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Abstract. The chemical master equation is a fundamental equation in chemical kinetics. It is an ad-
equate substitute for the classical reaction-rate equations whenever stochastic effects become relevant.
In the present paper we give a simple argument showing that the solutions of a large class of chemical
master equations, including all those in which elementary reactions between two and more molecules
do not generate a larger number of molecules than existed before, are bounded in weighted `1-spaces.
As an illustration for the implications of this kind of regularity we analyze the effect of truncating
the state space. This leads to an error analysis of the finite state projection of the chemical master
equation, an approximation that underlies many numerical methods.
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1. Introduction

The chemical master equation is a fundamental equation in chemical kinetics. It is an adequate substitute
for the classical reaction-rate equations in the case of small population numbers when stochastic effects become
relevant, a situation that often arises in biological systems. See the recent reviews [6, 11, 12] and the classical
papers [4,5] for an introduction. There is an ongoing effort to tackle the chemical master equation numerically,
the major challenge being its high dimensionality: for a system of d interacting species the chemical master
equation is a differential equation with state space Nd0, N0 the set of nonnegative integers. Various numerical
methods have been proposed, for instance Galerkin methods [1, 19], spectral methods [3], sparse grid methods
[7, 9], wavelet methods [15, 22], tensor methods [2, 8, 14, 16], and hybrid methods [9, 10, 13, 18]. In the papers
on numerical methods known to us no attention is paid to the regularity (or the decay) of the solutions to the
chemical master equation, although this is inherently related to approximability and particularly relevant in
high dimensions. In the present work we give a simple argument showing high regularity in weighted `1-spaces
for a large class of chemical master equations, including all those in which elementary reactions between two and
more molecules do not generate more molecules than were initially present. Almost all examples considered in
the aforementioned papers are of this kind. As an illustration for the implications of high regularity we analyze
the effect of truncating the state space. This leads to an error analysis for the finite state projections of the
chemical master equation, approximations that underlay more or less explicitly most numerical methods.
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The chemical master equation can be regarded as a differential-difference equation, a differential equation in
time and a difference equation in the rest of the variables, or in other words a possibly infinite system

d

dt
p(Ω; t, x) =

R∑
r=1

(
ar(t, x− νr) p(Ω; t, x− νr) − ar(t, x) p(Ω; t, x)

)
, x ∈ Ω, (1.1)

of ordinary differential equations. The solution components are labeled by vectors x ∈ Zd and take the value

p(Ω; t, x) = 0, x /∈ Ω, (1.2)

for all x outside a given subset Ω of Zd. The νr are given elements in Zd and the coefficient functions

ar : R≥0 × Zd → R≥0 : (t, x) → ar(t, x) (1.3)

are assumed to be nonnegative and continuous in the variable t for each single x. We denote their sum by

a(t, x) =
R∑
r=1

ar(t, x). (1.4)

In chemical kinetics, Ω is a subset of Nd0 or in the limit case the set Nd0 itself. The value p(Ω; t, x) represents
then the probability that there are xi copies of the molecule Si at time t. Consider an elementary reaction

m1S1 + . . . + mdSd −→ n1S1 + . . . + ndSd (1.5)

in which m1 molecules of species 1, m2 molecules of species 2, . . . react to n1 molecules of species 1, n2 molecules
of species 2 and so on. The corresponding vector νr, the stoichiometric vector of the reaction, is composed of
the differences ni −mi. The coefficient function ar(t, x), that is denoted as propensity function of the reaction,
is in chemical kinetics a constant or time-dependent multiple of the polynomial

ar(t, x) ∼
d∏
i=1

(
xi
mi

)
(1.6)

of order m1 + . . . + md in the components of x as long as xi ≥ mi for all i and takes the value 0 otherwise.
That is, it is proportional to the number of possibilities to select the reacting molecules from the given ones.
The here omitted factor of proportionality measures the reactivity of the substances.

If the set Ω is finite, (1.1) is a linear system of ordinary differential equations of usual kind for the solution
components p(Ω; t, x), x ∈ Ω. Existence and uniqueness of its solution for given initial values p(Ω; 0, x), x ∈ Ω,
is guaranteed by standard results from the theory of ordinary differential equations. The situation is different
for infinite sets Ω, and in particular for the limit case

Ω = Nd0 (1.7)

in which one is primarily interested. The aim of this note is to study the minimal nonnegative solutions of the
chemical master equation (1.1) on arbitrary subsets Ω of Zd for nonnegative, summable initial values.

The existence of such solutions can be shown by an elegant, comparatively elementary argument by Reuter
and Ledermann [20]. Martcheva et al. [17] use semigroup techniques to study a related class of infinite systems
of ordinary differential equation in `1-like sequence spaces. The present paper is strongly influenced by the work
of Reuter and Ledermann and utilizes the techniques developed there. Our aim is to show that the solutions
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constructed following Reuter and Ledermann grow at most like∑
x∈Ω

γ(t, x) p(Ω; t, x) ≤ c(t)
∑
x∈Ω

γ(0, x) p(Ω; 0, x), (1.8)

where γ : R≥0 × Zd → R≥0 is a weight function that is differentiable in t and satisfies an estimate

γ̇(t, x) +

R∑
r=1

ar(t, x)
(
γ(t, x+ νr)− γ(t, x)

)
≤ κ(t) γ(t, x) (1.9)

for all x in the domains Ω under consideration, where κ : R≥0 → R≥0 is a given continuous function and

c(t) = exp

(∫ t

0

κ(s) ds

)
. (1.10)

We will restrict ourselves in the discussion of this condition to subsets Ω of Nd0. The trivial example of a
weight function satisfying an estimate (1.9) is γ(t, x) = 1. In this case, κ = 0 and (1.8) transfers to the estimate∑

x∈Ω

p(Ω; t, x) ≤
∑
x∈Ω

p(Ω; 0, x). (1.11)

The other extreme is exponentially growing weight functions like

γ(t, x) = exp
(
ϑ 〈x〉

)
, 〈x〉 =

d∑
i=1

xi, (1.12)

with ϑ > 0 a given parameter. An estimate (1.9) then holds if the coefficient functions ar(t, x) are bounded for
those r for which 〈νr〉 > 0; the behavior of the other coefficient functions is of no significance in this context.

In view of applications to chemical kinetics, we are primarily interested in polynomial weight functions. The
key observation is that the differences γ(t, x + νr) − γ(t, x) are then polynomials of a one times lower degree.
We will consider in this paper in particular the polynomial-like weight functions

γ(t, x) = max (1, 〈x〉)m, (1.13)

where the exponent m can be an arbitrary real number greater than zero. The crucial estimate (1.9) is then
satisfied if the coefficient functions ar(t, x) grow at most linearly in x, or more precisely in the sum of the
components of x, for all reactions r for which 〈νr〉 > 0, that is, if for these r

ar(t, x) ≤ α(t)〈x〉 (1.14)

for all x 6= 0 in Ω respectively Nd0 with some continuous function α. In chemical kinetics, this condition excludes
elementary reactions (1.5) between two or more molecules that generate a larger number of molecules than
existed before, that is, for which m1 + . . .+md is two or greater and n1 + . . .+ nd greater than m1 + . . .+md.
This assumption is satisfied in virtually all examples considered in the cited papers on numerical methods. To
name just a few, we mention the genetic toggle switches considered in [1,2,14,15,22], the models describing the
spread of an infectious disease considered in [15,22] and the models for bacteriophages considered in [2, 14].

2. The chemical master equation on finite state spaces

We begin studying the case of finite subsets Ω of Nd0 or more generally of Zd. As mentioned, the existence
and uniqueness of the solutions of the chemical master equation (1.1), (1.2) for given initial values is then
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guaranteed by standard results from the theory of ordinary differential equations and does not pose a problem.
For the rest of this section, we will fix the state space Ω and will denote the solutions by

p(t, x) = p(Ω; t, x). (2.1)

Our first observation is the well-known fact that the solutions remain nonnegative for nonnegative initial values.

Lemma 2.1. If the set Ω is finite and p(0, x) ≥ 0 for all x ∈ Ω, the solution p(t, x) = p(Ω; t, x) of the chemical
master equation (1.1), (1.2) remains nonnegative for all t ≥ 0.

Proof. Let T > 0 be arbitrarily given and assume that a(t, x) ≤ µ holds for the sum (1.4) of the coefficient
functions for 0 ≤ t ≤ T and x ∈ Ω. The functions q(t, x) = eµtp(t, x) satisfy then the differential equations

d

dt
q(t, x) = µ q(t, x) +

R∑
r=1

(
ar(t, x− νr) q(t, x− νr) − ar(t, x) q(t, x)

)
, x ∈ Ω,

which are, in obvious vector notation, equivalent to a system

q(t) = q(0) +

∫ t

0

(µI +A(s)) q(s) ds, 0 ≤ t ≤ T,

of integral equations that can be solved by Picard-iteration. Since the integral operator on the right hand side
maps, by the choice of the constant µ, componentwise nonnegative functions to componentwise nonnegative
functions, the solution of this integral equation is componentwise nonnegative for 0 ≤ t ≤ T . Thus

p(t, x) ≥ 0, x ∈ Ω,

for 0 ≤ t ≤ T , and, since T > 0 was arbitrary, for all t ≥ 0. �

We come now to our central estimate (1.8), here first for solutions on finite state spaces Ω.

Lemma 2.2. If the set Ω is finite and p(0, x) ≥ 0 for all x ∈ Ω, the then nonnegative solution p(t, x) = p(Ω; t, x)
of the chemical master equation (1.1), (1.2) satisfies the a priori estimate∑

x∈Ω

γ(t, x) p(t, x) ≤ c(t)
∑
x∈Ω

γ(0, x) p(0, x), (2.2)

where γ(t, x) is a weight function satisfying the estimate (1.9) and c(t) the function given by (1.10).

Proof. We restrict ourselves first to the case that the weight function γ does not depend on t. Since the sum is
finite, we can differentiate the left hand side of (2.2) and obtain from (1.1)

d

dt

∑
x∈Ω

γ(x) p(t, x) =

R∑
r=1

∑
x∈Ω

(
ar(t, x− νr) γ(x) p(t, x− νr) − ar(t, x) γ(x+ νr) p(t, x)

)
+ ∆(t),

where we have used the abbreviation

∆(t) =

R∑
r=1

∑
x∈Ω

ar(t, x)
(
γ(x+ νr)− γ(x)

)
p(t, x).

Because of the nonnegativity of all terms and since p(t, x) = 0 for all x outside Ω,∑
x∈Ω

ar(t, x− νr) γ(x) p(t, x− νr) ≤
∑
x∈Ω

ar(t, x) γ(x+ νr) p(t, x);
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the sum on the left hand side is simply a sum of function values at points in a subset of Ω. The double sum on
the right hand side of the equation above attains therefore always values less equal zero, which leads to

d

dt

∑
x∈Ω

γ(x) p(t, x) ≤
R∑
r=1

∑
x∈Ω

ar(t, x)
(
γ(x+ νr)− γ(x)

)
p(t, x)

and, as p(t, x) is nonnegative, by assumption (1.9) finally to the estimate

d

dt

∑
x∈Ω

γ(x) p(t, x) ≤ κ(t)
∑
x∈Ω

γ(x) p(t, x).

To proceed, we introduce the abbreviation

S(t) =
∑
x∈Ω

γ(x) p(t, x)

for the quantity to be estimated. Since, as just shown,

d

dt

S(t)

c(t)S(0)
=

S′(t)− κ(t)S(t)

c(t)S(0)
≤ 0

and c(0) = 1, the proposition S(t) ≤ c(t)S(0) follows. If γ depends on t, the additional term∑
x∈Ω

γ̇(t, x) p(t, x)

arises, that is covered by assumption (1.9), too. �

The lemma applies in particular to the weight function γ = 1, for which κ = 0, and leads to the basic estimate∑
x∈Ω

p(t, x) ≤
∑
x∈Ω

p(0, x) (2.3)

for the nonnegative solutions of the chemical master equation already mentioned in the introduction.
The question arises whether an exponential growth as in (2.2) can actually be observed. The answer is no,

not for finite state spaces and time-independent weight functions. The reason is obvious. As follows from (2.3),∑
x∈Ω

γ(x) p(t, x) ≤
(

max
x∈Ω

γ(x)
)∑
x∈Ω

p(0, x). (2.4)

That means that the left hand side of this inequality remains bounded for all times t ≥ 0. The point is, however,
that we need bounds that are independent of Ω and still hold when Ω approaches an infinite domain like Nd0.

3. The monotonicity principle

Our aim is to extend the results of Sect. 2 from finite to infinite state spaces Ω, and in particular to the state
space Ω = Nd0. Following Reuter and Ledermann [20], we start from the following monotonicity principle.

Lemma 3.1. Let Ω1 ⊆ Ω2 be two finite subsets of Zd and let p(Ω1; t, x) and p(Ω2; t, x) be nonnegative solutions
of the chemical master equation (1.1), (1.2) on the state spaces Ω1 respectively Ω2. Then

p(Ω1; t, x) ≤ p(Ω2; t, x) (3.1)

for all x ∈ Zd and all t ≥ 0, provided this holds at the initial time t = 0.
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Proof. The proof is based on the same idea as that of Lemma 2.1. Let T > 0 be arbitrarily given and let µ be
the corresponding upper bound introduced there for the sum of the coefficient functions. Let

e(t, x) = eµt χ(x)
{
p(Ω2; t, x)− p(Ω1; t, x)

}
,

with χ the characteristic function of the set Ω1. Moreover, let

σ(t, x) = eµt
R∑
r=1

(
1− χ(x− νr)

)
ar(t, x− νr) p(Ω2; t, x− νr).

For all elements x in the smaller of the two sets Ω1 and Ω2 then

d

dt
e(t, x) = µ e(t, x) +

R∑
r=1

(
ar(t, x− νr) e(t, x− νr) − ar(t, x) e(t, x)

)
+ σ(t, x).

One deduces from that as in the proof of Lemma 2.1 that the functions t → e(t, x), x ∈ Ω, considered as the
unique solution of the above system of differential equations with given right hand side σ(t, x) ≥ 0 and given
initial values e(0, x) ≥ 0, are nonnegative for 0 ≤ t ≤ T . As T > 0 was arbitrary and p(Ω1; t, x) vanishes outside
the smaller of the two sets Ω1 and Ω2, this proves the inequality (3.1). �

4. Existence and regularity of minimal solutions

With help of the technique of Reuter and Ledermann [20], we are now in the position to treat the case of the
initial value problem (1.1), (1.2) on arbitrary subsets Ω of Zd and in particular on the set Ω = Nd0. We start
from a summable set of nonnegative initial values p(0, x), x ∈ Ω, and first introduce the finite state projections

p(Ω′; t, x), Ω′ a finite subset of Ω, (4.1)

the solutions of the chemical master equation (1.1), (1.2) on the sets Ω′ for the initial values

p(Ω′; 0, x) = p(0, x), x ∈ Ω′. (4.2)

Theorem 4.1. Let Ω1 ⊆ Ω2 ⊆ . . . be a sequence of finite subsets of Zd that exhaust Ω. The finite state
projections p(Ωn; t, x), n = 1, 2, 3, . . . , converge then monotonely from below to a solution p(t, x) = p(Ω; t, x) of
the chemical master equation on the set Ω that satisfies the estimate∑

x∈Ω

p(t, x) ≤
∑
x∈Ω

p(0, x). (4.3)

Proof. The solutions p(Ωn; t, x) are by Lemma 2.1 nonnegative and satisfy by (2.3) the estimate∑
x∈Ω

p(Ωn; t, x) ≤
∑
x∈Ω

p(0, x).

They converge therefore by Lemma 3.1 for given x monotonely to a measurable limit function t→ p(t, x). The
sum of these limit functions is bounded by the sum of the initial values p(0, x). Because of (1.1)

p(Ωn; t, x) = p(0, x) +

∫ t

0

R∑
r=1

(
ar(s, x− νr) p(Ωn; s, x− νr) − ar(s, x) p(Ωn; s, x)

)
ds
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holds for x ∈ Ωm and n ≥ m. The dominated convergence theorem leads therefore to

p(t, x) = p(0, x) +

∫ t

0

R∑
r=1

(
ar(s, x− νr) p(s, x− νr) − ar(s, x) p(s, x)

)
ds,

first for the elements x ∈ Ωm. As the Ωm exhaust Ω, these integral equations are fulfilled for all x ∈ Ω. As
the limit functions t→ p(t, x) and the coefficient functions as well are locally bounded in t, the integrands are
locally bounded and the limit functions therefore continuous. As the coefficient functions are continuous in t, the
integrands are continuous in the integration variable and the limit functions t→ p(t, x) thus, by the fundamental
theorem of calculus, continuously differentiable and satisfy the differential equations (1.1) for all x ∈ Ω. �

The solutions from Theorem 4.1 are characterized by an extremal property and are therefore in some sense
unique. Let Ω′ be an arbitrary finite subset of the set Ω under consideration. Since the Ωn exhaust Ω, Ω′ is a
subset of Ωn for all sufficiently large indices n. By the monotonicity principle from Lemma 3.1 for these n

p(Ω′; t, x) ≤ p(Ωn; t, x) ≤ p(Ω; t, x). (4.4)

Since p(Ωn; t, x) tends on the other hand to the value p(Ω; t, x) of the constructed solution as n goes to infinity,
this observation shows that this solution is the least upper bound of the finite state projections.

Theorem 4.2. For summable nonnegative initial values p(Ω; 0, x), the least upper bound

p(Ω; t, x) = sup p(Ω′; t, x) (4.5)

of the finite state projections p(Ω′; t, x) solves the initial value problem (1.1), (1.2) on the set Ω under consid-
eration and satisfies the estimate (4.3).

If the set Ω is finite, the least upper bound (4.5) of the finite state projections p(Ω′; t, x) is the finite state
projection p(Ω; t, x), that is, as to be expected again the unique solution of the then finite system (1.1), (1.2).

We will restrict ourselves in the sequel to the minimal solutions from Theorem 4.2. It is then easy to see that
the a priori estimate from Lemma 2.2 transfers to the present case of possibly infinite sets Ω and in particular
to the set Ω = Nd0, provided the right hand side of (2.2) is finite for the given initial values:

Theorem 4.3. The solution p(t, x) of the chemical master equation from Theorem 4.2 satisfies the estimate∑
x∈Ω

γ(t, x) p(t, x) ≤ c(t)
∑
x∈Ω

γ(0, x) p(0, x), (4.6)

where γ(t, x) is a weight function satisfying the estimate (1.9) and c(t) the function given by (1.10).

Proof. Lemma 2.2 and the choice of the initial values yield∑
x∈Ω′

γ(t, x) p(Ωn; t, x) ≤ c(t)
∑
x∈Ω

γ(0, x) p(0, x)

for every sequence of finite sets Ωn that exhaust Ω and every given finite subset Ω′ of Ω. As n goes to infinity,∑
x∈Ω′

γ(t, x) p(t, x) ≤ c(t)
∑
x∈Ω

γ(0, x) p(0, x)

follows, and from that, if one lets tend Ω′ to Ω, finally the proposition. �
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For summable, not necessarily nonnegative initial values p(0, x), one can compose from the given minimal
solutions p− and p+ for the nonnegative initial values

p−(0, x) = max (0,−p(0, x)), p+(0, x) = max (0, p(0, x)). (4.7)

a solution of the chemical master equation on the set Ω under consideration, namely

p(t, x) = p+(t, x)− p−(t, x). (4.8)

For finite state spaces Ω, the so defined solution is, of course, again the unique solution of the finite system
(1.1), (1.2) of ordinary differential equations for the given initial values.

Theorem 4.4. Under the same assumptions as in Theorem 4.3, the estimate∑
x∈Ω

γ(t, x) |p(t, x)| ≤ c(t)
∑
x∈Ω

γ(0, x) |p(0, x)|, (4.9)

holds for solution (4.8), independent of the sign of the initial values.

Proof. The solutions p− and p+ are nonnegative and can be estimated with help of Theorem 4.3. Because

p−(0, x) + p+(0, x) = |p(0, x)|

the proposition thus follows applying the triangle inequality to the left hand side of (4.9). �

Theorem 4.4 means in particular that ∑
x∈Ω

|p(t, x)| ≤
∑
x∈Ω

|p(0, x)|, (4.10)

that is, that the chemical master equation is `1-contractive.
In view of applications in chemical kinetics, we are mainly interested in polynomial-like weight functions,

in particular in the weight function (1.13), and may assume that Ω is a subset of the d-fold cartesian product
Nd0 of the set of the nonnegative integers. The crucial condition (1.9) is in this case satisfied if the coefficient
functions ar(t, x) for which 〈νr〉 > 0 grow at most linearly in x in the sense of (1.14). Reactions between two
or more molecules that generate more molecules than existed before are then excluded. The weighted `1-norms∑

x∈Ω

〈x〉m |p(t, x)| (4.11)

remain then uniformly bounded on finite time intervals for arbitrary exponents m > 0, corresponding initial
values provided. This can be seen as a kind of regularity property. Consider the Fourier transforms

p̂(t, ω) =
∑
x∈Ω

p(t, x) e iω·x (4.12)

of the solutions. As with summable initial values the estimate (4.10) holds, this Fourier series converges
uniformly for all times t ≥ 0 and defines a continuous function of ω ∈ Rd. If the weighted `1-norm (4.11)
remains finite, also the partial derivatives of order less than or equal m of its partial sums converge uniformly.
The Fourier transforms (4.12) of the solutions are therefore, under the given growth condition on the coefficient
functions and for corresponding initial values, infinitely differentiable functions of ω. Observations of this kind
are helpful in the construction of numerical methods and partly explain their success.
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Again the question arises whether the estimate from Theorem 4.3 is sharp and whether the norms (4.11) can
actually grow exponentially in time. This time the answer is a clear yes, as the example of the equation

∂t p(t, x) = x p(t, x− 1)− (x+ 1) p(t, x), x = 0, 1, 2, . . . , (4.13)

with initial values p(0, x) = δx,0 shows. The solution of this initial value problem is unique and given by

p(t, x) = e−t (1− e−t)x. (4.14)

To calculate its norms (4.11), or in the language of probability theory the moments of these geometric distri-
butions, we first observe that for all real numbers q of absolute value less than one and all natural numbers m

∞∑
k=0

kmqk =
q

1− q

∞∑
k=0

(
(k + 1)m − km

)
qk =

q

1− q

m−1∑
r=0

(m
r

) ∞∑
k=0

krqk

holds. These sums can therefore be calculated recursively. This leads to the representation

∞∑
k=0

kmqk =
1

(1− q)m+1
Pm(q),

with here not nearer specified polynomials Pm(q) of degree m. The moments of the distribution (4.14) are thus

∞∑
x=0

xmp(t, x) = Pm(1− e−t) emt. (4.15)

They grow exponentially in time, asymptotically like ∼ emt. This is essentially the growth that is predicted by
Theorem 4.3 and Theorem 4.4. Let γ(x) = max(1, xm) be the weight function (1.13). Then

lim
x→∞

(x+ 1)(γ(x+ 1)− γ(x))

γ(x)
= m, (4.16)

which establishes a direct connection between the here observed growth rate and our central assumption (1.9)
respectively the function (1.10) from Theorem 4.3 and Theorem 4.4. It is interesting to compare (4.15) with the
corresponding quantities for the finite state projections of the given equation on the set of nonnegative integers
less than or equal n, the partial sums of the infinite series (4.15). These partial sums remain not only bounded,
as stated by (2.4), but even tend exponentially to zero as t goes to infinity. This effect does not depend on the
choice of the initial values, as one recognizes rewriting the corresponding finite system of differential equations
in matrix form. The eigenvalues of its coefficient matrix are λk = −k, k = 1, . . . , n+ 1.

Another question is whether growth conditions on the coefficient functions of the given or similar kind are
really necessary to have this sort of regularity of the chemical master equation. The example of the equation

∂t p(t, x) = x2 p(t, x− 1)− (x+ 1)2 p(t, x) (4.17)

on the one-dimensional set x = 0, 1, 2, . . . of integers with initial values p(0, 0) = 1 and p(0, x) = 0 for x ≥ 1
shows that one can in general not expect that the norms (4.11) remain bounded for all times if this holds at
the initial time. The solutions of this initial value problem can, starting from the solution p(t, 0) = e−t of

∂t p(t, 0) = − p(t, 0), (4.18)



10 L. GAUCKLER AND H. YSERENTANT

be calculated recursively via the variations of constants formula

p(t, x) = x2

∫ t

0

e−(x+1)2(t−s) p(s, x− 1) ds, (4.19)

by means of which one obtains by induction on x the lower estimate

p(t, x) ≥ 2

(x+ 1)(x+ 2)

(
e−t − 4x

x+ 3
e−4t

)
(4.20)

for the solution. For t ≥ ln(8)/3 therefore

p(t, x) ≥ e−t

(x+ 1)(x+ 2)
. (4.21)

This means that the quantities x p(t, x), x = 1, 2, . . . , can, for these t, not sum up to a finite value.

5. The minimal solutions as probability densities

The value p(t, x) represents in chemical kinetics the probability that there are xi copies of the molecule i at
time t, that is, the solution should behave like a probability density. That means that the sum∑

x∈Ω

p(t, x) (5.1)

should be constant in time and take the value 1 for all t. This can indeed be shown for the minimal solutions
on the full set Ω = Nd0 under a condition on the coefficient functions that is satisfied in chemical kinetics. The
main technical problem is that the infinite sum (5.1) cannot simply be differentiated with respect to t.

Lemma 5.1. Assume that ar(t, x) takes the value zero at all x for which x+ νr possesses at least one negative
component. For every minimal solution p(t, x) for nonnegative initial values on the full set Ω = Nd0 then∑

x∈Ω

p(t, x) =
∑
x∈Ω

p(0, x) (5.2)

holds for all times t ≥ 0, on condition that the sums∑
x∈Ω

ar(t, x) p(t, x) (5.3)

remain uniformly bounded on finite time intervals.

Proof. Let χ be the characteristic function of an arbitrary finite subset of Ω = Nd0. By (1.1) then

d

dt

∑
x∈Zd

χ(x) p(t, x) =

R∑
r=1

( ∑
x∈Zd

χ(x) ar(t, x− νr) p(t, x− νr) −
∑
x∈Zd

χ(x) ar(t, x) p(t, x)

)
.

Shifting the first of the two inner sums, this yields

d

dt

∑
x∈Zd

χ(x) p(t, x) =

R∑
r=1

∑
x∈Zd

(
χ(x+ νr)− χ(x)

)
ar(t, x) p(t, x).
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The key observation is that one can restrict the inner sum on the right hand side to those points x for which
both x itself and x+ νr are contained in Nd0. The reason is that p(t, x) vanishes for all x outside Nd0 and ar(t, x)
by assumption for all x for which x+ νr is not contained in Nd0. Integrating this equation,

∑
x∈Zd

χ(x) p(t, x) −
∑
x∈Zd

χ(x) p(0, x) =

R∑
r=1

∫ t

0

∑
x∈Zd

δr(x) ar(s, x) p(s, x) ds

follows, where δr(x) = χ(x+ νr)− χ(x) if both x and x+ νr are contained in Nd0 and δr(x) = 0 otherwise. We
insert for χ now the functions χn with values χn(x) = 1 for the x ∈ Nd0 with 〈x〉 < n and χn(x) = 0 for all
other x. The assigned functions δr,n take then a value δr,n(x) 6= 0, if and only if x and x+ νr in Nd0 and

n ≤ 〈x〉 < n− 〈νr〉 if 〈νr〉 < 0, n− 〈νr〉 ≤ 〈x〉 < n if 〈νr〉 > 0.

Under the given assumption on the sums (5.3), the left hand side of the inequality∣∣∣∣ ∑
x∈Zd

δr,n(x) ar(t, x) p(t, x)

∣∣∣∣ ≤ ∑
x∈Zd

ar(t, x) p(t, x)

tends therefore to zero as n goes to infinity and the dominated convergence theorem yields

lim
n→∞

R∑
r=1

∫ t

0

∑
x∈Zd

δr,n(x) ar(s, x) p(s, x) ds = 0.

Since the left hand side of the equation above tends at the same time to the difference of the values (5.2), this
proves the proposition and shows that the values p(t, x) sum up at all times t to the same value. �

If one excludes reactions between two or more molecules that generate more molecules than existed before,
the assumption that the sums (5.3) remain uniformly bounded on finite time intervals is no longer needed.

Theorem 5.2. Assume that the coefficient functions ar(t, x) are polynomially bounded in x, that they grow at
most linearly in x in the sense of (1.14) for all indices r for which 〈νr〉 > 0, and that ar(t, x) = 0 for all x for
which x+ νr possesses at least one negative component. For the given solutions on Ω = Nd0 then∑

x∈Ω

p(t, x) =
∑
x∈Ω

p(0, x) (5.4)

holds for all times t ≥ 0, summable initial values provided.

Proof. We assume first that the initial values p(0, x) are nonnegative and vanish for all x except for finitely
many. We know from the discussion in the previous section that under the given assumptions the sums (5.3)
then remain finite and bounded on finite time intervals. As just shown, this proves (5.4) under the given
restriction to the initial values. The general case is treated decomposing the solution correspondingly. �

A related result has been proved in [21] on the basis of semigroup techniques.

6. Error estimates for the finite state projections

By construction of the given minimal solution p(t, x) for nonnegative initial values on the full set Nd0,

0 ≤ p(Ω; t, x) ≤ p(t, x) (6.1)
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holds for all finite state projections p(Ω; t, x), Ω a finite subset of Nd0. The finite state projections p(Ω; t, x)
converge monotonely to p(t, x) when Ω increases and approaches Nd0. To estimate the speed of convergence,
information on the behavior of p(t, x) for large x as provided by Theorem 4.3 is needed. Our starting point is

Lemma 6.1. Let p(t, x) be the given minimal nonnegative solution of the chemical master equation (1.1), (1.2)
on the set Nd0 and let p(Ω; t, x) be the approximation of p(t, x) that takes the same initial values as p(t, x) on
the finite subset Ω of Nd0, that vanishes outside Ω, and that solves the equation (1.1) for all x ∈ Ω. Then

∑
x∈Nd

0

(
p(t, x)− p(Ω; t, x)

)
≤
∑
x/∈Ω

p(t, x) +

∫ t

0

R∑
r=1

∑
x∈Ω(r)

ar(s, x) p(Ω; s, x) ds, (6.2)

where Ω(r) denotes the set of all x ∈ Ω for which x+ νr is located outside Ω but still in Nd0.

Proof. Let Ω′ be an arbitrary finite subset of Nd0 that covers Ω and consider the nonnegative difference

e(t, x) = p(Ω′; t, x)− p(Ω; t, x)

of the corresponding finite state projections. Its `1-norm satisfies the differential equation

d

dt

∑
x∈Ω′

e(t, x) =

R∑
r=1

∑
x∈Ω′

(
ar(t, x− νr) e(t, x− νr) − ar(t, x) e(t, x)

)
+ τ(t),

where the remainder is given by the expression

τ(t) =

R∑
r=1

∑
x∈Ω′\Ω

ar(t, x− νr) p(Ω; t, x− νr).

As all terms are nonnegative, one gets an upper bound for τ(t) replacing the inner sum by the sum over all x
outside Ω but still in Nd0. Since p(Ω; t, x) = 0 outside Ω, the remainder can therefore be estimated as

τ(t) ≤
R∑
r=1

∑
x∈Ω(r)

ar(t, x) p(Ω; t, x).

Since e(t, x) is nonnegative and vanishes outside the finite set Ω′,∑
x∈Ω′

ar(t, x− νr) e(t, x− νr) ≤
∑
x∈Ω′

ar(t, x) e(t, x).

From the differential equation above and the estimate for the remainder one obtains therefore the estimate

d

dt

∑
x∈Ω′

e(t, x) ≤
R∑
r=1

∑
x∈Ω(r)

ar(t, x) p(Ω; t, x)

for the derivative. Integration yields

∑
x∈Nd

0

(
p(Ω′; t, x)− p(Ω; t, x)

)
≤
∑
x/∈Ω

p(Ω′; 0, x) +

∫ t

0

R∑
r=1

∑
x∈Ω(r)

ar(s, x) p(Ω; s, x) ds

and with that, taking the supremum over all Ω′ under consideration, finally the proposition. �
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We return now to chemical kinetics and our standard case of the polynomial-like weight functions (1.13). We
restrict ourselves as before again to the case that for all reactions r for which 〈νr〉 > 0 the coefficient functions
ar(t, x) grow at most linearly in 〈x〉, that is, satisfy an estimate (1.14), and exclude with that again reactions
between two and more molecules that generate a larger number of molecules than existed before. Let

Ωn =
{
x ∈ Nd0

∣∣ 〈x〉 < n
}
. (6.3)

The sets Ωn(r) from Lemma 6.1 are in this case empty for all reactions r for which 〈νr〉 ≤ 0. If 〈νr〉 > 0,

Ωn(r) =
{
x ∈ Nd0

∣∣x+ νr ∈ Nd0, n− 〈νr〉 ≤ 〈x〉 < n
}
. (6.4)

If the weighted `1-norm (4.11) is bounded at time t = 0 and remains therefore bounded on all finite time
intervals, the `1-norm of the error thus tends by Lemma 6.1 like

O
(
n−m+1

)
(6.5)

to zero as n goes to infinity. The constants will in general strongly increase with m and the length of the time
interval under consideration but are basically independent of the dimension d of the state space, that is, in
chemical kinetics of the number of species involved. The curse of dimensionality is hidden in the choice of the
state spaces (6.3). We conclude that, corresponding initial values provided,

lim
n→∞

nm
∑
x∈Nd

0

(
p(t, x)− p(Ωn; t, x)

)
= 0 (6.6)

uniformly on every finite time interval for all m > 0. This means that the finite state projections p(Ωn; t, x)
converge in the `1-norm super-algebraically to the solution, faster than any power of 1/n tends to zero.

The finite state projections of a solution of a chemical master equation do in general not remain probability
densities when time proceeds. It is therefore common practice to modify the equation slightly near the boundary
of the given finite domain Ω, replacing the coefficient functions ar(t, x) by their truncated variants

ar(Ω; t, x) =

{
ar(t, x), if x+ νr ∈ Ω,

0, otherwise.
(6.7)

The solutions p̃(Ω; t, x) of the so modified equations (1.1), (1.2) have then again the property that∑
x∈Ω

p̃(Ω; t, x) =
∑
x∈Ω

p̃(Ω; 0, x). (6.8)

The proof transfers almost verbatim from that of Lemma 5.1, simply replacing the full set Nd0 by the given finite
set Ω. The only difference is that one can, as Ω is itself a finite set, directly insert the characteristic function χ
of Ω there, which makes the detour via a limit process as in the proof of Lemma 5.1 unnecessary. The question
is which impact this modification has on the discretization error.

Lemma 6.2. If p̃(Ω; 0, x) = p(Ω; 0, x) for all x in the finite set Ω, for all times t ≥ 0

p(Ω; t, x) ≤ p̃(Ω; t, x). (6.9)

Proof. Let µ be an upper bound for the sum (1.4) of the coefficient functions and set

e(t, x) = eµt
{
p̃(Ω; t, x)− p(Ω; t, x)

}
.
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Because of ar(Ω; t, x− νr) = ar(t, x− νr) for the points x ∈ Ω, for all x ∈ Ω then

d

dt
e(t, x) = µ e(t, x) +

R∑
r=1

(
ar(Ω; t, x− νr) e(t, x− νr) − ar(Ω; t, x) e(t, x)

)
+ τ(t, x),

where the remainder is given by the expression

τ(t, x) = eµt
R∑
r=1

(
ar(t, x)− ar(Ω; t, x)

)
p(Ω; t, x)

and thus nonnegative. The proposition follows from that by arguments as in the proof of Lemma 2.1. �

The `1-distance of the original finite state projection and its modification can be estimated as follows.

Lemma 6.3. Assume that ar(t, x) = 0 if x + νr /∈ Nd0 and let Ω(r) as in Lemma 6.1 consist of the x ∈ Ω for
which x+ νr is located outside Ω but still in Nd0. If p̃(Ω; 0, x) = p(Ω; 0, x) for all x ∈ Ω, for all times t ≥ 0 then

∑
x∈Ω

(
p̃(Ω; t, x)− p(Ω; t, x)

)
≤
∫ t

0

R∑
r=1

∑
x∈Ω(r)

ar(s, x) p(Ω; s, x) ds. (6.10)

Proof. We start again from the by Lemma 6.2 nonnegative difference

e(t, x) = p̃(Ω; t, x)− p(Ω; t, x)

of the modified and the original finite state projection. As in the proof of the previous lemma for all x ∈ Ω then

d

dt
e(t, x) =

R∑
r=1

(
ar(Ω; t, x− νr) e(t, x− νr) − ar(Ω; t, x) e(t, x)

)
+ δ(t, x) p(Ω; t, x),

where we have used the abbreviation

δ(t, x) =

R∑
r=1

(
ar(t, x)− ar(Ω; t, x)

)
here. Since e(t, x) is nonnegative and vanishes outside the finite set Ω,∑

x∈Ω

ar(Ω; t, x− νr) e(t, x− νr) ≤
∑
x∈Ω

ar(Ω; t, x) e(t, x).

From the differential equation above one obtains therefore the estimate

d

dt

∑
x∈Ω

e(t, x) ≤
∑
x∈Ω

δ(t, x) p(Ω; t, x)

for the derivative of the norm. As e(0, x) = 0, integration yields

∑
x∈Ω

(
p̃(Ω; t, x)− p(Ω; t, x)

)
≤
∫ t

0

R∑
r=1

∑
x∈Ω

(
ar(s, x)− ar(Ω; s, x)

)
p(Ω; s, x) ds. (6.11)

Using that the difference ar(s, x) − ar(Ω; s, x) takes the value ar(s, x) for the elements x ∈ Ω(r) and vanishes
everywhere else in Ω, the proposition follows. �
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That is, the additional error introduced by the truncation of the coefficient functions can, under an assumption
that was already needed to prove the results from Sect. 5 and without that the modification (6.7) does not make
sense, be estimated by the same terms as the original error. The convergence behavior is thus not affected by the
change of the coefficient functions. Corresponding initial values provided, the modified finite state projections
still converge in the `1-norm super-algebraically to the solution.
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