Linear Time Local Improvements for
Weighted Matchings in Graphs*

Doratha E. Drake and Stefan Hougardy

Institut fiir Informatik, Humboldt-Universitdt zu Berlin, 10099 Berlin, Germany
{drake ,hougardy}@informatik.hu-berlin.de

Abstract. Recently two different linear time approximation algorithms
for the weighted matching problem in graphs have been suggested [5][17].
Both these algorithms have a performance ratio of 1/2. In this paper we
present a set of local improvement operations and prove that it guaran-
tees a performance ratio of 2/3. We show that a maximal set of these
local improvements can be found in linear time.

To see how these local improvements behave in practice we conduct an
experimental comparison of four different approximation algorithms for
calculating maximum weight matchings in weighted graphs. One of these
algorithms is the commonly used Greedy algorithm which achieves a
performance ratio of 1/2 but has O(mlogn) runtime. The other three
algorithms all have linear runtime. Two of them are the above men-
tioned 1/2 approximation algorithms. The third algorithm may have an
arbitrarily bad performance ratio but in practice produces reasonably
good results. We compare the quality of the algorithms on a test set of
weighted graphs and study the improvement achieved by our local im-
provement operations. We also do a comparison of the runtimes of all
algorithms.

1 Introduction

A matching M in a graph G = (V, E) is defined to be any subset of the edges of
G such that no two edges in M are adjacent. If G = (V, E) is a weighted graph
with edge weights given by a function w : E — Ry the weight of a matching
is defined as to be w(M) :=), w(e). The weighted matching problem is to
find a matching M in G that has maximum weight. Calculating a matching of
maximum weight is an important problem with many applications. The fastest
known algorithm to date for solving the weighted matching problem in general
graphs is due to Gabow [7] and has a runtime of O(|V||E| + [V |?1log |V]).
Many real world problems require graphs of such large size that the runtime
of Gabow’s algorithm is too costly. Examples of such problems are the refine-
ment of FEM nets [15], the partitioning problem in VLSI-Design [16], and the
gossiping problem in telecommunications [2]. There also exist applications were
the weighted matching problem has to be solved extremely often on only moder-
ately large graphs. An example of such an application is the virtual screening of

* supported by DFG research grant 296/6-3

protein databases containing the three dimensional structure of the proteins [6].
The graphs appearing in such applications only have about 10,000 edges. But
the weighted matching problem has to be solved more than 100,000,000 times
for a complete database scan.

Therefore, there is considerable interest in approximation algorithms for the
weighted matching problem that are very fast, having ideally linear runtime, and
that nevertheless produce very good results even if these results are not optimal.

The quality of an approximation algorithm for solving the weighted match-
ing problem is measured by its so-called performance ratio. An approximation
algorithm has a performance ratio of ¢, if for all graphs it finds a matching with
a weight of at least ¢ times the weight of an optimal solution. Recently two dif-
ferent linear time approximation algorithms for the weighted matching problem
in graphs have been suggested [5][17]. Both these algorithms have a performance
ratio of 1/2. In this paper we present a set of local improvement operations and
prove that it guarantees a performance ratio of 2/3. We show that a maximal
set of these local improvements can be found in linear time.

The performance ratio only gives information about the worst case behaviour
of an algorithm. In this paper we will also study how several algorithms for the
weighted matching problem behave in practice. We make an experimental com-
parison of the three known approximation algorithms for the weighted matching
problem that have a performance ratio of % We also include a simple, extremely
fast heuristic that cannot guarantee any performance ratio but behaves reason-
ably well in practice. In addition we apply our local improvement operations to
all these algorithms and test how much improvement they yield in practice.

2 Local Improvements

The idea of local improvements has been used in several cases to improve the
performance ratio of approximation algorithms. See [10, 3] for such examples.

In the case of the unweighted matching problem which is usually called the
maximum matching problem it is well known that by local improvements a given
matching can be enlarged. In this case the local improvements are augmenting
paths, i.e. paths that alternately consist of edges contained in a matching M and
not contained in M such that the first and the last vertex of the path are not
contained in an edge of M. From a result of Hopcroft and Karp [11] it follows
that if M is a matching such that a shortest augmenting path has length at least
l then M is an ;_T_—} approximation of a maximum matching.

We extend the notion of augmenting paths to weighted matchings in a natural
way. Let G = (V, E) be a weighted graph with weight function w : E — IR and
M C E be an arbitrary matching in G. A path or cycle is called M -alternating
if it uses alternately edges from M and E\ M. Note that alternating cycles must
contain an even number of edges. Let P be an alternating path such that if it
ends in an edge not belonging to M then the endpoint of P is not covered by an
edge of M. The path P is called M -weight-augmenting if

w(E(P)NM) < w(E(P)\M)

If P is an M-weight-augmenting path then M A P (the symmetric difference
between M and P) is again a matching with strictly larger weight than M. The
notion of M-weight-augmenting cycles is defined similarly.

We will consider in the following M -weight-augmenting cycles of length 4, M-
weight-augmenting paths of length at most 4 and M-weight-augmenting paths
of length 5 that start and end with an edge of M. See Fig. 1 for all possibilities
of such weight augmenting paths and cycles.

o0—oO
o—eo—e — 06—
Oo0—eo—eo—O

-1

o—o——0—0o —> O0—0—0—0 O

—

Fig. 1. The seven local improvements. Edges belonging to the matching are shown in
bold. Hollow vertices are vertices not contained in any matching edge.

The following result shows that the non-existence of short M-weight-augmenting
paths or cycles guarantees that the weight of M is at least 2/3 of the maximum
possible weight.

Theorem 1. Let M,,; be a mazimum weight matching in a weighted graph
G = (V, E) with weight function w : E — Ry. If M is a matching in G such
that none of the seven operations shown in Fig. 1 increases the weight of M then

w(M) > %-w(Mopt) .

Proof. Consider the graph induced by the symmetric difference M A M. It
consists of even alternating cycles C; and alternating paths P;. We will show
that

2
’UJ(C, N M) Z g . ’LU(C, n Mopt) Vi (1)

and 5
U)(PZ ﬂM) Z g U)(PZ nMopt) Vi . (2)

Equation (1) and (2) imply
w(M) = w(M N Mop) + > w(C; N M)+ Y w(P;N M)
2 2
> 3 w(M N0 M) + 3 > w(Cin M) + 3 S w(P N Moy

. ’IU(Mopt) .

winvwin 8

We start proving (1). If C; is a cycle of length 4 then by the assumptions of
the theorem

w(CiNM) > w(CinMy) > ;-w(C’iﬂMopt) .

Now assume C} is a cycle of length at least 6. Let ey, es,e3,... be the edges of
C; in a consecutive order such that e; € M for j odd. Consider a subpath of
type eap+1,€2k+2,€2k+3, €2k+4, €2k+5 i C;. By the assumptions of the theorem
we have

w(ear+1) + w(ezrts) + wlezkts) > w(ezkta) + wleznra) -

By summing this inequality over all possible values for k we see that each edge
of C; N M appears 3 times on the left side and each edge of C; N M, appears
2 times on the right side of the inequality. Therefore

3-w(CiNM) > 2-w(CiN Myp) -

This proves (1).

We use a similar idea to prove (2). Let e; be the edges of a path P; such
that e; € M if and only if j is odd. The path may start with e; or ey as we do
not know whether it starts with an edge of M or an edge of E \ M. Consider
subpaths of P; of type esgy1,€2r+42, €253, €2k+4, €2k 45. We have

w(ezk+1) + w(ean+3) + wlezk+s) > w(esnta) +wleznta) -

Now extend the path P; artificially to both sides by four edges of weight 0. So we
have edges e_1,e_2,... on the left side of P;. Now add the above inequality for
all k£ where k starts at —2. Then each edge of ;N M appears in three inequalities
on the left and each edge of P; N M,,: appears in 2 inequalities on the right. The
artificial edges may appear in arbitrary number. As they have weight 0, it does
not matter. Therefore

3-wPNM) > 2-w(PiN M) .
This proves (2). O

Theorem 2. . Let G = (V, E) be a weighted graph with weight function w :
E — Ry and let M C E be a matching. A mazimal set of any of the seven
operations shown in Fig. 1 that are pairwise node disjoint and such that each
operation increases the weight of M can be found in linear time.

Proof. To achieve linear runtime in a preprocessing step each vertex that is
covered by M gets a pointer to the edge of M it belongs to. Consider an arbitary
edge e € M. To decide whether e belongs to an M-weight-augmenting Cy run
over all edges incident to one endpoint of e and mark all edges of M that are
adjacent to such edges. Now run over the edges incident to the other endpoint of e
and see whether they are incident to the other endpoint of a marked edge. If yes,
an alternating C4 has been found. Check whether it is M-weight-augmenting. If
yes remove it from the graph.

Similarly paths of length at most 4 and paths of length 5 which have an edge
of M at both ends can be found in linear time. O

3 The Algorithms

In this section we briefly describe four different approximation algorithms for the
weighted matching problem in graphs. For all these algorithms we have tested
their performance and runtime with and without our local improvements. The
results of these tests are given in Section 5.

The first of the approximation algorithms is Greedy Matching [1] shown in
Fig. 2. Greedy Matching repeatedly removes the currently heaviest edge e and
all of its adjacent edges from the input graph G = (V, E) until E is empty. In
each iteration e is added to the matching M which is returned as the soltution.
It is easy to see that Greedy Matching has a performance ratio of % [1]. If the
edges of G are sorted in a preprocessing step then the runtime is O(|E|log |V]).

Greedy Matching (G = (V, E),w : E — R})

1M:=0

2 while E # () do begin

3 let e be the heaviest edge in E

4 adde to M

5 remove e and all edges adjacent to e from E
6 end

7 return M

Fig. 2. The greedy algorithm for finding maximum weight matchings.

The second algorithm is the LAM algorithm by Preis [17]. A sketch of this
algorithm is shown in Fig. 3. Preis improved upon the simple greedy approach
by making use of the concept of a so called locally heaviest edge. This is defined
as an edge for which no other edge currently adjacent to it has larger weight.
Preis proved that the performance ratio of the algorithm based on this idea is %
He also showed how a locally heaviest edge in a graph can be found in amortized
constant time. This results in a total runtime of O(|E|) for the LAM algorithm.
See [17] for more details.

LAM (G = (V,E),w: E - R})

1M:=0

2 while E # () do begin

3 find a locally heaviest edge e € G

4 remove e and all edges adjacent to e from G
5 add e to M

6 end

7 return M

Fig. 3. The LAM approximation algorithm for finding maximum weight matchings.

The third algorithm is the Path Growing Algorithm (PGA) by Drake and
Hougardy [5] shown in Fig. 4. PGA constructs node disjoint paths in the input
graph G along heaviest edges by lengthening the path one node at a time. Each
time a node is added to a path it and all of its incident edges are removed from
the graph. This is repeated until the graph is empty. By alternately labelling the
edges of the paths 1 and 2 one obtains two matchings M; and Ms, the larger of
which is returned as the solution. The PGA algorithm has a performance ratio
of and a runtime of O(|E|) [5]. There are two simple improvements that are
proposed in [5] which can be applied to the PGA algorithm without changing its
runtime. The first is to compute a maximum weight matching along the paths
constructed by the algorithm and return this as the solution. The second is to
add any remaining edges in the graph to the solution until the solution becomes a
maximal matching. Neither of these improvements can guarantee a better worst
case behaviour for the algorithm, but in practice these improvements can make
a considerable difference. Therefore we test both versions of this algorithm. We
call the second version where both improvements are applied PGA'.

PathGrowingAlgorithm (G = (V, E),w : E — Ry)

1M;:=0, My :=0

2 while E # () do begin

3 choose € V of degree at least 1 arbitrarily

4 grow a path from z along heaviest edges added alternately to M; and M>
5 remove the path from G

6 end

7 return max(w(Mi), w(Myz))

Fig. 4. The Path Growing Algorithm for finding maximum weight matchings.

Finally we include a trivial heuristic called MM (for Maximal Matching)
shown in Fig. 5. This heuristic computes a maximal matching in a graph in
a greedy manner. For each vertex x a heaviest edge e which is incident to =
is added to the solution. All edges adjacent to e are removed. The runtime of
algorithm MM is O(|E|). It is easy to construct examples where the weighted
matching returned by MM can be arbitrarily bad. Yet it is interesting to see how
this heuristic behaves in practice. Therefore we have included it in this study.

4 Test Instances

We test our implementations of the above algorithms and local improvements
against four classes of data sets: random graphs, two dimensional grids, complete
graphs, and randomly twisted three dimensional grids. We do not include any
geometric instances in this study as none of the algorithms considered here was
designed to take advantage of any geometric properties.

MM (G = (V,E),w: E - Ry)

1M:=0

2 while E # () do begin

3 choose = € V arbitrarily

4 add to M the heaviest edge e incident to =
5 delete all edges adjacent to e from E

6 end

7 return M

Fig.5. The MM heuristic for finding maximum weight matchings.

Within each class instances with different parameters such as number of
vertices, edge densities etc. have been generated. For each specific parameter set
ten instances were randomly generated. Each of the algorithms was run on all
ten instances and then the average value of the runtime and percentage of the
deviation from an optimal solution was computed. We calculated the optimal
solutions to these instances using LEDA [13]. The size of the test instances was
restricted to graphs with at most 100,000 vertices and at most 500,000 edges
because for these instances the runtime of the exact algorithm was already several
hours.

The random graphs are based on the G, , model. This means that the graphs
have n vertices and the possibe (g) edges are chosen independently with prob-
ability p. We have chosen n = 10,000 and p in the range from 5/10000 to
100/10000 resulting in graphs from about 25,000 to 500,000 edges. The edge
weights are integer values chosen randomly from the range of 1 to 1000. The
graphs are labelled as ”R10000.5” through ”"R10000.100”.

The two dimensional grids are grids of dimension h x 1000 with A chosen in
the range 10 to 100. The edge weights for these grids have been assigned integer
values chosen randomly from the range between 0 and 999. These graphs are
labelled ”G10” through ”G100”.

The complete graphs are graphs on n vertices containing all possible (’2’)
edges. We have generated these graphs for n = 200 to 2000. The integer edge
weights have been randomly assigned from the range of 0 to 999. These graphs
are labelled "K200” through ”"K2000”.

For the randomly twisted three dimensional grid we have used the RMFGEN
graph generator introduced in [9] which was used to generate flow problems. The
graphs created consist of a square grid of dimension a called a frame. There are
b such frames F1, ..., F, which are all symmetric. There are a? edges connecting
the nodes of F; to a random permutation of the nodes of F;y; for 1 < i <
b. The edges within a frame all have weight 500. Those between frames have
weights randomly chosen between 1 and 1,000. The only changes we have made
to the RMFGEN generator besides making the graph undirected is concerning
the weights of the in-frame edges. We have assigned 500 to these edges instead
of a? x 1000 assigned by RMFGEN as the latter value did not seem to produce
instances that were as interesting for the weighted matching problem. We have

created three such tests on graphs of dimension a = 4, b = 1250; a = 27, b = 27;
and a = 70, b = 4. These three instances are labelled ”a”, ”b” and ”¢”.

5 Experimental Results

The following two subsections contain the experimental results we obtained on
the test instances described in Section 4. We have compared the five algorithms
described in Section 3 with and without additionally performing our local im-
provement operations which where applied as follows: For each of the seven local
improvement operations shown in Fig. 1 we have computed a maximal set of dis-
joint improvements in time O(m) as indicated in Theorem 2 and then augmented
along this set. We used the same ordering of the operations as shown in Fig. 1.

For each row in a table ten different test instances have been generated and
the average value has been taken. The variance was in all cases below 1%, in
many cases even below 0.5%. Due to space restrictions we list the results for
some part of the instances only.

5.1 Performance

Tables 1, 2, and 3 show the performances of the five algorithms on the different
classes of test sets. The first column of the tables contains the name of the test
instance as described in Section 4. The next two columns “n” and "m” denote
the number of vertices and edges of the graph. In case of the graphs ”R10000.x”
the number of edges is the average value of the ten test instances that were
computed for each row of the table. In all other cases the ten test instances have
the same number of edges, only the weight of the edges differs. The next five
columns show the difference in % of the solution found by the algorithms to the
optimum solution. The names of the algorithms are abbreviated as in Section 3.
Each row contains one value in bold which is the best value. The worst value is
given in gray.

Table 1. Performances of the five algorithms on weighted random graphs with different
densities. The values denote the difference from the optimum in %.

graph n m||Greedy| MM|LAM| PGA|PGA’
R10000.5 [{10000| 25009 8.36| 14.66| 8.38| 14.70| 7.38
R10000.10 ||10000| 49960|| 9.18| 12.59| 9.18| 12.56| 8.31
R10000.20 {|10000{100046 7.73| 9.40| 7.74| 9.52| 7.20
R10000.30 {[10000{150075 6.28| 7.55| 6.29| 7.55| 5.95
R10000.40 |10000/200011|| 5.46| 6.33| 5.50| 6.30| 5.08
R10000.60 {|10000(299933|| 4.19| 4.83| 4.23| 4.82| 3.99
R10000.80 {|10000{399994 3.52| 3.99| 3.54| 4.02| 3.39
R10000.100({10000|499882|| 3.05| 3.39| 3.08| 3.45| 2.95

As can be seen from Table 1 there is a great difference in the quality of the
PGA and PGA’ algorithm. The simple heuristics added to the PGA algorithm
drastically improve its performance in practice. This observation also holds for
all other test instances. On all random graph instances the PGA' algorithm per-
forms best. The LAM and Greedy algorithms have almost the same quality which
is slightly worse than that of PGA'. For all algorithms the performance improves
as the random graphs get denser. The only exception are the extremely sparse
graphs "R10000.5”. Such an effect also has been observed in the unweighted
case [12].

Table 2. Performances of the five algorithms on weighted grid like graphs. The values
denote the difference from the optimum in %.

graph n m||Greedy| MM|LAM| PGA|PGA’
G10 10000| 18990 5.87| 12.38| 5.87| 12.76| 4.51
G20 20000| 38980 5.97| 13.04| 5.98| 12.50| 4.53
G40 40000| 78960 5.99| 13.45| 5.99| 12.52| 4.60
G60 || 60000({118940 5.96| 13.68| 5.97| 12.49| 4.66
G80 80000{158920 5.99| 13.79] 5.99| 12.61| 4.67
G100 {|100000|198900 6.05| 13.82| 6.05| 12.60| 4.66

a 20000 49984 5.71| 10.22| 5.50(12.91| 5.59
b 19683| 56862 5.79| 8.79|5.25| 13.14| 6.14
c 19600| 53340 6.13| 8.00|4.93| 12.71| 6.22

Table 2 shows that the performances of all algorithms are independent of
the size of the test instances. For the two dimensional grids the PGA' algorithm
achieves the best solutions. Again the Gredy algorithm and the LAM algorithm
have almost the same quality which is significantly worse than that of PGA’. This
situation changes in the case of the randomly twisted three dimensional grids.
Here the LAM algorithm achieves the best result and the Greedy algorithm is
slightly better than PGA'.

Table 3. Performances of the five algorithms on weighted complete graphs. The values
denote the difference from the optimum in %.

graph n m|/Greedy| MM|LAM|PGA|PGA’
K200 || 200] 19900 1.75| 1.63| 1.77| 1.65| 1.55
K600 (| 600 179700 0.72| 0.82| 0.69| 0.75| 0.72
K1000{{1000| 499500{| 0.46| 0.55| 0.49| 0.53| 0.51
K1400({1400| 979300 0.39(0.38| 0.39] 0.37| 0.35
K2000({2000{1999000|| 0.27| 0.29| 0.29| 0.29| 0.29

On weighted complete graphs all five algorithms have almost the same qual-
ity. For large complete graphs the performances of all algorithms tends to one.

This is of course not surprising as in complete graphs an algorithm can barely
choose a 'wrong’ edge.

Tables 4, 5, and 6 show the performances of the five algorithms on the differ-
ent classes of test sets with local improvements applied. This means that we have
taken the solution returned by the algorithms and then computed a maximal set
of pairwise disjoint local improvements for each of the seven local improvements
shown in Fig. 1. The quality of all algorithms is drastically improved by the local
improvements. The deviation from the optimum solution is reduced by a factor
between 1.5 and 3. The performances of the Greedy algorithm and the LAM and
PGA’ algorithms are very similar after performing the local improvements.

Table 4. Performances of the five algorithms on weighted random graphs with different
densities with local improvements applied. The values denote the difference from the
optimum in %.

graph n m||Greedy| MM|LAM|PGA|PGA’
R10000.5 |{10000| 25009 3.15| 4.57| 3.15| 5.21| 3.07
R10000.10 {|10000| 49960 4.62| 5.52| 4.62| 6.14| 4.53
R10000.20 {[10000{100046 4.39| 4.90| 4.39| 5.42| 4.44
R10000.30 {|10000{150075 3.75| 4.18| 3.76| 4.56| 3.87
R10000.40 ([10000|200011 3.22| 3.60| 3.26| 3.84| 3.37
R10000.60 ||10000299933|| 2.53| 2.84| 2.55| 3.00| 2.75
R10000.80 {|10000|399994 2.11| 2.38| 2.15| 2.52| 2.28
R10000.100{{10000{499882 1.85| 2.08| 1.87| 2.15 2.00

Table 5. Performances of the five algorithms on weighted grid like graphs with local
improvements applied. The values denote the difference from the optimum in %.

graph n m||Greedy| MM|LAM|PGA|PGA’
G10 10000| 18990 2.02| 5.58| 2.02| 4.86| 1.79
G20 20000 38980 2.11| 6.06| 2.11| 4.94| 1.87
G40 40000{ 78960 2.11| 6.31] 2.11} 5.01| 1.91
G60 60000/118940 2.12| 6.47| 2.12{ 5.01] 1.94
G80 80000{158920 2.11| 6.57| 2.11| 5.05| 1.94
G100 |{100000{198900 2.16| 6.56| 2.16| 5.05| 1.93

a 20000| 49984 2.52| 6.00| 2.49| 6.42| 3.00
b 19683| 56862 2.81| 6.43| 2.61| 7.31| 3.48
c 19600| 53340 2.99| 6.01| 2.62| 7.54| 3.77

We also tested how much improvement can be achieved by applying the local
improvement operations as long as they are possible. Usually computing three
rounds of maximal sets of these local improvements led to a matching satisfying
the conditions of Theorem 1. In some cases up to 5 iterations were necessary.

Table 6. Performances of the five algorithms on weighted complete graphs with local
improvements applied. The values denote the difference from the optimum in %.

graph n m||Greedy| MM|LAM|PGA|PGA’
K200 || 200{ 19900 0.81| 0.98| 0.78| 0.92| 0.94
K600 || 600 179700 0.38| 0.48| 0.35| 0.45| 0.42
K1000|{1000| 499500|| 0.23| 0.32| 0.26| 0.31| 0.31
K1400((1400| 979300|| 0.19| 0.22| 0.19] 0.21| 0.20
K2000({2000{1999000|| 0.14]| 0.17| 0.15] 0.18| 0.18

Using this approach the deviation from an optimum solution can be reduced by
additional 30% on average. The runtime increases by a factor of 2 to 3.

5.2 Runtimes

We compared the runtimes of all five algorithms on all instances against each
other and also compared it to LEDA’s exact algorithm. Table 7 shows the rel-
ative runtimes of the algorithms LAM, PGA and PGA’ compared to the MM
algorithm which is clearly the fastest. As can be seen there is no big difference
between the runtimes of algorith PGA and PGA’. The PGA’ algorithm is about
a factor 2, the LAM algorithm about a factor 3 slower than the MM algorithm.
The factor by which the local improvement operations are slower than the MM
algorithm is about 4. This means that the LAM and PGA’ algorithm with local
improvements applied are about a factor of 7 and 6 slower than MM.

Table 7. Relative runtimes expressed as a range of the factor within which the runtime
of the algorithm is slower than the MM algorithm.

MM LAM PGA PGA’ |local improvements|
1.00 | 2.68 - 3.55 | 1.58 - 2.06 | 1.88 - 2.10 3.45 - 5.12 |

Table 8 shows the relative runtimes of the Greedy algorithm and LEDA’s
exact algorithm compared to the MM algorithm. The Greedy algorithm has a
worst case runtime of O(mlogm). The algorithm implemented in LEDA has a
runtime of O(mnlogn). Therefore one should expect that the Greedy algorithm
is within a factor of logm and LEDA’s algorithm is within a factor of nlogn of
the runtime of the MM algorithm. This behaviour can be roughly confirmed by
the data.

To give an impression of the absolute running times we mention these for
algorithm MM on some large graphs. It took 0.16 seconds on R10000.100, 0.06

seconds on G100 and 0.62 seconds on K2000. All times were measured on a
1.3GHz PC.

Table 8. Relative runtimes expressed as a factor by which the runtime of the Greedy
algorithm and LEDA’s exact algorithm is slower than the MM algorithm.

graph n m||Greedy| MM |LEDA| graph n m| Greedy|MM| LEDA
a 20000| 49984 7.28| 1.0| 26119 G10 100001 18990 6.64| 1.0/ 14873
b 19683| 56862 6.98| 1.0(27181| G20 20000f 38980 9.19| 1.0| 27667
C 19600| 53340 5.21| 1.0| 28944| G40 40000{ 78960| 11.64| 1.0f 53737
R10000.5 ({10000 25009 5.71| 1.0| 11156 G60 60000| 118940|| 13.11| 1.0 79321
R10000.10 |{10000| 49960 8.15| 1.0 8255| G80 80000 158920| 14.10| 1.0| 104473
R10000.20 {|10000{100046|| 10.55| 1.0/ 6004 G100 [|100000| 198900| 15.13| 1.0| 129857
R10000.30 {|10000{150075|| 12.11| 1.0 5096 K200 200{ 19900(11.59| 1.0 266
R10000.40 ||10000/200011|| 13.44| 1.0] 4660 K600 600| 179700(20.67| 1.0 514
R10000.60 ([{10000/299933|| 15.05| 1.0{ 4286| K1000|| 1000 499500(23.54| 1.0 775
R10000.80 {|10000{399994| 15.68| 1.0/ 3949| K1400| 1400| 979300|| 22.05| 1.0 1006
R10000.100(|10000{499882|| 15.99| 1.0| 3832 K2000|| 2000/1999000|f 18.65| 1.0 1402

6 Conclusion

We have suggested a set of seven local improvement operations for weighted
matchings in graphs which guarantee a performance ratio of % A maximal set
of such operations can be found in linear time. We compared five different ap-
proximation algorithms for the weighted matching problem. The algorithms MM,
LAM, PGA, and PGA' have linear runtime while the Greedy algorithm has run-
time O(mlogn). The PGA' algorithm is significantly better than PGA. The
computation of a maximum weight matching on the paths generated by PGA
can easily be incorporated in the generation of these paths. Therefore the PGA’
algorithm requires almost no additional expense in coding or runtime and is
definitely the better choice.

Only in the case of complete graphs are there a few instances where the
Greedy algorithm achieved the highest quality. But in these cases the LAM and
PGA' algorithm are very close to these results. Therefore the higher runtime
required by the Greedy algorithm does not justify its application. The LAM or
PGA’ algorithm is a better choice. They usually should guarantee a solution
within 5% of the optimum.

The local improvement operations introduced in this paper yield better per-
formances for all five algorithms. On average the deviation from the optimum
solution is reduced by a factor of 2. This improvement is achieved by more than
doubling the runtimes of the linear time algorithms. Still these runtimes are dra-
matically smaller than those required by exact algorithms. Therefore the linear
time LAM and PGA' algorithms are definitely the best choice for applications
where runtimes are of crucial importance. If better quality is needed our local im-
provement operations should be applied which increase the runtime of these two
algorithms by roughly a factor of 2-3 only. By applying our local improvement
operations as long as they are possible the distance from an optimal solution
can be decreased by additional 30% while the runtime grows by a factor of 4.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Avis, A Survey of Heuristics for the Weighted Matching Problem, Networks,
Vol. 13 (1983), 475-493

R. Beier, J.F. Sibeyn, A Powerful Heuristic for Telephone Gossiping, Proc. 7th
Colloquium on Structural Information and Communication Complexity, Carleton
Scientific (2000), 17-35

B. Chandra, M.M. Halldérsson, Greedy local improvement and weighted set pack-
ing approximation, Journal of Algorithms, 39 (2000), 223-240

W. Cook, A. Rohe, Computing minimum-weight perfect matchings, INFORMS
Journal on Computing 11 (1999), 138-148

D.E. Drake, S. Hougardy, A Simple Approximation Algorithm for the Weighted
Matching Problem, Information Processing Letters 85 (2003), 211-213

C. Frommel, A. Goede, C. Gropl, S. Hougardy, T. Nierhoff, R. Preissner,
M. Thimm, Accelerating screening of 3D protein data with a graph theoretical
approach, Humboldt-Universitit zu Berlin, September 2002

H.N. Gabow, Data Structures for Weighted Matching and Nearest Common An-
cestors with Linking, SODA 1990, 434-443

H.N. Gabow, R.E. Tarjan, Faster Scaling Algorithms for General Graph-Matching
Problems, JACM 38 (1991), 815-853

G. Goldfarb, M.D. Grigoriadis, A Computational Comparison of the Dinic and
Network Simplex Methods for Maximum Flow, Annals of Operations Research 13
(1988), 83-123

M.M. Halldérsson, Approximating Discrete Collections via Local Improvements,
In Proc. of Sixth SIAM/ACM Symposium on Discrete Algorithms, San Francisco
(1995), 160-169

J.E. Hopcroft, R.M. Karp, An n®/? algorithm for maximum matchings in bipartite
graphs, SIAM Journal on Computing 2 (1973), 225-231

J. Magun, Greedy Matching Algorithms, an Experimental Study, ACM Journal of
Experimental Algorithms, Volume 3, Article 6, 1998

K. Mehlhorn, S. Ndher, LEDA: A Platform for Combinatorial and Geometric Com-
puting, ACM Press (1995), New York, NY

S. Micali and V.V. Vazirani, An O(v/V E) Algorithm for Finding Maximum Match-
ing in General Graphs, Proc. 21st Annual IEEE Symposium on Foundations of
Computer Science (1980), 17-27

R.H. Mohring, M. Miiller-Hannemann, Complexity and Modeling Aspects of Mesh
Refinement into Quadrilaterals, Algorithmica 26 (2000), 148-171

B. Monien , R. Preis , R. Diekmann, Quality Matching and Local Improvement
for Multilevel Graph-Partitioning, Parallel Computing, 26(12), 2000, 1609-1634
R. Preis, Linear Time 1/2-Approximation Algorithm for Maximum Weighted
Matching in General Graphs, Symposium on Theoretical Aspects of Computer
Science, STACS 99, C. Meinel, S. Tison (eds.), Springer, LNCS 1563, 1999, 259—
269

V.V. Vazirani, A Theory of Alternating Paths and Blossoms for Proving Correct-
ness of the O(v/VE) Maximum Matching Algorithm, Combinatorica 14:1 (1994),
71-109

