
ties to solve the error equation and get an approximate error bound. A simple choice is to
substitute p̂ ≈ p, to use a prescribed quantization tolerance δ1 in the first iteration, and
then, for iteration i > 1, to employ the values of v̂, p̂ from iteration i−1. With this choice,
the error estimation has to be done only once per iteration before entering the CG, with
the result being used for the matrix-vector-products during the CG (see Section 4.3), as
well as for the gradient computation in the next optimization iteration.

4.2 Inexact Newton method

For the inexact Newton method,

j′′(uk)δuk ≈ −j′(uk), uk+1 = uk + δuk,

we require for convergence that∥∥j′′(uk)δuk + j′(uk)
∥∥ ≤ ρk ∥∥j′(uk)∥∥ , 0 < ρk ≤ ρ < 1,

with ρk → 0 for super-linear convergence [9]. In addition to the truncation error rk of the
iterative solution of the Newton equation, the compression contributes to the residual by
providing an inexact reduced gradient, ĵ′ = j′ + εj′ .

Omitting the Newton iteration index k we solve

j′′(u)δu = −j′(u) + εj′ + r

and obtain the condition ∥∥εj′ + r
∥∥ ≤ ∥∥εj′∥∥+ ‖r‖ ≤ ρ

∥∥j′∥∥ ,
which is fulfilled if for some parameter ζ ∈ (0, 1),∥∥εj′∥∥ ≤ ζρ∥∥j′∥∥ and ‖r‖ < (1− ζ)ρ

∥∥j′∥∥
hold. Thus we can fix the required gradient accuracy before entering the CG method,
where we only have to control the truncation error.
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4.3 CG with inexact Hessian-vector products

As the reduced Hessian j′′(uk) is unavailable, the Newton system j′′(uk)δuk = −ĵ′(uk) will
be solved approximately by a conjugate gradient method. For the application of the re-
duced Hessian to a given vector, the solution of two linear PDEs is necessary, one linearized
primal and one adjoint equation. To solve the dual equations (20), (21), the previously
computed solution of the linearized state equations (18), (19), (δv, δw), is required and
thus needs to be stored using the lossy compression technique. The quantization error
leads to an inexact matrix-vector product in the CG iterations, see step 3 of Alg. 1. Con-
sequently, approximate residuals r̂i are computed in the CG algorithm instead of the true
residuals ri. In order not to hinder convergence of Newton’s method, we have to ensure
that the stopping criterion in line 2 of Alg. 1, formulated in terms of r̂i, implies the desired
bound

‖ri‖ < TOLCG = (1− ζ)ρ‖j′k‖ (33)

on the true residual ri as well, i.e. we have to control ‖εmv,j‖ for j < i in order to bound
the error ‖r̂i − ri‖.
Remark 4.10. In this paper, we only consider the influence of the inexact matrix-vector
products during the solution of j′′(Ie)δI = −ĵ′(Ie). For simplicity of presentation, we
neglect the impact of the quantization error in v, w and p on the matrix-vector-products.
A detailed analysis of this influence can be found in the subsequent paper [14].

In the following, we denote by ri the true residual in iteration i of the CG method.

Algorithm 1 CG for solving j′′(Ie)δI = −ĵ′(Ie) with inexact matrix-vector products

1: set i = 0, δI0 = 0, r̂0 = ĵ′(Ie), s0 = −r0

2: while ‖r̂i‖ > TOL do
3: qi = j′′(Ie)si + εmv,i

4: αi = (r̂i, r̂i)/(qi, si)
5: δIi+1 = δIi + αisi
6: r̂i+1 = r̂i + αiqi
7: βi = (r̂i+1, r̂i+1)/(r̂i, r̂i)
8: si+1 = −r̂i+1 + βisi
9: i = i+ 1

10: end while

Adaptive choice of quantization tolerance

The impact of inexact matrix-vector products on Krylov subspace methods has been an-
alyzed in [31]. Adapted to our problem setting, the theory presented there leads to the
following Lemma:

Lemma 4.11. If, for a certain value lm, in all CG iterations i < m,

‖εmv,i‖ ≤ lm
ε

‖r̂i‖
(34)

holds, then ‖r̂m − rm‖ ≤ ε.

Choosing ε = ςTOLCG in Lemma 4.11 for some ς ∈ (0, 1) and TOL = (1 − ς)TOLCG

in Algorithm 1 guarantees the desired accuracy (33). In order to satisfy condition (34), a
suitable, computable bound δ for the admissible quantization error has to be derived. To
do so, we apply the same approach as in Section 4.1 above now to the linearized equations.

The first step is to evaluate the influence of the quantization tolerance on the error
εmv,i. The inexact storage of the linearized-state trajectory leads to an inexactness in the
computed linearized-dual equation.
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Lemma 4.12. Denote by εδv, εδw the quantization errors for the solutions δv, δw to the
linearized state equations (18), (19). The errors εδp = δ̂p − δp, εδq = δ̂q − δq in the
linearized adjoint equations (20),(21) fulfill

∂εδp
∂t

+∇ · σ∇εδp − [Îion]vεδp −
η2

vp
εδq = εz1 in Q , (35)

∂εδq
∂t

+ [Îion]wεδp − η2η3εδq = εz2 in Q , (36)

with homogeneous terminal and boundary conditions, and

εz1 = εδv|Ωobs
− η1p̂εδw − [Îion]vvεδvp̂

εz2 = −η1p̂εδv.

Proof. The proof uses linearity of the equations (20),(21).

Due to the similarity of the equations, the same super-reaction function (32) as before
can be used for computing upper bounds

εδp ≤ εmax
δp , εδq ≤ εmax

δq . (37)

The matrix-vector multiplication error induced by a quantization error not exceeding
δ can now be estimated as

‖εmv‖ ≤ δ
∥∥∥∥eIe(v̂, ŵ, Ie)?(εmax

δp

εmax
δq

)∥∥∥∥ =: δ ξ.

From this we obtain the quantization tolerance δi in iteration i of CG:

δi ≤
lm
ξ

ς TOLCG

‖r̂i‖
. (38)

Remark 4.13. The convergence speed of the CG method with inexact matrix-vector-
products is slower than with exact products, as orthogonality of the residuals is lost,
see, e.g., [16]. As a remedy, re-orthogonalization of the residuals by using modified Gram-
Schmidt orthogonalization can be implemented to reduce the deterioration of convergence
speed.

Restart strategy. The choice (38) of the quantization tolerance suffers from the fact
that neither lm nor ξ is known exactly. The value of lm given in [31] is, unfortunately,
computationally unavailable. In order to avoid computational overhead, the error bounds
εmax
δp and εmax

δq are best computed on a coarse mesh, which leads to an inexact value of ξ.
Consequently, ‖r‖ ≤ TOLCG can not be guaranteed in practice. This may cause the norm
of the true residual to stay far above the required tolerance, while ‖r̂‖ decreases further,
see Fig. 1 (left) for an example.

In practice, the inaccuracy of ξ turns out to be of little consequence, as on one hand
the error bounds tend to be rather smooth and well represented on coarse meshes, and on
the the other hand, the computed error bounds are not particularly sharp.

The other factor lm is of more importance. A heuristic value lm = λmin/mmax has
been proposed, where λmin denotes the smallest eigenvalue of the reduced Hessian matrix
j′′. As a computational estimate thereof, the (inexact) Rayleigh quotient can be used,

λmin . min
i

(j′′(Ie)(si) + εmv,i, si)

(si, si)
= min

i

(qi, si)

(si, si)
,

12



where the minimum is taken over all CG iterations. Note that due to the inexactness of
the matrix-vector-product, underestimation of λmin is possible, leading to a smaller-than-
necessary quantization tolerance.

During the CG iterations we keep track of the approximate upper bound for λmin, and
update it when necessary. To be precise, we compute an initial estimate before the first
CG iteration, requiring one additional matrix-vector-product, and two scalar products.
The matrix-vector-product can be computed on a coarse, fixed mesh with a user-defined
quantization tolerance, or without compression, to keep the computational overhead as low
as possible. In iteration i of the CG, we evaluate (qi, si)/(si, si), which uses only quantities
already computed. When we get a significantly smaller estimate λimin � λi−1

min, we update
lm and thus the quantization tolerance, and restart the CG algorithm by re-computing
the current residual using the new quantization tolerance for the matrix-vector-product.
While this causes a computational overhead of one additional matrix-vector product per
restart, it is—in some situations—necessary to achieve convergence, see Fig. 1 (right).

 1e-06

 1e-05

 0.0001

 0.001

 0  5  10  15  20  25

computed residual
true residual

 1e-07
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 1e-05

 0.0001

 0.001

 1  2  3  4  5  6  7  8

computed residual
true residual

Figure 1: Behavior of computed r̂i and true residuals during CG (fixed uniform grids).
Left: without restart, right: with restarts.

The complete algorithm. In Alg. 2 we summarize the optimization procedure with
adaptive quantization. Here, for simplicity, we use the same quantization tolerance δi for
both the state and the adjoint solutions, despite the fact that the error estimate derived
is only for the error caused by quantization of the state values. Details on an adaptive
choice for the quantization tolerance for the adjoint solution will be provided in a separate
paper.

Algorithm 2 Optimization with adaptive quantization tolerance

1: fix initial δ1 (provided by user)
2: for i = 1, . . . do
3: solve the state equations (10), (11), encode v, w using δi
4: solve the adjoint equations (12), (13), decode v, w and encode p using δi
5: check optimality conditions, if optimal: end
6: solve the error estimator equations (27), (28) with right-hand-side (32) on a coarse,

fixed mesh
7: use the CG method to compute the Newton update using the quantization tolerance

provided by Eq. (38) for encoding and decoding the solutions δv, δw (v, w, p are
decoded using δi)

8: update the control Ie using the Armijo rule for the step size
9: compute δi+1 by Eq. (24)

10: end for
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5 Numerical Examples

In this section we give some details of the numerical realization and present results for two
different test cases, the dampening of a single excitation wavefront, and the termination
of re-entry waves. Both examples serve illustrative purposes and are therefore limited to
a rather simple 2D unit square setup.

5.1 Implementation

Here we describe discretizations and optimization algorithms used. Two different im-
plementations are available, based on the PDELab [3] and Kaskade 7 [15] toolbox,
respectively. Both build upon the general PDE solver package Dune [2], a publicly avail-
able software package written in C++. The two implementations allow a validation of
the codes and give an idea about the impact of different discretizations on the results. In
essence, the results differ only in the range of the discretization errors to be expected.

Spatial discretization. Spatial discretization is done by piecewise linear finite elements
on triangular meshes provided by the ALUGrid library [1] via the Dune interface. We
provide results both on uniform Cartesian grids as well as adaptively refined meshes.
Refinement is implemented in ALUGrid as bisection. The decision for local refinement
or coarsening is based on a posteriori error estimators. We use the Zienkiewicz-Zhu (ZZ)
estimator [36] after each time step in the PDELab implementation (see [24, Section 4.3]
for details) and the hierarchical DLY estimator [10] in each time step of the Kaskade 7
implementation, cf. [12]. A fixed tolerance tolx is prescribed independently of the progress
of the optimization, together with limits for the maximum refinement level in the PDELab
implementation and limits for the number of nodes in the Kaskade 7 version. Therefore,
the accuracy attainable in the optimization is limited by the accuracy of the computed
reduced gradients.

Grid refinement is performed independently for primal and dual trajectories and adap-
ted to the respective solutions. As the primal solution enters the right hand side of the
adjoint equation, the primal solution has to be interpolated on the dual grid, which is
done by hierarchical search in the mesh hierarchy.

With adaptive mesh refinement, not only the state values, but also the corresponding
non-uniform grids have to be stored. An efficient algorithm to encode the mesh connec-
tivity can be found in [34], but has not been implemented here. We resort to the built-in
functions of Dune/ALUGrid to write and read the adaptively refined grids directly.

Time discretization. For time stepping, linearly implicit Runge-Kutta methods of sec-
ond order are used, the ROS2 Rosenbrock method in the PDELab implementation (see
[24, Section 4.1 and 4.2] for details) and an extrapolated Euler method [11] in Kaskade 7.
Fixed time step sizes were chosen for ease of implementation. The resulting linear systems
arising after space and time discretization are solved by the BiCGStab method [33] with
an ILU preconditioner.

Optimization. For the minimization of the objective, a Newton method with iterative
solution of the Newton system by CG is applied. Reduced gradients and Hessian-vector
products are computed by solving linearized primal and dual trajectories as outlined in
Section 3. Once an approximate Newton direction is obtained, a stepsize is selected by
backtracking line search (see, e.g., [27]). The optimization is terminated as soon as either
‖∇Jk‖∞ ≤ 10−3(1 + |Jk|) is satisfied, or the difference between the objective values of two
successive optimization iterations is less than 10−3.
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σil[Ω
−1cm−1] σit[Ω

−1cm−1] g[mS/cm2] vth[mV ] vp[mV ] η1[mS/cm2] η2 η3

3 · 10−3 3.1525 · 10−4 1.5 13 100 4.4 0.012 1

Table 1: Electrophysiological parameters used in the examples.

Ω

Ωexi

Ωc1

Ωf1

Ωc2

Ωf2

Figure 2: Computational domain for the dampening of single excitation wave.

For long time horizons as encountered in the second example, the extinction of a re-
entrant spiral wave, the amount of data to be stored is quite large. One remedy is a
receding horizon strategy [7, 8, 21, 22], which obtains suboptimal results by minimizing
the objective on sequential, shorter time intervals individually. In this context, lossy
compression as an additional means of reducing storage demand allows to use larger time
horizons and thus leads to better results, such as a faster extinction of spiral waves.

5.2 Dampening of a single excitation wavefront

The first example taken from [24] deals with the extinction of the single excitation wave
front. The computational domain is the unit square Ω = [0, 1]2. The excitation do-
main Ωexi is a circle with midpoint (0.5, 0.5) and radius 0.04. The control domains
are Ωc = Ωc1 ∪ Ωc2 = [0.32, 0.4] × [0.45, 0.55] ∪ [0.6, 0.68] × [0.45, 0.55]. Furthermore,
Ωf1 = [0.28, 0.42] × [0.43, 0.57] and Ωf2 = [0.58, 0.72] × [0.43, 0.57] are neighborhoods of
Ωc1 ,Ωc2 . The observation domain is Ωobs = Ω\(Ωf1 ∪ Ωf2). See Fig. 2 for a sketch.

The simulated time is T = 4 ms. Initial conditions for the primal problem are

v(0) =

{
101.0 in Ωexi

0 otherwise

w(0) = 0 in Ω. (39)

The coarse grid is a 32× 32 criss-cross grid. In adaptive computations, the maximum
refinement level is limited to 7 in the PDELab implementation and the maximum number
of nodes is set to 24, 000 in the Kaskade 7 implementation. For the regularization
parameter, α = 3 · 10−6 is chosen.

In the following we investigate the effect of different algorithmic ingredients. First
we compare the results for the case of spatially constant controls with the results of [24],
where the control is varying in time and space. Second, we show the effects of adaptive
mesh refinement and lossy compressed storage.
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Figure 3: The norm of the gradient (y-axis shown in log scale for better comparison) and
minimizational value of the cost functional are shown on left and right respectively.

Space-time vs time-only control

Both space-time and time only control are computed by minimizing the objective

J̃(v, Ie) =
1

2

∫ T

0

(∫
Ωobs

|v|2 dΩobs + β

∫
Ωc

|Ie|2 dΩc

)
dt. (40)

In order to allow a direct comparison with [24], the regularization parameter β = 3.75·10−4

is used, which corresponds to β ·
∫

Ωc
dΩc = α in (9).

From the numerical results we observe that, in the case of space-time control, the
control is active only in those parts of the control domain Ωc where the wave enters first.
When enlarging Ωc, the control remains to be active only near that part of the boundary
where the wavefront first arrives. The Newton algorithm exhibits superlinear convergence,
but gets slower as Ωc is enlarged. The L2-norm of the gradient is shown at left hand side
of Figure 3 and the minimal value of the cost functional is depicted at right. The minimal
cost value is very similar for both cases.

Fixed mesh vs adaptivity

From here on, we consider spatially constant controls only. We compare results obtained
on uniform static grids 128×128, 128×128, 256×256, 512×512 and 1024×1024 with those
obtained on adaptively refined grids. The coarse grid is 32×32, and the maximum level of
mesh refinement is set to 7. The optimal controls obtained on static and adaptive grids are
shown in Figure 4. The total injected charge computed with PDELab is −5.24 (As)/cm3,
−6.29 (As)/cm3, −6.92 (As)/cm3, −7.08 (As)/cm3, and −7.27 (As)/cm3 for static grids
and −7.56 (As)/cm3 for the adaptively refined grid. We observed that in contrast to
all other grids, the excitation wave front was not completely extinguished on a 64 × 64
fixed grid. Clearly, we can see that adaptive mesh refinement grid shows good agreement
with finer uniform meshes. Moreover, we observed mesh independence as the optimization
algorithm takes 9 optimization iterations in any case.

The evolution of the excitation wave front and the adaptively refined grids is shown
in Figure 5 at different time instances up to 6 ms, i.e. 2 ms beyond the control horizon.
In the controlled case, the excitation wave is successfully terminated, such that at 6 ms
only the coarse grid is retained. This is also reflected in the number of elements shown in
Figure 6.

Compressed vs uncompressed

The compression factor, measuring the performance of the lossy storage algorithm, is
defined as the ratio between uncompressed and compressed storage sizes.
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Figure 4: The control value Ie is shown for the different static grids and automatic mesh
refinement strategy over the simulation time. Left: PDELab implementation. Right:
Kaskade 7 implementation.

Figure 5: Transmembrane voltage at times 0.16, 2.0, 4.0 and 6 ms. Top row: uncontrolled.
Bottom row: controlled.

Figure 6: The number of nodes over the simulation time for the dynamic evolution of
uncontrolled solution wave propagation and optimal state solution.
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δ
compression factor relative error in Ie

state adjoint avg. CG L2 L∞

adaptive 13.0 11.4 10.8 7.85 · 10−5 3.14 · 10−4

10−4 9.3 7.8 11.2 9.32 · 10−6 2.95 · 10−5

10−3 13.0 11.4 9.9 9.87 · 10−5 1.70 · 10−4

10−2 20.2 17.1 8.6 0.0054 0.0078
10−1 34.1 28.7 8.3 0.0355 0.0377

Table 2: Compression factors and relative error in the computed control for different
quantization tolerances.
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Figure 7: Gradient norm for different quantization tolerances on a fixed grid (32768 ele-
ments, 16641 vertices). The black horizontal line shows the approximated discretization
error.

Fixed mesh. Test results for using compression on a fixed grid with 32768 elements
and a time discretization with 100 time steps are shown in Figure 7 and Table 2. The
same quantization tolerance δ was used for state and adjoint trajectories. The tolerance
for the linearized state trajectory needed in the inner CG iterations was chosen adaptively
according to Section 4.3. For the adaptive choice of quantization tolerance for the state
solution, the averaged compression rate is reported in Table 2. The quantization tolerance
and compression factors for each iteration are shown in Figure 8.

We estimate the discretization error in the reduced gradient by using a solution on a
finer mesh as a reference. The relative error in the computed controls are determined by
using the control computed without compression as a reference.

For smaller δ, the residual in the CG iterations becomes smaller more quickly, yielding
a larger adaptively chosen quantization tolerance for the matrix-vector products, and thus
better compression factors.

For state and adjoint solves, we measured the computation times with and without
compression. In Table 3, we give details on the composition of the run-times for state
and adjoint equations. The computations were carried out on an Intel Core2 Quad CPU
with 2.83GHz, without using parallelization. The writing and reading of the grid is done
by using the built-in functions of ALUGrid and is stated just for completeness; for fixed
meshes, storing the grid is not necessary. We note that reading the grids is more expensive
than writing, as the grid data structures have to be re-created. Setup for lossy compression
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Figure 8: Adaptively chosen quantization tolerances and factors for encoding the state
solutions v, w. Note that while the quantization tolerance is reduced according to the
progress of the optimization, the mesh refinement tolerance remains fixed, which leads to
decreasing compression rates.

solve grid write/read setup encode decode

state 150.1 0.056 0.055 4.99 –
adjoint 735.03 0.286 0.166 2.75 2.62

Table 3: Detailed timings (in seconds) for a single state and adjoint solve (averaged over
5 iterations). Writing/reading of the grid can be ignored in the case of fixed meshes.

consists of generating data structures for prolongation, which have to be re-computed
whenever the grid changes at a time step. For fixed meshes, these computations are done
just once at the beginning of each time integration, and can be kept throughout all time
steps. Setup takes more time for the adjoint, as here both encoding (adjoint grid) and
decoding (state grid) are used on two different grids. When compressing the solution of
the adjoint equations, only p has to be stored, resulting in lower CPU times than for the
state solutions, where v and w have to be encoded.

Adaptive mesh. In Figure 9 we show the optimization progress on adaptively refined
grids with and without compression. Compression factors are reported in Table 4.

The adaptive grids were restricted to consist of at most 24, 000 vertices. Due to
local refinement there are less degrees of freedom on higher grid levels. As there is less

δ
compression factor relative error in Ie

state adjoint avg. CG L2 L∞

adaptive 8.0 5.4 5.5 0.0088 0.0156
10−3 4.6 5.3 3.7 0.0067 0.0121
10−2 11.1 11.4 3.5 0.0087 0.0195
10−1 23.3 22.5 3.9 0.0577 0.0624

Table 4: Compression factors and relative error in the computed control for different
quantization tolerances.
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Figure 9: Gradient norm (left) and objective function (right) on adaptive meshes for fixed
and adaptive quantization.

solve grid write/read setup encode decode

state 3303.8 30.7 73.3 30.3 –
adjoint 4885.0 232.6 176.6 27.9 23.2

Table 5: Detailed timings (in seconds) for a single state and adjoint solve (averaged over
5 iterations; δ = 10−2). solve consists of time for adaptivity, solution transfer and actual
solution of the linear equation systems.

redundancy in the values, the compression is not as effective as in the uniform case, leading
to smaller compression factors than before.

Detailed timings for state and adjoint solves can be found in Table 5. The most ex-
pensive part for the lossy storage algorithm here is the setup of the prolongation matrices,
which has to be done in every time step during the state solve, and twice per time step
in the adjoint solve (for state and adjoint grids). This overhead could be reduced by re-
using the prolongation matrices available in the FE-codes from the grid transfer, or used
in multigrid preconditioners. As the same lossy compression code was used in the two
different implementations, this was not implemented due to incompatible data structures
in PDELab and Kaskade 7.

5.3 Termination of re-entry waves

The second example demonstrates the computational techniques for the termination of re-
entrant waves by using a receding horizon technique. Optimal control for the termination
of re-entrant waves were first presented in [22], where a spatially variable control and
uniform grids have been used. Here we show numerical results using spatially constant
controls and adaptive mesh refinement in a Newton-Krylov optimization algorithm. In
[22], 45 receding horizon intervals of 4 ms each, i.e. 180 ms in total, were required to
terminate the re-entry wave. Motivated by the reduced storage requirement due to lossy
compression we allow longer time horizons of 16 ms now. With longer time horizon, the
optimizer can compute better controls, such that now 9 intervals, i.e. 144 ms in total, are
sufficient.

The computational domain shown in Figure 10 is [0, 2]2cm2, the control and observation
domains are Ωc1 = [0.4, 0.5] × [0.0, 0.65], Ωc2 = [1.3, 1.4] × [0.0, 1.0], Ωf1 = [0.35, 0.55] ×
[0.0, 0.70], and Ωf2 = [1.25, 1.45] × [0.0, 1.05], respectively. The regularization parameter
is chosen as α = 8 · 10−6. For this test case the maximum level of spatial grid refinement
is set to 5. The spatial grid adaptivity tolerance is set to tolx = 10−3 and the fixed time
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Figure 10: Computational domain for the termination of re-entry wave.

solve adapt update grid compression

write read encode decode factors

primal 650 795 - 58 - 142.1 - 5.2
dual 498 683 60 40 350 116.9 120 5.7

lin primal 304 500 50 38 345 113.4 131 4.8
lin dual 285 490 135 - 1150 - 319 -

Table 6: Average computation times (in seconds) for one iteration of primal, dual, lin-
earized primal and dual-for-Hessian equations.

step size is reduced to 0.01 ms, i.e. there are 1600 time steps in each receding time horizon
of the optimization.

To induce the re-entry we followed the standard S1 − S2 stimulation protocol as ex-
plained in [22]. Initially the external stimulus S1 of Itr = 100 µA/cm2 at time t = 0 ms
is applied for a duration of 5 ms along the bottom edge of the tissue sheet to induce a
planar wavefront traveling towards the top edge of the sheet. At time t = 183 ms, when
the critical recovery isoline arrives at the center of the sheet, a second S2 stimulus of
Itr = 100 µA/cm2 is applied in a small region of 0.3 cm radius at the center of the domain
for a duration of 5 ms. This generates two phase singularities at the intersections of the
critical recovery isoline with the boundary of the S2 stimulus region, leading to a so-called
Figure of Eight re-entrant pattern. The solution at t = 435 ms was then chosen as the
initial state.

In each time horizon, the optimization algorithm takes an average of 7 Newton itera-
tions to satisfy the given convergence tolerance and an average of 10.5 inner CG iterations
were taken at for Newton iteration. Averaged computation times for one solve of primal,
dual, linearized primal and linearized dual problems are reported in Table 6. The compu-
tation time for the spatial grid adaptivity, including the error estimator, refining the grid
and interpolation of the solution to the new grid, is shown in the second column. We can
observe that adaptivity takes more CPU time than solving the governing equations. As
primal and dual equations are solved on individually adapted grids, the primal solution
has to be interpolated on the dual mesh. To accomplish this, we use a hierarchical grid
search. Such grid transfers are also needed during the linearized primal solve. The third
column reports these solution transfer times.

The computation times for writing and reading the grids are shown in the 4th and 5th

21



columns, respectively. Again, reading the grid is more expensive than writing.
The coarse grid contains 2048 triangular elements and 1089 nodes. During the initial

outer iteration of a complete primal solve for the first time horizon of optimization, the
maximum number of elements and nodes at a particular time frame reached 41985 and
21136 respectively. Likewise, in the dual solve the maximum number of elements and
nodes are 45568 and 22979 respectively at the first outer iteration.

The computational time for the trajectory compression, including setup, as well as
compression factors are shown in the last three columns of Table 6. During the primal
solve one only needs to encode the solution of the state trajectory. This takes 9.8% CPU
time of the complete primal solve, which is the sum of state equation solve and the expense
of spatial grid adaptivity. During the dual solve one needs to decode the primal solution
as well as to encode the solution of dual equations. Here we observed that the encoding
of the dual solution takes less computational time compared to encoding of the primal
solution. The decoding of the primal solution takes 10% CPU time of the dual solve. In
the dual-for-Hessian solve one has to restore the solution of the primal, dual and linearized
primal solution. It can be seen that decoding takes about 40% of overall CPU time over the
solution. Note that one has to load the three different spatial grids for the reconstruction
of the solution. We can observe that the reconstruction of the grids takes 150% of CPU
time of the dual solution and it is the most expensive part. The overall computational
time for 9 time horizons of optimization takes about 23 days in a sequential run. The
quantization tolerances were chosen fixed to be δ = 10−3 for the primal and dual solution,
and δ = 10−7 during the CG method. This choice leads to the reported compression
factors of about 5–6, which are smaller than in the previous test case. Besides the fixed
tolerance, this can be attributed to the adaptive mesh refinement, leading to fewer nodes
on higher grid levels, and thus to a worse prediction than before.

Figure 11: The uncontrolled solution of transmembrane voltage at times 0.4, 32.04, 64.04
and 110.04ms.

Figure 12: The optimally controlled solution of transmembrane voltage at times 0.4, 32.04,
64.04 and 110.04ms.

The 2D surface mesh plots of the transmembrane voltage are depicted at different
times for the uncontrolled solution and optimally controlled solution. Clearly, we can
observe that the uncontrolled dynamical solution evolves with time and maintains the
re-entrant phenomena, while for the optimally controlled solution at 0.04ms the left and
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right excitation wave fronts are separated. At time 32.04ms they are traveling towards the
center of the domain. Due to some delay in the excitation wave fronts, the re-entrant wave
will fit exactly in between the two control domains at time 64.04ms. Then it reaches the
boundary and leaves the domain completely. We observed that the excitation wave front of
the transmembrane voltage goes to resting state after 144ms of simulation time, i.e. after
9 time horizons. In the previous work [22], this takes about 180ms to reach the resting
state where each time horizon period is 4ms. The longer time horizon computations are
made possible with the help of the compression technique.

6 Conclusion

It was demonstrated that the lossy compression strategy developed in [35] for optimal
control problems subject to the heat equation can be successfully extended to reaction
diffusion equations arising in electro-physiology. The trajectories of these nonlinear equa-
tions exhibit an especially rich dynamical systems behavior. From the optimal control
point of view the main objective consists in the dampening of arrhythmias.

By means of two typical scenarios, one related to excitation waves and another to a
reentry wave phenomenon, the efficiency of the proposed compression methodology could
be demonstrated. In the context of the Newton method that was used to solve the open
loop optimal control problems, the trajectories of four dynamical systems need to be
considered. The primal and adjoint one, just as for gradient type methods, and two
additional ones, a second linearized forward and a second adjoint equation, backwards in
time. It is remarkable that even for the control of the reentry wave, with highly nonlinear
dynamics and adaptive mesh refinement, good compression factors could be achieved.

From the point of view of optimal control we also investigated the combination of the
compression techniques with receding horizon control methods. Here compression methods
allow the use of longer time horizons which give better performance compared to solutions
which need to rely on many shorter time horizons.

Concluding we believe that compression techniques provide an effective method to cope
with computing and storage demands in large scale optimal control problems.
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