
A mixed-integer stochastic nonlinear optimization problem with

joint probabilistic constraints∗

T. Arnold† R. Henrion† A. Möller† S.Vigerske ‡
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Abstract

We illustrate the solution of a mixed-integer stochastic nonlinear optimization problem in an applica-
tion of power management. In this application, a coupled system consisting of a hydro power station
and a wind farm is considered. The objective is to satisfy the local energy demand and sell any sur-
plus energy on a spot market for a short time horizon. Generation of wind energy is assumed to be
random, so that demand satisfaction is modeled by a joint probabilistic constraint taking into account
the multivariate distribution. The turbine is forced to either operate between given positive limits or
to be shut down. This introduces additional binary decisions. The numerical solution procedure is
presented and results are illustrated.
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1 Introduction

A conventional optimization problem under probabilistic constraints is given by

min {f (x) |P(g(x, ξ(ω)) ≥ 0) ≥ p} . (1)

Here, f : Rn → R is some objective function, g : Rn × Rs → Rm is a constraint mapping, ξ is some
s-dimensional random vector on a probability space (Ω,A,P) and p ∈ [0, 1] is some specified safety level.
The meaning of the probabilistic constraint is as follows: a decision x is declared to be feasible, whenever
the probability of satisfying the random inequality system

gi(x, ξ(ω)) ≥ 0 (i = 1, . . . ,m)

is at least p. Such constraints have importance in many engineering problems affected by random param-
eters the realization of which can be observed only after a (an optimal) decision has been taken. As basic
references to theory, algorithms and applications of optimization problems with probabilistic constraints
we refer to [19], [20] and [22].

The purpose of this paper is to illustrate the solution of a mixed-integer nonlinear optimization
problem with joint probabilistic constraints in the context of a problem in power management involving
a hydro reservoir and a wind farm. The importance of chance constrained programming in the context
of water reservoir management has been recognized a long time ago (see, e.g., the basic monograph [15]
or [9], [10]). We emphasize that, in contrast to most related papers, we consider the more appropriate
and more difficult case of joint probabilistic constraints rather than individual ones which would allow
∗This work was supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin
†Weierstrass Institute Berlin, Germany
‡Humboldt University Berlin, Germany
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for simple quantile-based reformulations of the chance constraints via linear programming (see Section
3).

One option to deal with mixed-integer problems under probabilistic constraints would be to discretize
the random vector (e.g., sample average approximation as in [16]), which itself leads to a mixed-integer
problem and thus does not suffer from additional binary decision variables. However, it is not evident
how large the sample size for discretization has to be chosen in order to guarantee that the solution found
recovers the theoretical solution (relating to an assumed continuous distribution) with a given precision.
An example in [12] shows that even in dimension two a prohibitively large sample size may be required.
That is why we follow in this paper the classical approach of treating probabilistic constraints under
continuous distributions in the framework of nonlinear (possibly convex) optimization as pioneered by
Prékopa. Corresponding models for the control of water reservoirs are found, for instance, in the early
papers [17] and [18].

Progress in the efficient computation of multivariate distribution functions (e.g., [11]) offers the per-
spective of solving similar problems for dimensions of the random vector which are of interest in real life
applications such as power management (e.g., [3]). A key issue here is the possibility to analytically re-
duce gradients of probability functions to function values themselves as it was demonstrated for different
models (separated random vector under possibly singular linear transformation or bilinear model) under
Gaussian distribution ([13],[4]). This approach has the potential to be extended to alternative distribu-
tions (e.g., multivariate log-normal or t-distribution) as well as to nonlinear models. So far, however, the
focus in this context was directed on purely continuous problems. In this paper we add the consideration
of binary decisions .

2 A coupled hydro-wind power management model

We consider a power management model consisting of a hydro plant coupled with a wind farm. Electricity
produced by both components serves first to meet the local power demand of some area of interest and
second to sell any surplus electricity on the market. In principle, there are several sources of uncertainty
present in such model: uncertain inflow to the hydro plant, uncertain market prices, uncertain demand
and uncertain wind force. We will apply the model for a short time planning period (2 days) which
justifies to assume a constant (known) inflow of water to the hydro plant. We will also assume that the
time profiles for the market price and for the demand are known (though not restricted to be constant) for
this short period. In contrast, we do not neglect the randomness of the wind force which may be imagined
to be much stronger than that of the previously mentioned sources. The wind farm supported by a part
of the hydro power generation is supposed to meet the local demand of electricity. The remaining part of
the hydro power generation is sold at the market with the aim of maximizing profit according to the given
price signal. The hydro reservoir may be used to store water and thus to better adapt the water release
strategy to the time profiles of price and demand. In order to exclude production strategies which are
optimal for the given time horizon but at the expense of future ones (e.g., maximum production within
capacity limits), a so-called end level constraint is imposed for the final water level in the hydro reservoir.

The decision variables of our problem are the profiles for hydro power generation over the considered
time horizon used to support demand satisfaction or to sell electricity. The objective function is profit
maximization. The constraints are simple bounds on the total water release (given by operational limits
of the turbine), lower and upper bounds for the filling level of the hydro reservoir and demand satisfaction.
The latter is a random constraint because the demand is met by the sum of a deterministic component
of hydro energy and a stochastic component of wind energy. Now, the planning decision on optimal
hydro power generation has to be taken before the beginning of the considered time horizon and without
knowing future realizations of the random parameter (wind force). As mentioned in the introduction,
random constraints in which a decision has to be taken prior to the observation of the random variable
are not well-defined in the context of an optimization problem. This motivates the formulation of a
corresponding probabilistic constraint in which a decision is defined to be feasible if the underlying
random constraint is satisfied under this decision at least with a certain specified probability.

For longer time horizons, dynamic (closed loop) decisions could be set up as functions of past observa-
tions of the random parameter while time is running. This would lead to so-called dynamic probabilistic
constraints as presented, for instance, in [6]. Such constraints are, however, very difficult to deal with

2



numerically. In our application, the sale of energy at a spot market is part of the decision. As this is
usually realized by a day-ahead bidding, decisions can not react on observations of the random parameter
during the short time horizon we are considering. Therefore, we will assume a static (open loop) strategy
for our decisions.

At this point one may wonder about the use of probabilistic (and not guaranteed) demand satisfaction.
Indeed, in power management the customer may apply for so-called interruptible tariffs which allow him
to pay a much lower price if he is willing to accept a well-defined (small) portion of non-delivered energy
at certain unannounced periods of time. For a treatment of such models in the context of stochastic
optimization (but different from the one considered in our paper), we refer to [7].

Apart from the constraints discussed before, we impose an additional so-called end level constraint
for the hydro reservoir. Without such constraint, optimization - in our case: profit maximization - over
the given time period could be carried out at the expense of future time periods. A trivial solution of
profit maximization would be to release as much water from the reservoir as technically possible. Then,
however, the reservoir might run empty and thus result in initial conditions for future time intervals
which are worse than the ones we were starting with. Therefore, a minimum end level is required for the
reservoir. The choice of this end level is up to the decision maker, it could be defined as some average
level or as the initial level or any other level justified by anticipation of future events (increasing prices
etc.).

A further characteristic of the model we want to consider is the incorporation of binary decision
variables. These are necessary because turbines cannot be operated at an arbitrarily small level: either
they are in off state or they have to work at some positive minimum level. Such on/off constraints are
easily modeled by binary variables.

Discretizing the time horizon into T intervals, the resulting optimization problem reads as follows:

max
∑T
t=1 πtyt (2)

subject to
P(xt + ξt ≥ dt ∀t = 1, . . . , T ) ≥ p (3)

ztv ≤ xt + yt ≤ ztv̄ ∀t = 1, . . . , T (4)
xt, yt ≥ 0 ∀t = 1, . . . , T (5)
zt ∈ {0, 1} ∀t = 1, . . . , T (6)

l ≤ l0 + tw − 1
κ
∑t
τ=1(xτ + yτ ) ≤ l̄ ∀t = 1, . . . , T (7)

l0 + Tw − 1
κ
∑T
τ=1(xτ + yτ ) ≥ l∗ (8)

Here, yt is the amount of hydro energy produced in time interval t and sold at the market. With πt
referring to the time dependent price signal, the profit to be maximized over the given time horizon
equals the objective function (2).

Next, xt is the amount of hydro energy produced in time interval t and used to satisfy the local
energy demand dt in the same interval. In addition to hydro energy, demand satisfaction is supported by
a random amount ξt of energy produced by the wind farm in time interval t. Hence, demand satisfaction
can be described by the random inequality system

xt + ξt ≥ dt ∀t = 1, . . . , T. (9)

As discussed above, we decide on the complete profiles (x1, . . . , xT ) and (y1, . . . , yT ) at the beginning
of the time horizon when the random values ξt have not been observed yet. This makes the random
inequality system (9) meaningless in the context of our optimization problem and thus leads us to set
up the probabilistic constraint (3). Here, it is required that, given the entire strategy (x1, . . . , xT ), the
probability of satisfying the demand over the whole future time horizon is at least some specified level
p ∈ (0, 1).

The constraints (4) take care of a minimum operation level for the turbine. Indeed, given the binary
variables zt in (6), there exist exactly two possibilities: either zt = 0 in which case (4) along with the
nonnegativity constraints (5) yields that xt = yt = 0, i.e., no water is released at all; or zt = 1 in which
case (4) enforces the total amount xt+yt of released water to stay between the lower and upper operation
limits v and v̄ of the turbine.
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Next, (7) represents the level constraints for the hydro reservoir: here, l0 is the initial water level at
the beginning of the horizon, l and l̄ are the lower and upper water levels in the reservoir to be respected
at any time, w denotes the constant amount of water inflow to the reservoir in each time interval t and
κ represents a conversion factor between released water and turbined energy: 1 unit of water released
corresponds to κ units of hydro power generated. Consequently, the term between inequality signs in (7)
represents exactly the filling level of the reservoir at time interval t.

Finally, taking into account that the filling level of the reservoir at time interval T equals the left-hand
side of (8), we recognize this last constraint as an end level constraint imposing a minimum end level l∗

for the reservoir.

3 Simplifying approaches

If in our optimization problem (2)-(8) the probabilistic constraint (3) was not present then we would
deal with a conventional mixed-integer linear program the numerical solution of which could be easily
determined by standard methods even in comparatively large dimension. The challenging part of the
problem is the probabilistic constraint (3) which is not only nonlinear but even lacks an explicit formula.
Before discussing its numerical treatment, we briefly digress with the presentation of two simplified
approaches avoiding these difficulties.

The first approach consists in simply replacing the random vector ξ in the inequality system (9) by
its expectation ξ̄. In this way one obtains a deterministic inequality system

xt + ξ̄t ≥ dt ∀t = 1, . . . , T (10)

which upon replacing (3) perfectly fits to the linearity of the remaining constraints. However, solving
the corresponding mixed-integer linear program yields solutions that are not at all robust as will be
demonstrated in Section 5.

The second approach consists in formulating so-called individual probabilistic constraints which differ
from (3) by extracting the ’∀t’- quantifier from the probability term:

P(xt + ξt ≥ dt) ≥ p ∀t = 1, . . . , T. (11)

At first glance, (11) might look more difficult than (3) because now, instead of one single probabilistic
constraint, one deals with a system of T probabilistic constraints. The interpretation of (11) is significantly
different from that of (3): it is required here that, for each time interval t individually, the probability
of demand satisfaction is at least p. In contrast, in (3) one insists on the fact that the probability of
demand satisfaction over the whole time horizon is at least p. The latter is clearly a much stronger
requirement. That is why (11) is also referred to as individual probabilistic constraints whereas (3) is
called a joint probabilistic constraint. Thanks to the ξt being one-dimensional random variables, one
may invert their distribution function (which is no longer possible in the multivariate case) in order to
establish the equivalence

P(xt + ξt ≥ dt) ≥ p⇐⇒ xt ≥ dt + qpt ∀t = 1, . . . , T, (12)

where for t = 1, . . . , T
qpt := inf {τ |P(−ξt ≤ τ) ≥ p}

denote the p-quantiles of the one-dimensional random variables −ξt. The latter are easily determined
numerically or tabulated for most prominent one-dimensional distributions. Clearly, the right-hand side
of (12) is a system of linear inequalities again which is very similar to but more stringent than the
expectation constraints (10). Hence, the same standard mixed-integer linear program (with partially
different data) can be solved as in the case of expectation constraints. However, while guaranteeing
demand satisfaction at the chosen probability level p at each time interval individually, the corresponding
solutions may lead with high probability to demand violations at some times in the entire horizon. Again,
this will be demonstrated in Section 5.
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4 Numerical Solution

4.1 Dealing with the probabilistic constraint

Problem (2)-(8) is a mixed-integer stochastic nonlinear optimization problem. Without the binary con-
straint (6) one would deal with a nonlinear optimization problem where the only nonlinearity arises from
the probabilistic constraint α(x) ≥ p where

α(x) := P(xt + ξt ≥ dt ∀t = 1, . . . , T ). (13)

Thanks to the convexity theory of probabilistic constraints developed by Prékopa [19, Theorem 2.1] it
is well-known that one may rewrite the original probabilistic constraint α(x) ≥ p in the equivalent form
ϕ (x) ≤ 0 with

ϕ (x) := log p− logα(x) (14)

such that ϕ is a convex function whenever the random vector ξ := (ξ1, . . . , ξT ) obeys a so-called log-
concave distribution. The latter is true for many prominent multivariate distributions including the
multivariate normal distribution [19, Chapter 4]. Hence, problem (2)-(8) without (6) is a nonlinear
convex optimization problem which in principle can be solved by any favorite method of this area. One
has to take into account, however, that the function α and, hence, the convex function ϕ is not given by
an explicit formula because the probability involved is defined by improper multivariate integrals.

On the other hand, there exist efficient codes to approximate distribution functions, for instance,
of the multivariate normal, t- or Gamma distributions sufficiently well even in interesting dimension
([11],[8],[24],[23]). Observe, that the probabilistic function defined in (13) can be written in terms of the
distribution function of ξ which is defined as

Fξ(z) := P(ξt ≤ zt ∀t = 1, . . . , T ). (15)

Indeed, one gets that
α(x) = F−ξ(x− d). (16)

Hence, if one is able to approximate the distribution function of −ξ, then one gets an approximation for
α and thus for the convex function ϕ.

Usually, function values alone do not provide sufficient information to apply nonlinear optimization
methods. One also has to be able to calculate their gradients. According to the previous remarks, the
computation of the gradient of ϕ can be reduced to that of the gradient ∇F−ξ of the distribution function.
However, given that there is no explicit formula for function values F−ξ, much less this is true for the
gradients. Approximating ∇F−ξ by finite differences isn’t a good idea because the inaccuracy of function
values F−ξ will lead to highly unreliable estimations of partial derivatives when driving the step size of
the finite differences towards zero. Fortunately, for the case of the multivariate normal distribution, there
exists an analytical relation between function values and gradients of the distribution function [19, p.
204]. This means that no additional inaccuracy - beyond the one already present in function values - is
introduced when it comes to calculate gradients.

Postponing the discussion of the inaccuracy aspect to Section 4.3, function values and gradients of ϕ
may be used in order to set up, for instance, a supporting hyperplane method as introduced by Veinott for
convex optimization problems. This approach, which is classical in probabilistic programming (see, e.g.,
[19]) may not be the most efficient one but it fits well into the scheme of incorporating binary decisions
as it will be presented in Section 4.2. To briefly present the idea of the supporting hyperplane method,
we write our continuous optimization problem (2)-(8) without (6) in the following compact form:

min
{
cTu|u ∈ U, ϕ (u) ≤ 0

}
. (17)

Here u encompasses the original continuous decision variables (x, y), ϕ (u) ≤ 0 represents the convex
probabilistic constraint according to the discussion above and U represents a polyhedron defined by the
linear constraints (4),(5),(7),(8). Then, the supporting hyperplane method is defined as follows:

1. Find a point ū ∈ U such that ϕ (ū) < 0 (Slater point). Determine a polyhedron Ũ such that

{u|ϕ (u) ≤ 0} ⊆ U0 := Ũ ∩ U

and the linear objective of (17) is bounded below on U0. Put k := 0.
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2. Let uk be a solution of the linear program min
{
cTu|u ∈ Uk

}
. If ϕ

(
uk
)
≤ 0, then uk is a solution

of (17) and the algorithm is terminated.

3. Bisect the function ϕ on the line segment
[
uk, ū

]
in order to find a point vk such that ϕ

(
vk
)

= 0
(recall that ϕ

(
uk
)
> 0 and ϕ (ū) < 0).

4. Add a linear inequality in order to define a new polyhedron

Uk+1 := Uk ∩
{
u|
〈
∇ϕ

(
vk
)
, u
〉
≤
〈
∇ϕ

(
vk
)
, vk
〉}

and put k := k + 1. Go to 2.

If this algorithm generates an infinite number of iterations (which is usually the case) then each cluster
point u∗ of the sequence uk is a solution to problem (17). The same holds true for each cluster point of
the sequence vk. By convexity of ϕ the cuts defined in step 4 generate a decreasing sequence

{u ∈ U, ϕ (u) ≤ 0} ⊆ · · · ⊆ Uk+1 ⊆ Uk ⊆ · · · ⊆ U0 (18)

of polyhedra all of them containing the feasible set of (17). In particular, uk generated in step 2 provides
a lower bound of the optimal value c∗ of (17), whereas vk being feasible for (17) provides an upper bound
for c∗:

cTuk ≤ c∗ ≤ cT vk (19)

Moreover, the gap between upper and lower bound converges to zero and may be used as a termination
criterion for the algorithm.

4.2 Taking into account binary decision variables

In order to take binary conditions (6) into account, the supporting hyperplane method from the previous
section is embedded into a branch-and-bound algorithm [14]. This algorithm creates a tree of optimization
problems (2)-(8) with additional conditions on the binary variables zt.

For the root of this tree, which corresponds to the original problem, the continuous relaxation (17)
is solved by the previously outlined supporting hyperplane method, thereby constructing an equivalent
linear relaxation Uk. If the solution of the relaxation Uk satisfies the binary conditions on the variables,
an optimal solution for the original problem has been found. Otherwise, the algorithm selects a binary
variable zt∗ , t∗ ∈ {1, . . . , T}, that takes a fractional value in the solution of Uk and creates two subprob-
lems (branching) by adding the constraints zt∗ = 0 and zt∗ = 1, respectively. For both subproblems, a
very similar algorithm is applied again. That is, the relaxation Uk, inherited from the parent problem
and augmented by the subproblem specific fixations of binary variables, is resolved. If the relaxation
solution violates the probabilistic constraint (3), a supporting hyperplane can be constructed as specified
above, added to the relaxation, and the relaxation can be resolved. If the relaxation solution violates (6)
for some t∗ ∈ {1, . . . , T} two new subproblems are created by branching on zt∗ . If both (3) and (6) are
violated, either a supporting hyperplane can be constructed or a branching can be performed. In our
implementation, we do up to five rounds of the supporting hyperplane method before we branch on a
binary variable.

When the solution of a subproblem relaxation satisfies both (3) and (6), a feasible solution for the
original problem (2)-(8) has been found. The objective function value of this solution yields a lower
bound on the optimal value of (2)-(8). Further, since the feasible space of subproblems associated to
the child nodes in the branching tree yield a partition of the feasible space of the original problem, the
highest optimal value of the linear relaxations among all these subproblems yields an upper bound on
the optimal value of the original problem (bounding). This upper bound allows to estimate the quality of
the best known feasible solution. Further, if the optimal value of a linear relaxation in a subproblem falls
below the current lower bound, it is proven that this subproblem cannot contain an improving feasible
solution, thus it does not need to be considered further (fathoming).
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4.3 Safe cuts

An important step in the supporting hyperplane algorithm described in Section 4.1 is the bisection of the
function ϕ on a line segment [x, y] in order to find a point z such that ϕ (z) = 0. Here y := ū denotes the
Slater point satisfying ϕ (y) < 0 and x := uk is the current iterate with ϕ (x) > 0. By virtue of (14) this
may also be understood as a bisection of the function α defined in (13) on the line segment [x, y] in order
to find a point z such that α(z) = p. Here, α (y) > p and α (x) < p. When realizing the bisection, one
has to take into account that the distribution function α can be calculated with a given precision only.
Accordingly, we denote by αc the function assigning to each argument z the calculated probability αc(z).
Usually, αc is a random function (it may be obtained by Monte Carlo simulation or more sophisticated
methods like randomized Quasi Monte Carlo). Often, a confidence interval for the true value can be
provided:

P (|α(z)− αc(z)| ≤ ε) > γ (20)

(in Genz’ code [11], for instance, the user may select a precision ε > 0 for γ = 0.99). This implies,
that an ideal bisection of αc may result in a point z such that αc (z) = p whereas, for instance, the true
probability amounts to α (z) = p + ε or to α (z) = p − ε. In order to maintain the character of the
sandwiching sequence (19) yielding lower and upper bounds for the true optimal value, one may relax
the definition of a bisection point as follows: instead of insisting in the equality α (z) = p we are looking
for a couple z1, z2 of points such that:

1. α(z1) < p (with large probability)

2. α(z2) > p (with large probability)

3. z1, z2 are as close as possible.

The first property guarantees that the cut generated in step 4 of the supporting hyperplane algorithm
with vk := z1 still provides an outer approximation of the feasible set in (17) as stated in (18). As a
consequence, the sequence uk will continue to yield a lower bound of the optimal value (left-hand side of
(19)). The second property guarantees that with vk := z2 the point vk remains feasible in (17). Hence,
the sequence vk will continue to yield an upper bound of the optimal value (right-hand side of (19)).
The third property guarantees that the gap between lower and upper bound in (19) converges to a value
which is small, though not zero as in the case of precise computations. How small this value is, depends
on the precision ε for the computation of αc in (20). This precision depends on the computational effort
we are willing to spend. In the following we propose a bisection algorithm which yields points z1, z2 such
that with large probability

p− 5ε < α(z1) < p < α(z2) < p+ 5ε. (21)

Evidently, these points satisfy the three requirements above with closeness between z1, z2 controlled by
the term |α(z1)− α(z2)| < 10ε which is a function of the chosen precision and probability in (20). To
this aim, we set up the following bisection algorithm on the line segment [x, y]:

1. a0 := x, b0 := y, k := 0

2. If αc
(
ak+bk

2

)
< p − 4ε then ak+1 := ak+bk

2 , bk+1 := bk. If αc
(
ak+bk

2

)
> p − ε then ak+1 :=

ak, bk+1 := ak+bk

2 .

3. If p− 4ε ≤ αc
(
ak+bk

2

)
≤ p− ε then stop else k := k + 1, go to step 2.

4. Define z1 := ak+bk

2 .

In the next Lemma it will be shown that this algorithm yields the desired z1 in (21) after an explicitly
determinable finite number of iterations. A completely symmetric bisection algorithm can be formulated
to determine the point z2.
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Lemma 1 Let ξ have a multivariate normal distribution according to ξ ∼ N (µ,Σ), where µ denotes the
vector of expected values of ξ and Σ is the covariance matrix. Let x, y be such that α(x) < p < α(y) for
α defined in (13) (this is the situation of step 3 in the supporting hyperplane algorithm). In (20) fix a
probability γ and a precision ε ∈

(
0, p−α(x)

5

)
. Then, the bisection algorithm introduced above terminates

after at most

k0 :=
⌈
− log2

(
ε
√

2π min
i=1,...,s

Σii

)
‖x− y‖1

⌉
steps with a point z1 satisfying the relation p− 5ε < α(z1) < p (left part of (21)) with probability at least
6γ − 5.

Proof. The assumptions α(x) < p < α(y) and ε ∈
(

0, p−α(x)
5

)
yield by virtue of (20) that

αc (x) < p− 4ε < p− ε < αc (y) (22)

with probability at least 2γ − 1 (note that we used (20) twice, where each single estimate is guaranteed
with probability γ, so that the probability of satisfying both estimates simultaneously is at least 2γ− 1).
Now, given (22), it follows from step 2 in the bisection algorithm above that for all iterates k one has

αc
(
ak
)
< p− 4ε < p− ε < αc

(
bk
)
. (23)

Moreover, evidently
∥∥ak − bk∥∥ = 2−k

∥∥a0 − b0
∥∥ = 2−k ‖x− y‖.

Our assumption ξ ∼ N (µ,Σ) entails that −ξ ∼ N (−µ,Σ). According to Corollary 4 to Theorem 3
proved in the Appendix, the distribution function F−ξ (for the definition see (15)) is globally Lipschitz
continuous with respect to the 1-norm and with modulus

M :=
1√

2π min
i=1,...,s

Σii
.

From (16) it follows that α is globally Lipschitz continuous too with respect to the 1-norm and with the
same modulus M . It follows that∣∣α (ak)− α (bk)∣∣ ≤M ∥∥ak − bk∥∥

1
= 2−kM ‖x− y‖1 (24)

for all iterates k of the bisection algorithm. Assume that the number of these iterates reaches the value
k0 defined in the statement of this Lemma. Then, by (24),∣∣α (ak0)− α (bk0)∣∣ ≤ ε.
Now, invoking (20) again twice, we see that∣∣αc (ak0)− αc (bk0)∣∣ ≤ ∣∣α (ak0)− α (bk0)∣∣+ 2ε ≤ 3ε (25)

with probability at least 2γ − 1. This, however, contradicts (23). Therefore, the bisection algorithms
stops after at most k0 steps with probability at least 4γ − 3. Here we have taken into account that the
correctness of this statement relies on the correctness of (22) and of (25) both of which were given with
probability of at least 2γ − 1. Hence the probability that both statements are correct simultaneously is
at least 4γ − 3. By step 3 of the bisection algorithm, the final point z1 obtained after at most k0 steps
satisfies the relation

p− 4ε ≤ αc (z1) ≤ p− ε.
Invoking (20) a third time (for both of the two inequalities above) we infer that

p− 5ε ≤ α (z1) ≤ p (26)

with probability at least 2γ− 1. Now the statement of the Lemma follows upon taking into account that
we need two partial statements to be satisfied, one of them being the termination of the algorithm after
at most k0 steps - which was ensured with probability at least 4γ − 3 and the second one being (26)
which is guaranteed with probability at least 2γ − 1. Hence the overall probability for the statement of
the Lemma is at least 6γ − 5.
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Example 2 In the setting of Lemma 1 let γ = 0.99, ε = 10−4, µ = 0,Σ = I (identity matrix) and x, y
such that ‖x− y‖ = 1. Then, k0 :=

⌈
− log2

(
10−4

√
2π
)⌉

= d11.962e = 12 and 6γ − 5 = 0.94. Hence,
with probability of at least 0.94, the point z1 satisfying the relation p − 5 · 10−4 < α(z1) < p is found in
at most 12 iterations.

4.4 Implementation

The algorithm from Section 4.2 has been implemented in the branch-cut-and-price framework SCIP1

[1, 2]. SCIP includes a full-scale solver for mixed-integer linear programs, but can be extended to other
types of problems via plugins. One of the most powerful plugin types is the constraint handler, which
defines the semantics and the algorithms to process constraints of a certain class. A single constraint
handler is responsible for all the constraints belonging to its constraint class. Each constraint handler
has to implement an enforcement method. In enforcement, the handler has to decide whether a given
solution, e.g., the optimum of a linear relaxation satisfies all of its constraints. If the solution violates one
or more constraints, the handler may resolve the infeasibility by adding another constraint, performing
a domain reduction, or a branching.

For our purposes, we extended SCIP by a plugin to handle the probabilistic constraint (3). Whenever
SCIP has solved the linear relaxation of a current subproblem, it either branches on a binary variable
which takes a fractional value or asks our plugin to construct a linear inequality that cuts off the current
relaxation solution. If neither happens, SCIP knows that it found a new feasible solution and thus updates
the lower bound on the optimal value.

The algorithm is extended by primal heuristics to find feasible solutions early in the search, cutting
plane separators that cut off fractional solution from the relaxation without branching, and domain
propagation routines that try to derive tighter variable bounds from current variable bounds and the
constraints. For details, we refer to [1, 2].

5 Results

We consider optimization problem (2)-(8) with the following data: the time horizon equals 2 days subdi-
vided in T = 48 hourly intervals; the probability level for demand satisfaction was chosen as p = 0.9; the
profiles π = (π1, . . . , πT ) and d = (d1, . . . , dT ) for price and demand were adapted from real life data of
a power spot market and an electricity provider, respectively, found on the internet; the minimum and
maximum operation limits of the turbines were chosen such that v = 0.25v̄; the final filling level l∗ was
defined as the mean of lower and upper levels: l0 = l∗ = 0.5

(
l + l̄

)
. In contrast, the initial filling level

l0 was assumed to be slightly inferior to that average. Hence, one additional purpose of the optimization
problem was to slightly increase the filling level in the reservoir at the end of the time horizon. This
objective might reflect some strategic considerations by the decision maker.

The model for the discrete random process ξ = (ξ1, . . . , ξT ) of wind speed (scaled to wind energy
produced) was assumed to be multivariate normal according to ξ ∼ N (µ,Σ), where µ denotes the vector
of expected values of ξ and Σ is the covariance matrix associated with the components of ξ. As observed
in [5], raw data for wind speed are not normal but can be transformed into normal by raising them to
a certain power. The main purpose of this paper being an illustration of how binary decisions can be
integrated into probabilistic constraints, we kept for simplicity the normality assumption in our example.
A constant mean wind speed with relative standard deviation of 1/3 was assumed along with correlation
coefficients ρt1,t2 := 0.85|t1−t2| between components ξt1 and ξt2 . In this way, dependencies between
components are taken into account which is an essential issue in modeling wind speed [5, p. 2114]. Of
course, assuming independent components would allow for a much simpler computation of probabilities
and their gradients in the constraint (3).

For the numerical solution we applied the methodology presented in Section 4. For the sake of
comparison, we provide not only the results for the case of a joint probabilistic constraint (3) but also for
the two simplifying approaches (expected value constraint (10) and individual probabilistic constraints

1http://scip.zib.de
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(11) with same probability level p = 0.9 as for the joint case) discussed in Section 3 which are easily
solved as mixed-integer linear programs.

Figure 1 illustrates the optimal turbining profile (i.e., the sum xt+yt) for the three models. The plots
show connected parts in which turbines operate within their positive technical limits 0 < v ≤ v̄ as well
as disrupted parts due to shut down or switch on decisions implying zero energy production at certain
times.
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Figure 1: Optimal turbining profiles for the hydro reservoir in case of using expected values (left),
individual probabilistic constraints (middle) or a joint probabilistic constraint (right). Turbines are
either switched off (zero level) or work within positive operation limits (dotted lines).

Figure 2 shows the price signal πt and the part yt of the total hydro energy production from Figure
1 which is sold at the market. It can be seen that the expected value solution follows best the price
signal, whereas the solution based on the joint probabilistic constraint deviates most in shape from the
price signal. Accordingly, the optimal values (profits) of the three different models are: 25.698 (expected
values), 21.143 (individual probabilistic constraints) and 10.473 (joint probabilistic constraint). However,
we will see next that the better profits obtained by the simplified approaches come at the price of lacking
robustness.
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Figure 2: Part of hydro energy sold at the market in case of using expected values (left), individual
probabilistic constraints (middle) or a joint probabilistic constraint (right). The (common) price signal
is plotted in gray color.

In Figure 3, the satisfaction of local energy demand by the sum of wind energy ξt and the remaining
(unsold) part of hydro energy xt is represented. The demand profile exhibits the typical two-days shape
with a low during night time. In order to visualize demand satisfaction, given the optimal solutions
xt, yt, zt of the corresponding problems, a number of one hundred scenarios ξt for wind energy were
simulated according to the assumed distribution parameters ξ ∼ N (µ,Σ). We emphasize that these
scenarios were not used to solve the optimization problems but just serve the purpose of an à posteriori
check of the previously calculated solutions. Each figure shows the plots of supplied energy ξt + xt for
the different scenarios ξt. The generated wind energy scenarios ξt are the same for all three models but,
of course, the visualized scenarios of supplied energy ξt + xt differ by their hydro energy component xt.
It can be seen that the expected value solution frequently violates demand satisfaction. Indeed, it turns
out that only nine out of one hundred scenarios satisfy the demand through the whole time horizon. This
empirical estimate corresponds very well with the theoretical probability of 8.9% calculated according to

P(xt + ξt ≥ dt ∀t = 1, . . . , T )
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as in the constraint(3). This total lack of robustness demonstrates why the expected value solution is
meaningless despite its attractive profit. Inspection of the solution based on individual probabilistic
constraints reveals that for each point in time separately, only approximately 10 scenarios (or less) fall
below the demand line. This is coherent with the chosen probability level p = 0.9 in the model (11).
However, this does not tell anything about the probability of meeting the demand uniformly because
different scenarios may violate the demand at different times. Indeed, an enumeration of the generated
scenarios yields that only 41 out of 100 scenarios satisfy the demand through the whole time horizon
(theoretical probability: 35.2%). In contrast, 93 scenarios pass through the whole time horizon without
demand violation in case of the joint probabilistic constraint which fits well to the chosen probability
level of p = 0.9 (of course, with another set of 100 generated scenarios, the empirical number of success
can differ from 93 but is likely to stay around 90). Evidently, the demand is not only satisfied in a robust
sense but due to the randomness of wind speed, even a considerable surplus in the energy supply is
observed in general. This surplus may be thought of being sold as well or used for an additional pumped
storage plant. Anyhow, the surplus is not affected by our decisions, so it is purely random and can be
ignored in the optimization problem.
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Figure 3: Simulated energy supply (wind plus unsold hydro energy) for 100 simulated wind energy
scenarios in case of using expected values (left), individual probabilistic constraints (middle) or a joint
probabilistic constraint (right). The (common) demand profile is plotted as a thick black curve.

Finally, Figure 4 proves that all three solutions satisfy the level constraints (7) and (8): in all cases, the
filling levels stay between the critical values l and l̄. Moreover, in all cases the required end level l∗ is
reached.
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Figure 4: Water level for the hydro reservoir in case of using expected values (left), individual probabilistic
constraints (middle) or a joint probabilistic constraint (right). The critical lower and upper level of the
reservoir are represented by a solid line and the end level to be reached by a dotted line, respectively.
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[9] Duranyildiz, I., Önöz, B. and Bayazit, M., A chance-constrained LP model for short term reservoir
operation optimization, Turkish Journal of Engineering 23 (1999), 181-186.

[10] Edirisinghe, N.C.P., Patterson, E.I. and Saadouli, N., Capacity planning model for a multipurpose
water reservoir with target-priority operation, Annals of Operations Research 100 (2000), 273-303.

[11] A. Genz and F. Bretz, Computation of Multivariate Normal and t Probabilities, Lecture Notes in
Statistics, vol. 195, Springer, Heidelberg, 2009.

[12] R. Henrion, A critical note on empirical (sample average, Monte Carlo) approximation of solutions
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6 Appendix

The following result is based on the idea of proof in [21, Prop. 3.8].

Theorem 3 Let the s-dimensional random vector ξ have a density fξ. Then, the distribution function Fξ
of ξ is globally Lipschitz continuous if and only if all marginal densities f (i)

ξ (i = 1, . . . , s) are essentially
bounded. Moreover, the largest of these bounds is a Lipschitz modulus for Fξ with respect to the 1-norm.

Proof. Let x, y ∈ Rs be arbitrary. Put

zi := (y1, . . . , yi, xi+1, . . . , xs) ∀i ∈ {0, . . . , s} .

Then, z0 = x and zs = y. It follows that

|Fξ(x)− Fξ(y)| ≤
s∑
i=1

∣∣Fξ(zi)− Fξ(zi−1)
∣∣

=
s∑
i=1

|P(ξ1 ≤ y1, . . . , ξi ≤ yi, ξi+1 ≤ xi+1, . . . , ξs ≤ xs)−

P(ξ1 ≤ y1, . . . , ξi−1 ≤ yi−1, ξi ≤ xi, . . . , ξs ≤ xs)|

=
s∑
i=1

P(ξ1 ≤ y1, . . . , ξi−1 ≤ yi−1, ξi ∈ (min {xi, yi} ,max {xi, yi}],

ξi+1 ≤ xi+1, . . . , ξs ≤ xs)

≤
s∑
i=1

P(ξi ∈ (min {xi, yi} ,max {xi, yi}])

=
s∑
i=1

(
F

(i)
ξ (max {xi, yi})− F (i)

ξ (min {xi, yi})
)
.

Assume that there exist Mi ∈ R such that f (i)
ξ (τ) ≤ Mi for almost all τ ∈ R and for i = 1, . . . , s. Then,

for all i = 1, . . . , s,

F
(i)
ξ (max {xi, yi})− F (i)

ξ (min {xi, yi}) =

max{xi,yi}∫
min{xi,yi}

f
(i)
ξ (τ)dτ ≤Mi |xi − yi| .
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Along with the previous estimate, the global Lipschitz continuity of F with modulus M := maxiMi with
respect to the 1-norm results :

|Fξ(x)− Fξ(y)| ≤
s∑
i=1

Mi |xi − yi| ≤M ‖x− y‖1 .

By equivalence of all norms in Rs the global Lipschitz continuity of F with respect to any norm follows.
Let conversely Fξ be globally Lipschitz continuous with modulus M . Then, the marginal distribution

functions F (i)
ξ are Lipschitz continuous with the same modulus. To see this, choose arbitrary r, v ∈ R,

i ∈ {1, . . . , s} and ε > 0. Defining

At :=
{
z ∈ Rs

∣∣∣z ≤ (t, . . . , t, r
i
, t, . . . , t)

}
(t ∈ R) ,

it holds that At forms an increasing sequence with respect to set inclusion. Therefore,

lim
t→∞

Fξ(t, . . . , t, r, t, . . . , t) = lim
t→∞

P(ξ ∈At) = P

(
ξ ∈

⋃
t∈R

At

)
= P(ξ ∈ Ri−1 × (−∞, r]× Rs−i)

= P(ξi≤r) = F
(i)
ξ (r).

Consequently, for t̄ sufficiently large, one has that∣∣∣Fξ(t̄, . . . , t̄, r, t̄, . . . , t̄)− F (i)
ξ (r)

∣∣∣ , ∣∣∣Fξ(t̄, . . . , t̄, v, t̄, . . . , t̄)− F (i)
ξ (v)

∣∣∣ < ε.

We infer that ∣∣∣F (i)
ξ (r)− F (i)

ξ (v)
∣∣∣ ≤ 2ε+M |r − v| .

As ε > 0 was arbitrary, one arrives at the asserted global Lipschitz continuity of F (i)
ξ with modulus M .

Furthermore, it holds that

F
(i)
ξ (r) =

r∫
−∞

f
(i)
ξ (τ)dτ.

By the Fundamental Theorem of calculus for the Lebesgue Integral, we know that
[
F

(i)
ξ

]′
(r) = f

(i)
ξ (r)

for almost all r ∈ R. Hence the Lipschitz continuity of F (i)
ξ with modulus M yields that

f
(i)
ξ (r) = lim

h↓0

F
(i)
ξ (r + h)− F (i)

ξ (r)
h

≤M for almost all r ∈ R.

It results that the f (i)
ξ are essentially bounded.

Corollary 4 Let ξ ∼ N (µ,Σ). Then, Fξ is globally Lipschitz continuous such that

1√
2π min

i=1,...,s
Σii

is a Lipschitz modulus with respect to the 1-norm.
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