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Abstract

The huge number ofelementary flux modes(EFM) in genome-scale metabolic networks makes
analysis based on elementary flux modes intrinsically difficult. However, it has been shown that the
elementary flux modes with optimal yield often contain highly redundant information. The set of
optimal-yield elementary flux modes can be compressed usingmodules. Up to now, this compression
was only possible by first enumerating the whole set of all optimal-yield elementary flux modes.

We present a direct method for computing modules of the thermodynamically constrained opti-
mal flux space of a metabolic network. This method can be used to decompose the set of optimal-
yield elementary flux modes in a modular way and to speed up their computation. In addition, it
provides a new form of coupling information that is not obtained by classical flux coupling analysis.
We illustrate our approach on a set of model organisms.
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1 Introduction

Constraint-based methods have provided a very successful means to analyze genome-scale metabolic
network reconstructions (Papinet al., 2004; Priceet al., 2004). Instead of predicting explicit flux distri-
butions, constraints are used to characterize biologically feasible phenomena. For metabolic networks,
the most typical constraint is the steady-state assumptionSv= 0, whereS denotes the stoichiometric
matrix andv the flux vector. It is based on the assumption that no internal metabolite is allowed to ac-
cumulate or degenerate. Additional constraints may be thermodynamic irreversibilities vIrrev ≥ 0 (here
Irrev denotes the set of irreversible reactions), bounds on nutrient uptake, etc.

To understand thefeasible flux space, i.e., the set of all flux vectors satisfying the given con-
straints, various methods have been proposed.Elementary modes(Schuster and Hilgetag, 1994;
Schusteret al., 2000), extreme pathways(Schillinget al., 2000), andminimal metabolic behaviors
(Larhlimi and Bockmayr, 2009) have been developed to describe all pathways of the network. Un-
fortunately, the number of elementary flux modes, extreme pathways or minimal metabolic behaviors
usually grows exponentially with the size of the network. Therefore, it hasbeen impossible so far to per-
form this kind of analysis for large genome-scale models. Also, even small networks pose the problem
that so many pathways are generated that understandable results can only be obtained using additional
post-processing steps. Hence, other methods have been developed that just study specific characteris-
tics of the network.Flux variability analysis(FVA) (Burgardet al., 2001; Mahadevan and Schilling,
2003) is used to study the range of flux rates in which reactions can operate. Flux coupling analysis
(FCA) (Burgardet al., 2004; Larhlimiet al., 2012) and correlation analysis (Papin and Palsson, 2004;
Sarıyaret al., 2006) study dependencies between fluxes through pairs of reactions.
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Another possibility is to reduce the feasible flux space by an optimality criterion.Optimization-
based methods likeflux balance analysis(FBA) (Varma and Palsson, 1994; Mahadevan and Schilling,
2003; Priceet al., 2004; Terzeret al., 2009; Durotet al., 2009; Schusteret al., 2007; Teusinket al.,
2009; Orthet al., 2010) formulate queries on the model and can give quantitative results. Atypical
objective function asks for the maximal possible biomass production yield (Feist and Palsson, 2010),
i.e., we consider the optimisation problem

opt := max{vBiomass: Sv= 0, ℓ≤ v≤ u} ,

whereℓ and u denote lower and upper flux bounds. This can efficiently be solved with linear pro-
gramming. A deeper analysis, however, requires the study of all the flux vectors realizing the optimal
objective value. Usually, we do not get a single optimal flux vector (Khannaphoet al., 2008), but again
a set of optimal solutions, which we call theoptimal flux space:

Popt := {v : Sv= 0, ℓ≤ v≤ u, vBiomass= opt}.

This space is mathematically very similar to the feasible flux space. Hence, adaptations of the above
methods can also be used to study the optimal flux space.

Kelk et al.(2012) analyzed the optimal flux space using the theory of polyhedra (seee.g. Gr̈unbaum
(2003)). After removing linealities and rays (which are caused by thermodynamically infeasible cycles),
they obtain a polytope. They observe that this polytope can be decomposedinto modules. Their decom-
position has the nice property that the modules can be analyzed independently and together they provide
a comprehensive understanding of the whole polytope. In other words,the modules allow a losslessly
compressed description of the extreme points of the polytope of optimal fluxes.

The contributions of this paper are the following:

• We introduce a mathematical framework for studying such modules. In particular, we give a
simple mathematical definition of a module. We prove that it is sufficient to analyzethe modules
independently from each other to understand the optimal flux space of the whole network.

• We derive an alternative method to determine these modules, which does not require the removal
of linealities and rays. An important difference to (Kelket al., 2012) is that we do not need to
compute all optimal-yield elementary flux modes in our method. Since the number of elementary
flux modes grows exponentially with the size of the network, this result is major algorithmic
improvement.

• We present a novel analysis method for metabolic networks, which we callblocking graphs. These
graphs contain information such as “if flux through reaction r is fixed to its maximal value, then
reaction s cannot carry any flux”. We show that this gives useful additional information that
complements standard flux coupling analysis.

• We show how the modules can be used to compute the set of optimal-yield elementary flux modes.

The paper is organised as follows. We start in Sect. 2 with an intuitive description of our method. In
Sect. 3, we develop the necessary mathematical theory. The corresponding computational methods are
derived and presented in Sect. 4. In Sect. 5 we apply these methods on different genome-scale networks
and discuss the results. Finally, in Sect. 5.2, we compare our method with the method of Kelket al.
(2012).
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2 Approach

When studying the minimal and maximal possible flux through reactions in the optimalflux space, one
usually observes that many reactions do not show any flux variability at all.Hence, these reactions must
be part of any optimal flux vector. In the following, we are interested in those reactions that show flux
variability in the optimal flux space. Here, the organism has abilities to adjust to environment changes
or knockouts without changing its biomass production rate.

As an example, let us consider the network shown in Fig. 1. Assume that the restriction to opti-
mal fluxes enforces a flux of 1 through reactionr1. As one can easily see, this implies that reactions
r13, r14, r15 also have a fixed flux. We now want to find out how the remaining (unfixed)reactions group
into modules.
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Figure 1: All stoichiometric coefficients in this example are 1. Assume flux through reactionr1 is
fixed to 1. Then flux through reactions (r1, r13, r14, r15) is fixed and we get the three modules (r2, r3, r4),
(r5, r6, r7, r8, r9), and (r10, r11, r12).

Informally speaking, we consider a set of reactions to be amoduleif they behave together like one
reaction with a fixed flux. This means that the rate (or interface flux) of metabolites that are produced
and consumed by the reactions in the module must be constant for all optimal flux vectors. For example
the reactionsr10, r11, r12 form a module, since those reactions together always take up 1 of metabolite
m8 and always produce 1 ofm10. The interface flux of this module is(0,0,0,0,0,0,0,−1,0,1).

The algorithm for finding modules follows the following idea: Suppose we fix flux through reaction
r11 to its maximal value (in this casevr11 = 1). It follows that there is no flux possible anymore through
reactionsr10, r12. The other reactions, however, are not affected by this choice at all. This is a hint that
reactionsr10, r11, r12 belong to the same module, while the other reactions are independent.

However, this approach requires that for each reaction we must be ableto fix the flux to its maxi-
mal value. This is not possible if we just do standard flux variability analysis (FVA). Let us consider
reactionr9. Since this reaction is part of an internal cycle (r9, r6, r5, r8), we can send unbounded flux
throughr9. Hence, we cannot set flux through this reaction to its maximal flux rate and observe the
effects. To cope with this problem, we usethermodynamically constrained flux variability analysis
(tFVA) (Schellenbergeret al., 2011; Müller and Bockmayr, 2013). Since thermodynamic constraints
prohibit fluxes along internal cycles, these reactions obtain a finite maximal flux rate. We can now use
this flux rate to perform our analysis.
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3 Mathematical Theory

In this section, we develop the mathematical theory underlying our approach. The corresponding analy-
sis methods will be described in Sect. 4.

3.1 Preliminaries

A metabolic networkN = (M,R,I,S,b, ℓ,u) is given by a finite set ofmetabolitesM, a finite set of
reactionsR, a subsetI ⊆ R of internal reactions, thestoichiometric matrix S∈ R

M×R, and vectors
b ∈ R

M, ℓ,u ∈ R
R
±∞, whereR±∞ := R∪{−∞,+∞}. Reactions inE := R\I areexchange reactions

that can supply the network with inflow or outflow from the environment. Asteady-state fluxis a vector
v ∈ R

R that satisfiesSv= 0. More generally, we consider flux vectorsv ∈ R
R satisfyingSv= b, for

some right-hand sideb∈R
M. In addition we will uselowerandupper boundsℓ,u∈R

R
±∞, for which we

requireℓ ≤ v≤ u. By abuse of notation,vr ≤ ∞ resp.−∞ ≤ vr means thatvr is unbounded from above
resp. below. We use subscripts to index flux through reactions, i.e.,vr denotes flux through reactionr.

We will also be interested in the flux through a set of reactionsA⊆R. Hence, we writevA to denote
the components ofv corresponding to the reactions inA and we useSA to denote the stoichiometric
matrix that only contains the columns corresponding to the reactions inA.

A set of vectorsP⊆ R
R is called aflux space. ForA⊆R, we define the projection prA(P) := {vA :

v ∈ P} ⊆ R
A. For disjoint setsA,B ⊆ R andX ⊆ R

A,Y ⊆ R
B we defineX ×Y := {v ∈ R

A∪̇B : vA ∈
X,vB ∈Y}. Here,∪̇ denotes the union of disjoint sets. Finally, we use⊆ to denote subsets with equality,
and⊂ for subsets without equality.

3.2 Thermodynamically feasible fluxes

Following Beardet al. (2004), we introduce the notion of a thermodynamically feasible flux.

Definition 1 (Thermodynamically Feasible Flux) A flux vectorv∈R
R is thermodynamically feasible

(thermo. feasible) if there exists a vectorµ ∈ R
M s.t.

µSrvr < 0 orvr = 0, for every internal reactionr ∈ I.

Note that other authors, e.g. Fleminget al. (2012), use a slightly stronger definition wherevr = 0 is
not always allowed. As shown in (Beardet al., 2004; Nooret al., 2012; Müller, 2012), Def. 1 can be
equivalently restated as follows:

Theorem 1 (Looplaw) A flux vector v∈R
R is thermodynamically feasible if and only if there exists no

w∈ R
I \{0} with

SIw= 0

wr ≥ 0 ∀r ∈ I with vr ≥ 0,

wr ≤ 0 ∀r ∈ I with vr ≤ 0.

From this theorem, we observe the importance of steady-state fluxes that use only internal reactions.

Definition 2 (Internal Cycle) We callw∈ R
I \{0} an internal cycleif it satisfies

SIw= 0, ℓI ≤ w≤ uI .

Theset of reactions contained in internal cyclesis defined as

C := {r ∈ I : wr 6= 0, for some internal cyclew}.
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We say that an internal cyclew is contained in a flux vector v∈ R
R if

sign(w)⊆ sign(v),

where for vectorsx∈ R
A and setsX+,X−,Y+,Y−, we define

sign(x) := ({r ∈ A : xr > 0},{r ∈ A : xr < 0}),

(X+,X−)⊆ (Y+,Y−) :⇔ X+ ⊆Y+∧X− ⊆Y−.

Using this notion, we can say that a flux vector is thermodynamically feasible if and only if it does not
contain an internal cycle.

3.3 Decomposition of Flux Spaces into Modules

The main goal of this paper is the decomposition of flux spaces into modules. We first propose a
definition of module for general flux spacesP⊆ R

R.

Definition 3 (Module) A set of reactionsA⊆R is called amodule w.r.t. a flux space P⊆R
R, or shortly

A is called aP-module, if there exists a vectord ∈ R
M with SAvA = d for all flux vectorsv ∈ P. The

vectord is called theright-hand sideof the moduleA. Sinced operates as the interface of the module
to the rest of the network, we refer tod also as theinterface fluxof A. 2

We observe that if and only ifP 6= /0 then the interface flux of eachP-module is well defined. Hence, all
of the following theorems will requireP 6= /0. If P⊆ {v∈R

R : Sv= b}, thenR is itself aP-module. We
also observe that, given two disjointP-modulesA andB, their union is again aP-module:

Lemma 1 Let P⊆R
R be an arbitrary flux space and let A and B be disjoint P-modules with right-hand

sides dA,dB respectively. Then Ȧ∪B is also a P-module with right-hand side dA+dB. 2

PROOF For everyv∈ P, we haveSAvA = dA andSBvB = dB, which impliesSA∪̇BvA∪̇B = SAvA+SBvB =
dA+dB. Hence,A∪̇B is aP-module with right-hand sidedA+dB. �

We now focus on flux spaces consisting of steady-state fluxes and the more restricted flux spaces, where
the fluxes are also thermodynamically feasible.

Definition 4 (Thermodynamically constrained flux space)Given a metabolic network
N = (M,R,I,S,b, ℓ,u), thethermodynamically constrained flux space Tis defined as

T := {v∈ R
R : Sv= b, ℓ≤ v≤ u, v thermo. feasible}. (1)

If T 6= /0, we similarly define forT-modulesA⊆R with right-hand sided

TA :=
{

v∈ R
A : SAv= d, ℓA ≤ v≤ uA,v thermo. feasible

}

, (2)

and in addition

T̃A := prA(T). (3)

Definition 5 (Steady-state flux space)Given a metabolic networkN = (M,R,I,S,b, ℓ,u), the
steady-state flux space Fis defined as

F := {v∈ R
R : Sv= b, ℓ≤ v≤ u}. (4)

ForF-modules (ifF 6= /0) andT-modules (ifT 6= /0) A⊆R with right-hand sided we define

FA := {v∈ R
A : SAv= d, ℓA ≤ v≤ uA}. (5)
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Observe thatFA is also well defined ifA is both aF-module and aT-module (if T 6= /0), because
T ⊆ F and thus the right-hand sides must coincide. We will later see (Application of Cor. 1 withI = /0)
that for F-modulesA we haveFA = prA(F). While T̃A ⊆ TA holds for anyT-moduleA, we do not
always havẽTA = TA (see however Cor. 1 and the supplementary material for an example).

In what follows, we will useP to denote general flux spaces, whileT andF always denote the flux
spaces defined above.

Before we study the decomposition of the flux spaceT, we first investigate the decomposition of the
flux space of a union of twoT-modules.

Lemma 2 Assume T6= /0. Then for any disjoint T -modules A and B we have

T̃A∪̇B ⊆ T̃A×TB ⊆ TA×TB ⊆ FA∪̇B.

If ℓC ≤ 0≤ uC , thenT̃A∪̇B = TA×TB. 2

PROOF By the definition of module, we havẽTA∪̇B ⊆ T̃A× T̃B andT̃A ⊆ TA, T̃B ⊆ TB. Hence, we get
T̃A∪̇B ⊆ T̃A× T̃B ⊆ T̃A×TB ⊆ TA×TB. Let dA,dB denote the right-hand sides of theT-modulesA and
B respectively. By Lemma 1, it follows thatA∪̇B is aT-module with right-hand sidedA+dB.

Let x∈ TA,y∈ TB be fixed but arbitrary. Definev′ ∈R
A∪̇B by v′A := x andv′B := y. SinceA andB are

T-modules, we haveSA∪̇Bv′ = dA+dB. SinceℓA ≤ x ≤ uA andℓB ≤ y≤ uB, it follows thatv′ ∈ FA∪̇B.
Hence,TA×TB ⊆ FA∪̇B.

Now we continue with the caseℓC ≤ 0 anduC ≥ 0. SinceT 6= /0, there existsw′ ∈ T. Definew∈R
R

by wA∪̇B := v′ andwR\(A∪̇B) := w′
R\(A∪̇B). SinceA∪̇B is aT-module, it follows thatw∈ F , as defined

in (4). Letv be the flux vector obtained fromw by subtracting all contained internal cycles using Alg. 1
from Müller and Bockmayr (2013). SinceℓC ≤ 0≤ uC , it follows by Thm. 2 in M̈uller and Bockmayr
(2013) thatv∈ T and sign(w−v)⊆ sign(w).

SinceA is aT-module, we haveSAvA = dA. FromSAx−SAvA = dA−dA = 0, we getSA(x−vA) = 0.
If x−vA 6= 0, it follows thatx would have contained an internal cycle (note that sign(x−vA)⊆ sign(x)).
This is a contradiction and hence,vA = x. By the same argument, we can showvB = y. Sincev∈ T, we
obtainv′ = vA∪̇B ∈ T̃A∪̇B and since we can do this for everyx∈ TA andy∈ TB, we getT̃A∪̇B ⊇ TA×TB.
Therefore,T̃A∪̇B = TA×TB. �

Corollary 1 If T 6= /0 with ℓC ≤ 0≤ uC and A is a T-module, then TA = T̃A = prA(T). 2

PROOF Let B :=R\A. SinceA is aT-module andT ⊆ {v∈ R
R : Sv= b}, B is aT-module, too. With

Lemma 2, it followsT̃A∪B = T = TA×TB and by projectionTA = prA(T) = T̃A. �

Using Lemma 2, we can now show by induction that from a partition of the reaction setR into a set
of T-modules, we can get a decomposition of the thermodynamically constrained flux spaceT.

Theorem 2 (Product Space from Modules)Assume T6= /0. If X = {A1, . . . ,An} is a partition ofR
into T-modules, then

T ⊆ ∏
A∈X

TA ⊆ F.

If ℓC ≤ 0≤ uC , then
T = ∏

A∈X

TA.
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PROOF DefineB1 := A1 andBi := Ai ∪Bi−1, i = 2, . . . ,n. It follows from the definition of module and
Lemma 1 thatAi andBi , i = 1, . . . ,n, areT-modules. By Lemma 2 it follows that̃TB j ⊆ T̃B j−1 ×TA j ,
for all j = 2, . . . ,n. We already observed that̃TB1 ⊆ TB1 = TA1, hence it follows by induction that
T̃B j ⊆ ∏ j

i=1TAi . SinceBn =R we obtain thatT ⊆ ∏n
i=1TAi .

To prove∏n
i=1TAi ⊆ F , let vi ∈ TAi be arbitrary but fixed. SinceT 6= /0, it follows that there exists

a w ∈ T. Let di denote the right-hand side ofT-moduleAi . We getSAi wAi = di , for all i = 1, . . . ,n,
which impliesb= Sw= ∑n

i=1SAi wAi = ∑n
i=1di . Now definev∈ R

R with vAi := vi , for all i = 1, . . . ,n.
It follows thatSv= ∑n

i=1SAi v
i = ∑n

i=1di = b. Clearly,v also satisfiesℓ≤ v≤ u. We concludev∈ F and
thus∏n

i=1TAi ⊆ F .
If in addition, we haveℓC ≤ 0≤ uC , then by Lemma 2 and Cor. 1 we also get the equalitiesT̃B j =

TB j = TB j−1 ×TA j and hence,T = ∏n
i=1TAi . �

3.4 Unique Decomposition

Next we study the existence and uniqueness of the decomposition of a network into minimal modules.

Definition 6 (Minimal Module) Let P⊆ R
R be a flux space. AP-moduleA⊆ R is minimal if there

exists noP-moduleB s.t. B⊂ A. 2

The following result shows that we can always decompose a network into minimal modules.

Proposition 1 (Existence)Let P be a flux space. Every P-module A can be partitioned into minimal
P-modules, i.e., there exist minimal P-modules A1, . . . ,Ak s.t. A= A1 ∪̇A2 ∪̇ . . . ∪̇Ak. 2

PROOF Assume the proposition is false. Then there exists a non-minimalP-moduleA⊂R that cannot
be partitioned into smallerP-modules and a minimalP-moduleB⊂ A. By definition there exista,b∈
R
M with SAvA = a andSBvB = b. It follows a−b= SAvA−SBvB = SA\BvA\B+SBvB−SBvB = SA\BvA\B,

which implies thatC := A\B is also aP-module. ThusC∪̇B is a partition ofA, which contradicts the
assumption. �

Note that this proposition holds for arbitrary flux spacesP. The following lemma holds for every flux
space that satisfies the steady-state assumption. In particular, it holds forthe thermodynamically con-
strained flux spaceT.

Lemma 3 (Modules form Product Space)Let P⊆ {v∈ R
R : Sv= b}. Assume P= ∏n

i=1Pi with Pi ⊆
R

Ai , where Ai ⊆ R. Then for every i= 1, . . . ,n, there exists a vector bi ∈ R
M s.t. SAi vAi = bi , for all

v∈ P, i.e., Ai is a P-module. 2

PROOF Assume the lemma is false. Then there existi ∈ {1, . . . ,n} andv,w ∈ P s.t. SAi vAi 6= SAi wAi .
Define w′ ∈ R

R by w′
Ai

= wAi ,w
′
R\Ai

= vR\Ai
. SinceP = ∏n

i=1Ai , it follows that w′ ∈ P. Since
SAi wAi 6= SAi vAi , we getSw′ = SAi wAi +SR\Ai

vR\Ai
= SAi wAi + b−SAi vAi 6= b. Thusw′ 6∈ P, which is

a contradiction. �

To prove uniqueness of the decomposition into minimalT-modules (Thm. 3), we use Thm. 2 from
the previous section. Given a partition of the reaction setR into T-modulesA, the thermodynamically
constrained flux spaceT can be written as the product of the flux spacesTA. Assuming that there exist
two different partitions with minimalT-modules, we show that we can writeT as a product of smaller
factors (Lemma. 4). We then go in the reverse direction and show with Lemma 3 that from this we can
obtain smallerT-modules, contradicting the minimality.

Lemma 4 Let X, I be sets. Let P⊆ XI . Let P= ∏n
i=1Ai and P= ∏m

i=1Bi , with Ai ⊆ Xai and Bi ⊆ Xbi ,
where ai ⊆ I , i = 1, . . . ,n, and bi ⊆ I , i = 1, . . . ,m. Then P= ∏n

i=1 ∏m
j=1Ci j with Ci j = prai∩b j

P. 2
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PROOF For every j = 1, . . . ,m holdsB j = prb j
(P) = prb j

(∏n
i=1Ai) = ∏n

i=1prai∩b j
Ai = ∏n

i=1Ci j . Since
P= ∏m

j=1B j = ∏m
j=1 ∏n

i=1Ci j = ∏n
i=1 ∏m

j=1Ci j , the claim follows. �

Theorem 3 (Uniqueness)Assume T6= /0, whereℓC ≤ 0 ≤ uC . Then the partition ofR into minimal
T -modules exists and is unique. 2

PROOF SinceR is aT-module, it follows by Prop. 1 that there always exists a partition into minimal
T-modules. Assume there exist two partitionsX 6= Y of R into minimal T-modules. By Thm. 2 and
Cor. 1, we can write

∏
x∈X

prx(T) = ∏
x∈X

Tx = T = ∏
y∈Y

Ty = ∏
y∈Y

pry(T).

By Lemma 4 it follows that there exists a partitionZ of R which is finer thanX ,Y, i.e., everyz∈ Z is
contained in somex∈ X andy∈ Y. The partitionZ also satisfies

T = ∏
z∈Z

prz(T).

It follows by Lemma 3 that everyz∈ Z is also aT-module. SinceX 6= Y, there exists at least one
T-module ofZ that is strictly contained in aT-module ofX . This contradicts the minimality of the
T-modules inX . �

3.5 Elementary Flux Modes

An important consequence of the decomposition intoT-modules is that we can describe the set of el-
ementary flux modes in a more compact form. This result follows basically directly from the product
form of the flux space (Thm. 2). We define the set ofelementary flux modes of a flux space Pas the flux
modes with minimal sign-support:

EFM(P) := {v∈ P : sign(w) 6⊂ sign(v) ∀w∈ P\{0}}.

From this, we can derive the following relationships between the elementary flux modes ofFA andTA:

Proposition 2 Assume T6= /0. Let A be a T-module with right-hand side d6= 0. Let

P := {(v,x) ∈ R
A×R

+ : SAv−dx= 0, ℓA ≤ v≤ uA}.

Then

a) EFM(TA)⊆ EFM(FA)

b) {v∈ R
A : (v,1) ∈ EFM(P)} ⊆ EFM(TA)

c) If ℓA∩C ≤ 0≤ uA∩C , thenEFM(TA) = EFM(FA).

d) If ℓr ∈ {−∞,0} and ur ∈ {0,∞} for all r ∈ A, then{v∈ R
A : (v,1) ∈ EFM(P)}= EFM(TA). 2

PROOF We show all statements separately:

a) Letv∈ EFM(TA). Assumev 6∈ EFM(FA). SinceTA ⊆ FA, it follows that there existsw∈ FA with
sign(w)⊂ sign(v) andw is thermodynamically infeasible. By Thm. 1, there exists an internal cycle
c∈ R

A with sign(c)⊆ sign(w). It follows that sign(c)⊆ sign(v), contradictingv∈ TA.
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b) Let (v,1) ∈ EFM(P). Assumev 6∈ EFM(TA). SinceTA ⊆ prA(P), it follows thatv 6∈ TA. By Thm. 1,
there exists an internal cyclec with sign(c) ⊆ sign(v). It follows that sign(c) ⊂ sign({v,1}). This
contradicts(v,1) ∈ EFM(P).

c) AssumeℓA∩C ≤ 0 ≤ uA∩C , and suppose there existsv ∈ EFM(FA) \EFM(TA). We conclude that
v 6∈ TA, hencev contains an internal cyclec. SinceℓA∩C ≤ 0 ≤ uA∩C , we can subtract all internal
cycles using Alg. 1 from M̈uller and Bockmayr (2013). By Thm. 2 in M̈uller and Bockmayr (2013),
we obtainv′ ∈ FA with sign(v′)⊂ sign(v), contradictingv∈ EFM(FA).

Thus, it follows that EFM(FA)⊆ EFM(TA). Together with a) we get that EFM(FA) = EFM(TA).

d) We will now consider the case whenℓr ∈ {−∞,0} andur ∈ {0,∞} for all r ∈ A. Assume there exists
v∈ EFM(TA) with (v,1) 6∈ EFM(P). Since(v,1) ∈ P, it follows that(v,1) is not minimal. Hence,
there exists a(w,x) ∈ P with sign(w,x)⊆ sign(v,1).

If x> 0 we scale(w,x) to (w′,1). Since the bounds are only 0 or infinity, the flux bounds will also
be satisfied byw′. It follows thatw′ ∈ TA. Since sign(w′) ⊂ sign(v), this is a contradiction to the
minimality of v. Therefore, we only need to consider the case wherex= 0.

Let v′ = v−αw, whereα is chosen as large as possible such that sign(v′) ⊆ sign(v). SinceℓA ≤
0≤ uA, it follows thatv′ ∈ P and sign(v′) ⊂ sign(v). Since(w,0) ∈ P, we haveSw= 0 and hence,
Sv′ = d. Sincev was thermodynamically feasible,v′ is also thermodynamically feasible, hence
v′ ∈ TA, which contradicts the minimality ofv. �

Theorem 4 Let b 6= 0 and T 6= /0. LetX = {A1, . . . ,An} be a partition ofR into T-modules, then

EFM(T)⊆ 0N × ∏
A∈X :06∈TA

EFM(TA),

EFM(T)⊆ EFM(F)

where0N ∈ R
N with 0N

r = 0 for all r ∈ N =
⋃

A∈X :0∈TA A.
If T = ∏A∈X TA, then the first inclusion becomes an equality.
If ℓC ≤ 0≤ uC , then both inclusions become equalities. 2

PROOF We start with the first inclusion. Letv ∈ EFM(T) be fixed but arbitrary. Assume there exists
A∈X with 0∈TA andvA 6= 0. We definew∈R

R by wB = vB, for all B∈X \{A}, andwA = 0. It follows
by Thm. 2 thatw ∈ F . By construction, we have sign(w) ⊂ sign(v). Sincev is thermodynamically
feasible, it follows thatw is thermodynamically feasible, hencew ∈ T. Sinceb 6= 0, it follows that
w 6= 0, which is a contradiction to the minimality ofv.

Assume there exists anA ∈ X with 0 6∈ TA s.t. vA 6∈ EFM(TA). SincevA ∈ TA by Thm. 2, it
follows that there existswA ∈ TA with sign(wA)⊂ sign(vA). We now definew∈ R

R by wB = vB, for all
B∈X \{A}, andwA =wA. It follows by Thm. 2 thatw∈ F . By construction we have sign(w)⊂ sign(v).
Sincev is thermodynamically feasible, it follows thatw is thermodynamically feasible, hencew ∈ T,
which is a contradiction to the minimality ofv. Therefore

EFM(T)⊆ 0N × ∏
A∈X :06∈TA

EFM(TA).

The second inclusion follows directly from Prop. 2 a) by choosingA=R.
Now we consider the case whereT = ∏A∈X TA. Let vA ∈ EFM(TA) be a fixed but arbitrary elemen-

tary flux mode for eachA∈ X with 0 6∈ TA. By assumption, it follows thatv∈ R
R defined byvA = vA,

for A∈ X with 0 6∈ TA, andvA = 0, for A∈ X with 0∈ TA, satisfiesv∈ T. Assume there exists a flux
vectorw∈ T with sign(w)⊂ sign(v). It follows that there exists a reactionr ∈ supp(v)\supp(w), where
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supp denotes the support (non-zero entries). Since theT-modules form a partition ofR, it follows that
there exists aT-moduleA∈ X with r ∈ A and 06∈ TA. It follows that sign(wA)⊂ sign(vA). By Thm. 2 it
follows thatwA ∈ TA, a contradiction to the minimality ofvA. Hence, we conclude that ifT = ∏A∈X TA,
then

EFM(T)⊇ 0N × ∏
A∈X :06∈TA

EFM(TA),

which implies

EFM(T) = 0N × ∏
A∈X :06∈TA

EFM(TA).

If we haveℓC ≤ 0≤ uC andT 6= /0, it follows by Thm. 2 thatT = ∏A∈X TA and thus we get the first
inclusion. The second inclusion follows from Prop. 2 c) by choosingA=R. �

4 Methods

The following methods operate on the thermodynamically constrained flux space, as introduced in
Def. 4:

T := {v∈ R
R : Sv= b, ℓ≤ v≤ u, v thermo. feasible}.

We recall that a flux vectorv is considered thermodynamically (thermo.) feasible, if it does not contain
any internal cycles (Def. 1, Thm. 1).

Note that usually the steady-state assumption is formulated asSv= 0, i.e., by choosingb= 0. We
also allowb to be different from 0. Ifbm> 0 for a metabolitem∈M, this means that there is a constant
consumption with ratebm of the metabolitemby some reaction that is not explicitly modeled. Similarly
bm < 0 means that there is a constant production with rate−bm of the metabolitem by some reaction
that is not explicitly modeled. With these formulations the flux space of aT-module can be understood
as the flux space of the subnetwork.

According to Def. 3, aT-module is a subsetA ⊆ R of the reactions such that the interface flux
d ∈ R

M with the rest of the network is constant for each feasible flux vectorv ∈ T. Formally, we
haveSAvA = d for eachv ∈ T. For the definition of the flux space of theT-module, we turned this
property around and considered all flux vectorsv ∈ R

A (through the module) that satisfy the interface
flux condition (Def. 4):

TA :=
{

v∈ R
A : SAv= d, ℓA ≤ v≤ uA, v thermo. feasible

}

Observe thatTA is just a thermodynamically constrained flux space asT, except that we chose a different
stoichiometric matrix and a different right-hand side vector (d instead ofb).

For simplicity we will restrict the generality of the flux spaceT and assume in the following that the
boundsℓ andu on the fluxes satisfyℓI ≤ 0 anduI ≥ 0, whereI denotes the set of internal reactions.
This means that we have no bound on an internal reaction that forces fluxaway from 0. This condition
can be slightly relaxed, the reader is referred to Sect. 3 for details.

All the results also hold without thermodynamic constraints. To see this, observe that we impose
no restrictions on which reactions must be considered internal reactions.Hence, it is also possible to
(artificially) declare all reactions to be exchange reactions. In this case there cannot exist any internal
cycles and hence, only the steady-state assumption and flux bounds are retained.
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4.1 Formulation of the Optimal Flux Space

Usually,T-modules can only be found when analyzing a flux space subject to an optimization criterion,
for example, when the fluxes that maximize biomass production are studied. Since our flux spaceT,
as defined in (1), does not allow the addition of arbitrary linear constraints, we now discuss how the
constraints that restrict the flux space to only optimal fluxes can be formulated. We point out that for
many cases it will be possible to get a formulation in the form of (1), but in general this is not true to its
full extent. We therefore consider a special and a more general case.

4.1.1 Special Case:

We assume that our objective is to maximize flux through a given reactiont ∈R. Usuallyt is the biomass
reaction. Formally, we solve

opt := max{vt : Sv= 0, ℓ≤ v≤ u, v thermo. feasible} .

The optimal flux space can then be formulated as

Topt :=
{

v∈ R
R : Sv= 0, ℓ≤ v≤ u, opt≤ vt ≤ opt, v thermo. feasible

}

.

Note that we assume thatℓI ≤ 0≤ uI . If t is the biomass reaction, it is an exchange reaction and thus,
this will not be an issue. However, ift is an internal reaction (like theATPase reaction), this condition
will be violated. We refer the reader to Sect. 3 for more details to this case.

If t is an exchange reaction, we can also eliminate it and write withR′ :=R\{t}

T ′
opt :=

{

v∈ R
R′

: SR′v=−St ·opt, ℓR′ ≤ v≤ uR′ ,v thermo. feasible
}

.

This is a useful transformation if the boundsℓ andu just encode irreversibilities, like in elementary flux
mode analysis. It follows that we then obtain a network, whereℓ andu still only encode irreversibilities.

4.1.2 General Case:

We assume that we are given an arbitrary cost functionc and we solve

opt= max{cv : Sv= 0, ℓ≤ v≤ u, v thermodynamically feasible}

The optimal flux space can then be formulated as

Popt :=
{

v∈ R
R : Sv= 0, ℓ≤ v≤ u, cv= opt,v thermo. feasible

}

.

However, our results do not allow the addition of arbitrary linear constraints like cv= opt. Hence, we
will have to slightly modify the metabolic network to account for the additional constraint. This can be
done by introducing a new metabolite with right-hand side opt and modifying the reactionsr with cr 6= 0
to produce this new metabolite with stoichiometric coefficientcr :

T ′′
opt :=

{

v∈ R
R :

(

S
c

)

v=

(

0
opt

)

, ℓ≤ v≤ u,v thermo. feasible

}

Ignoring thermodynamic feasibility, this corresponds to adding the linear constraintcv= opt. However,
since we modify the reactions of the network, we also modify the structure of internal circuits. Hence,
thermodynamic feasibility properties will in general only be retained if all reactions r with cr 6= 0 are
exchange reactions.
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4.2 Computing Minimal Modules

The central result of this paper is the following direct method for computing the decomposition ofR into
minimal (w.r.t. set inclusion)T-modules. We have already shown that this decomposition is always well
defined (Thm. 3). The algorithm for computingT-modules is based on the insight that the flux spaceT
can be written as the Cartesian product of the flux spaces for theT-modules (Thm. 2). From this, we
can derive that if we fix the flux value of one reaction to a fixed value, this will have no influence on the
flux variability of a reaction in a differentT-module:

Corollary 2 Let P := {v : Sv= b, ℓ ≤ v ≤ u} or P := T with ℓI ≤ 0 ≤ uI . Assume P6= 0. LetR be
partitioned into P-modules. Let A be a P-module and r∈ A,s∈R\A. Let x be a feasible flux rate for r,
i.e., x∈ prr(P). Then

max{cvs : v∈ P,vr = x}= max{cvs : v∈ P} for all c ∈ R.

PROOF Sincex is a feasible flux rate forr, there exists a flux vectorw∈ P with wr = x. Let v be a flux
vector maximizing max{cvs : v∈ P}. By Thm. 2 it follows thatv′ ∈R

R, with v′A = wA andv′
R\A = vR\A,

satisfiesv′ ∈ P. Sinces 6∈ A, it follows thatcvs = cv′s, showing max{cvs : v ∈ P,vr = x} ≥ max{cvs :
v ∈ P}. The other direction follows immediately, since addition of constraints can never increase the
objective value. �

We can now use this result to put together our method for computing minimalT-modules. Since we
want to see dependencies between reactions in the same minimalT-module, we choose extreme values
for x (minimal and maximal flux). This will likely cause big effects on the variability of reactions in the
same minimalT-module, but by Cor. 2 we will see no effect on the variability in other reactions.

To compute candidate sets ofT-modules, we compute a graphG = (R,E) using Alg. 1. For the
algorithm to work, we assume that there exists no pathway that can carry unbounded flux with thermo-
dynamic constraints (this is only possible if nutrient/energy uptake is unbounded).

Algorithm 1 Computation of candidate sets forT-modules.

1. Compute thermodynamic flux variabilityvr ∈ [vmin
r ,vmax

r ] for each reactionr in the network. De-
fineV := {r : vmin

r < vmax
r }.

2. Each reactionr 6∈V forms aT-module by itself.

3. For each reactionr ∈V do the following

(a) Fix r to its maximal/minimal flux rate (which exists because of thermodynamic feasibility)

(b) Compute thermodynamic flux variabilityvs ∈ [vmin,r
s ,vmax,r

s ] for each reactions∈V.

(c) If vmin,r
s > vmin

s or vmax,r
s < vmax

s , then we say thats is influenced byr and add the edge(r,s)
to E.

(d) If vmin,r
s > vmin

s ≥ 0 orvmax,r
s < vmax

s ≤ 0, we say thatr forces flux throughs.

(e) If vmin,r
s = 0= vmax,r

s , we say thatr blocks flux throughs.

4. Compute the connected componentsX = {A1, . . . ,An} of G.

To run thermodynamically constrained flux variability analysis(tFVA), we use the fast-tFVA tool
(Müller and Bockmayr, 2013). With it, we were able to run this algorithm on genome-scale networks
like E. coli iAF1260 andS. cerevisiaeiND750.
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By Cor. 2 it follows that every connected component ofG is a subset of a minimalT-module.
However, in practice usually all connected components are indeedT-modules. To check if a subset
A ⊂ R is indeed aT-module, we run Alg. 2 withP = T. This algorithm returns YES if and only if
A is aP-module, because we individually minimize and maximize each component (metabolite) of the
right-hand side of the candidateP-module. If and only ifA is aP-module,d is a fixed vector, i.e., for
each metabolite the minimum and maximum must be the same. If there were a flux vectorv∈ P with
different right-hand side, then also the maximum or minimum would be different.

Algorithm 2 Checks if a candidate setA is indeed aP-module. This algorithm works not only for the
flux spaceP= T, but for arbitrary flux spacesP.

Input: A⊆R
M := {m∈M : ∃r ∈ A : Smr 6= 0}
for m∈ M do

dmin := min{SmAvA : v∈ P}
dmax := max{SmAvA : v∈ P}
if dmin 6= dmax then

return NO
end if

end for
return YES

In practice, it rarely happens that the connected components are notT-modules. If, however, con-
nected components are detected that are notT-modules, these have to be combined manually to form
T-modules. This is an easy task if only two connected componentsA andB are notT-modules. Since
the T-modules partition the set of all reactions, it follows that the union ofA andB forms a minimal
T-module. In general, however, there are exponentially many combinations possible. This would then
require an additional algorithm, but since we did not encounter this in our test cases, we did not imple-
ment an algorithm for it.

4.3 Blocking Graph

The blocking graph visualizes reactions that are on alternative pathways. We define it as the directed
graphB = (R,E), where

E := {(r,s) : (vr = vmax
r → vs = 0)∨ (vr = vmin

r → vs = 0) ∀v∈ T}.

Observe that these arcs are computed in step 3e of the Alg 1. It follows thatno reactions of different
T-modules will be connected inB.

Hence, we will usually only look at the subgraph of the blocking interaction graph consisting of the
nodes of aT-module. We will call this subgraph theblocking graphof theT-module. An example can
be seen in Fig. 2.

4.4 Modular Decomposition of Optimal-Yield Elementary Flux Modes

An important application of the decomposition intoT-modules is that we can write the set of elementary
flux modes into a more compact form. This result also follows from the product form of the flux space
(Thm. 2).

In this subsection, we assume that the flux spaces only have irreversibilitiesas flux bounds (i.e.
ℓ ∈ {−∞,0}R andu∈ {0,∞}R), as it is common in elementary flux mode analysis. However, since we
are particularly interested in looking at the optimal flux space, we allow the constraintSv= b with b 6= 0
in the definition of the flux space. We refer the reader to Sect. 4.1 on how to obtain such a formulation.
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We point out that the original definition by Schuster and Hilgetag (1994) onlydefines elementary
flux modes for flux cones withSv= 0. Hence, we will use a slightly extended version of elementary flux
modes. For a given arbitrary flux spaceP⊆R

R, we defined (Sect. 3.5) the set of elementary flux modes
of P as the flux modes with minimal sign-support:

EFM(P) = {v∈ P : sign(w) 6⊂ sign(v) ∀w∈ P\{0}},

where sign is defined as in Sect. 3.1. We observe that this definition, if applied to the flux cone, is
equivalent to the definition given by Schuster and Hilgetag (1994).

First of all, we observe that in this sense the set of thermodynamically feasible elementary flux
modes is not very different from the set of elementary flux modes of the steady-state flux spaceF itself.
More formally we showed that

EFM(T) = 0N × ∏
A∈X :06∈TA

EFM(TA) = EFM(F) (by Prop. 2)

EFM(TA) = EFM(FA) = {v∈ R
A : (v,1) ∈ EFM(P)} (by Thm. 4),

where for aT-moduleA with right-hand sided, we have

F := {v∈ R
R : Sv= b, ℓ≤ v≤ u},

FA := {v∈ R
A : SAv= d, ℓA ≤ v≤ uA},

P := {(v,x) ∈ R
A×R≥0 : SAv−dx= 0, ℓA ≤ v≤ uA}.

We conclude that we can easily combine the elementary flux modes of theT-modules to obtain all
elementary flux modes of the network and although our definition of elementaryflux mode is slightly
different from the definition given in Schuster and Hilgetag (1994), the same algorithms can be applied
to compute the elementary flux modes of theT-modules. We only need to enumerate the elementary
flux modes(v,x) of P and filter out those which havex> 0.

Theoretically, this can be done with any kind of elementary flux mode enumerationtool, like
metatool (von Kamp and Schuster, 2006), orEFMtool (Terzer and Stelling, 2008). We point out thatd
(the stoichiometry of the artificial reaction with fluxx) is the result of an optimization step (if we analyze
the optimal flux space). Hence,d is very likely to be not exact and have non-integer coefficients which
are also not approximable by nice fractions. This turned out to be a significant problem forEFMtool,
which sometimes did not find any elementary flux modes withx> 0, although there clearly existed flux
modes withx> 0. Hence, we usedmetatool, which did not have these problems if the presolver was
turned off. If theT-modules are very small, also a MILP based approach (de Figueiredoet al., 2009)
works very well.

5 Results and Discussion

Using the presented method, we were able to compute the modules of the optimal flux space of many
genome-scale networks likeE. coli iAF1260,S. cerevisiaeiND750, orM. tuberculosisiNJ661. Compre-
hensive lists of the detected modules for each of the analyzed networks can be found in the supplemen-
tary material. There we also list the optimal elementary flux modes ofE. coli iJR904 grown onthreonine
resp.arginine. With the help of the modules, it was possible to write down all optimal elementary flux
modes on a single page.

Next to the modules, we also get interaction relationships between the reactions inside of modules
(see Sect. 4.3 and steps 3c, 3d, 3e of Alg. 1). Let us consider the moduleconsisting of the reactions
L-alanine transaminase (ALATA L), valine transaminase (VALTA), and valine-pyruvate aminotransferase
(VPAMT). This is depicted in Fig. 2a and the blocking graph is shown in Fig. 2b. By studying Fig. 2a,
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we might think thatVALTA andVPAMT together form an alternative route toALATA L. However, a look
at Fig. 2b reveals that ifVALTA carries maximal flux, thenVPAMT does not carry any flux and vice versa.
The blocking interaction graph actually shows us thatVPAMT andALATA L together form an alternative
route toVALTA. Furthermore, we can derive thatALATA L is also important for other pathways, since
even maximal or minimal flux throughVALTA cannot force flux throughALATA L to zero.

a)

3mob[c]

akg[c]

ala−L[c]

glu−L[c] pyr[c]

val−L[c]

ALATA_LVALTA

VPAMT

b)

ALATA_L

VALTA

VPAMT

Figure 2: Graphical representations of a module ofE. coli iAF1260.
a) The subnetwork of the module consisting ofALATA L, VPAMT, andVALTA. The participating metabo-
lites are drawn in ellipses. Stoichiometric coefficients are not shown.
b) The blocking graph of the module. An arc from reactionr1 to r2 means that ifr1 has minimal or
maximal flux, then no flux is possible throughr2. In this example it means thatVPAMT andVALTA block
each other when carrying optimal flux. However,VALTA does not blockALATA L when carrying optimal
flux. This shows thatALATA L is also necessary for other pathways and crucial for optimal growth.

The blocking graph may also give us information about which reactions may be subject to regulatory
control in order to obtain a specific effect. For example, if we consider themodule ofS. aureusiSB619
shown in Fig. 3, we see that regulatory control onLDH D or LDH L will potentially influence what kind
of lactate is produced.

5.1 Sensibility to Growth Conditions in E. coli

When we analyzedE. coli iAF1260 grown onglucose, we discovered instead of the biggest module
found by Kelket al. (2012) three smaller modules, seen in Figs. 4, 5, 6, which mostly contain the same
reactions. It turns out that the difference was actually not caused by the different analysis methods, but
actually by slight modifications of the metabolic network. Kelket al. (2012) used an uptake flux of at
most 12.7777mmol/gDW/h (mmol per gram dry weight per hour) forglucose, while we used an uptake
flux of 8mmol/gDW/h for glucoseas originally given in the model. All other bounds on the network
were essentially the same (they additionally allow uptake ofCob(I)alamin, which however is blocked in
the network).

A careful analysis of the network revealed that fluxes do not scale linearly with the uptake ofglucose
as assumed in Kelket al. (2012). This is caused by two reactions with small absolute flux bounds: The
network requires a flux throughATP maintenanceof 8.39mmol/gDW/h and maximaloxygenuptake of
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D_LACt2

EX_lac_D(e) EX_lac_L(e)

LDH_D LDH_L

L_LACt2r

Figure 3: The blocking interaction graph shows clearly that (LDH D, D LACt2, EX lac D(e)) forms an
alternative pathway to (LDH L, D LACt2r, EX lac L(e)).

ACt2rpp

ACt4pp

GLUt2rpp

GLUt4pp

GLYCLTt2rpp

GLYCLTt4pp

PROt2rpp

PROt4pp

SERt2rpp

SERt4pp

THRt2rpp

THRt4pp

Figure 4: An arrow is drawn between two reactions in this module ofE. coli iAF1260 (grown onglucose)
if the reactions do not have a blocking interaction. This module is part of the biggest module found for
this network in Kelket al.(2012). This figure raises the assumption that we have 6 alternative pathways
that realize the same function and that each of the pathways is realized by thetwo reactions connected
by an edge. Indeed, this is the case: This module transports sodium from the periplasm to the cytosol in
exchange to hydrogen.

18.5mmol/gDW/h. These values are fixed and do not scale with theglucoseuptake.
If E. coli iAF1260 is allowed to have only an uptake flux of 8mmol/gDW/h for glucose, it will

not consume all theoxygento achieve optimal growth. However, with an uptake flux greater than
12mmol/gDW/h for glucose, it will require all the supplied oxygen to grow optimally. It follows that
in this case the structure of the optimal flux space ofE. coli iAF1260 will also change structurally.
Consequently the optimal flux space gets partitioned into different modules.

To understand this structural change, we also analyzed anaerobic growth of E. coli iAF1260 under
glucose. Interestingly, the modules shown in Figs. 4, 6 also existed under anaerobic growth condi-
tions. This was unexpected since in the aerobic growth case with limited oxygensupply as studied by
Kelk et al. (2012), these modules do not exist. Instead of the module in Fig. 5, we found a module
consisting only of a subset of the reactions, as shown in Fig. 7.

A comparison of the modules in Fig. 5 (aerobic) and Fig. 7 revealed that the former is transforming
succinateinto fumerate, while the latter is doing the reverse transformation (see Tab. 1). Hence, the
modules just look similar but actually perform a different metabolic function. This also explains why
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ASPO3

ASPO4

ASPO5

DHORD2

DHORD5

FRD2

FRD3

GLYCTO2

GLYCTO3

GLYCTO4

NADH16pp

NADH17pp

NADH18pp

SUCDi

Figure 5: Blocking interaction graph of a module ofE. coli iAF1260 (grown onglucose, aerobic). This
module is part of the biggest module found for this network in Kelket al. (2012). Here, we see that the
this module has 4 submodules which interact by the reactionsFRD2, FRD3 andSUCDi.

under limited oxygen supply these modules do not appear.
Furthermore, we found small changes regarding the second largest module found by Kelket al.

(2012). Although it stays mostly the same, the reactionsACKr, ACS, ADK1, PTAr, R15BPK, R1PK leave
and enter the module depending on the amount ofoxygensupply. It is interesting to note thatACKr and
PTAr are actually contained in the largest module from Kelket al. (2012) (the module that decomposed
into 3 smaller modules under high or no oxygen supply).

5.2 Evaluation on Genome-Scale Networks

Using fast-tFVA tool (M̈uller and Bockmayr, 2013) we were able to run this algorithm on many genome-
scale networks. The results are given in Table. 2. In nearly all instances the algorithm directly computed
the modules of the networks. Only in two cases (E. coli iJR094 grown onthreonineresp. trypto-
phan), two connected components of the interaction graph were not modules. Asalready pointed out
in Sect. 4.2, this is in accordance with our theoretical results. The example in Fig. 8 with the following
flux polytope shows how this can happen:
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For this reason, we always check at the end of Alg. 1 if the computed connected components are
indeed modules (Alg. 2). It follows from Thm. 3 that this problem is not an intrinsic property of minimal
modules. Instead, it is caused by how we detect interactions between reactions. We also remark that the
addition of thermodynamic constraints can also not be its sole cause, since theexample network does not
involve thermodynamic constraints. We consider it likely that these effects mayalso happen to different
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DHAPT

F6PA

FBA PFK

PYK

Figure 6: Blocking interaction graph of a module ofE. coli iAF1260 (grown onglucose, aerobic).
This module is part of the biggest module found for this network in Kelket al. (2012). This diagram
proposes the thesis thatF6PA andDHAPT form an alternative pathway toFBA, PFK, andPYK. Indeed,
both form two alternative pathways for transforming D-fructose 6-phosphate and phosphoenolpyruvate
into dihydroxyacetone phosphate, pyruvate and glyceraldehyde 3-phosphate. The reason why the edges
from FBA andPFK are not bidirectional is that these reactions are also used in other pathways.

module-finding algorithms that do not use thermodynamic constraints, like the method suggested by
Kelk et al. (2012).

We remark that our new method only works well for the optimal flux space. Although theoretically
it can also be applied to analyze the full flux space, it will most probably onlycompute one module.
Fluxes in the optimal flux space usually have the following property: Ifv is a feasible flux vector, then
αv with 0 < α < 1 is also a feasible flux vector. It follows that the interface flux of each module can
only be 0. This implies that the network is simply the union of several networks that do not interact. For
well curated models this is very unlikely to be the case.

6 Related Work

Our work was highly inspired by the work of Kelket al. (2012). Both methods decompose the optimal
flux space of a metabolic network into independent modules. However, there are some differences next
to algorithmic issues that we want to point out.

Using the mathematical theory introduced in this paper, the idea of the method by Kelk et al.(2012)
can be considered an application of Thm. 2, or more precisely of the following corollary:

Corollary 3 Let P := {v : Sv= b, ℓ ≤ v ≤ u} or P := T with P 6= /0 and ℓI ≤ 0 ≤ uI . Let X be a
partition of R into P-modules. For every A∈ X let ΩA = prA(P) be the sample space of a fixed but
arbitrary probability space. Let B∈ X , r ∈ B,s∈R\B be arbitrary but fixed. Let

E1 = {v∈ P : vr ∈ X}, E2 = {v∈ P : vs ∈Y}

be events, where X,Y ⊆ R. Then, E1,E2 are independent in the product probability space P=
∏A∈X ΩA. 2
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Figure 7: In anaerobic growth ofE.coli iAF1260 underglucose, fumarate reductase(FRD2) and two
kinds ofL-aspartate oxidase(ASPO4, ASPO5) already form a module. Under aerobic growth, these are
only part of a bigger module, which is shown in Fig. 5. This module essentially transformsfumarate
andL-aspartateinto iminoaspartateandsuccinate. FRD2 again is also used in a different pathway and
additionally transforms small amounts ofmenaquinol 8into menaquinone 8.

PROOF By Thm. 2, we haveP= ∏A∈X ΩA. The independence follows directly from the definition of
product probability space. �

Let us consider the following discrete probability measure for each moduleA (under the assumption
b 6= 0 it follows that EFM(P) is finite):

Pr(v∈ prA(P)) :=
|{w∈ EFM(P) : wA = v}|

|EFM(P)|
,

whereP = {v ∈ R
R : Sv= b, ℓ ≤ v ≤ u} andb 6= 0. It follows by Cor. 3 that the random variables

Xr ,Xs : RR → R with Xr : v 7→ vr , Xs : v 7→ vs are independent ifr ands belong to different modules. It
follows thatXr andXs can only be correlated ifr ands belong to the same module.

By Thm. 4 it follows that the elementary flux modes are uniformly distributed in the product proba-
bility spaceP, i.e.,

Pr(v∈ P) =

{

1
|EFM(P)| v∈ EFM(P)

0 otherwise.

Thus,Xr ,Xs are exactly those flux variables that Kelket al. (2012) used to compute flux correlations (if
one ignores the fact that they modify the network first to get rid of linealities).

Note, that also our method can be considered an application of Cor. 3. Themain difference between
our method and Kelket al. (2012) can hence be considered in the choice of probability measures and
events that are used to detect interactions between reactions.
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Metabolite
interface flux

aerobic module
interface flux

anaerobic module
L-Aspartate −0.001678 −0.0005999
Iminoaspartate 0.001678 0.0005999
Fumarate 3.729 −0.08771
Succinate −3.729 0.08771
H+ −114.2 0.0005999
H+ (periplasm) 85.67 0
Glyoxylate 0.0004929 0
Glycolate −0.0004929 0
NAD 28.56 0
NADH −28.56 0
(S)-Dihydroorotate −0.2437 0
Orotate 0.2437 0
Ubiquinone-8 −32.53 0
Ubiquinol-8 32.53 0
Menaquinol 8 0 −0.08711
Menaquinone 8 0 0.08711

Table 1: Interface flux comparison of the Modules shown in Fig. 5 and Fig.7. All metabolites are
cytosolic except where stated otherwise. The flux units are in mmol/gDW/h (mmol per gram dry
weight per hour). By definition of module these interface fluxes are constant for all optimal flux vectors
under the corresponding growth condition.

r1

r2

r3 r4

r5

r6

r8r7

m1

m2

m3

m5m4

Figure 8: The proposed method computes that{r1, r5}, {r2, r6}, {r3, r7}, {r4, r8} are minimal modules.
However, this network only consists of exactly one minimal module.

Next to the fact that flux variability analysis is much easier to compute (even withthermodynamic
constraints) than the enumeration of all elementary flux modes, an additional algorithmic difficulty is
posed by internal cycles in the network. We solved the problem by using thermodynamic constraints.
Kelk et al. (2012) handled the problem by first eliminating the cycles using a projection step. Hence,
both methods do not solve the original problem directly, but slightly modified variants.

In the case of Kelket al.(2012), the actual modules may be obtainable by integrating information of
the lineality space and the detected rays back into the computed modules. This is however not discussed
in the original paper and it is not clear how it can be done in general. For example, the module{ALATA L,
VALTA, VPAMT}, which we found in allE. coli models (under various growth conditions) was detected
by Kelk et al.(2012) as a ray and hence did not appear in the list of modules. It shouldbe noted that not
every ray is a module. For example, in allE. coli networks,{ACCOAL, SUCOAS, PPCSCT} was detected
as a ray, but in only some of the networks we detected this also as a module. Inparticular, this is not
recognizable by the results presented by Kelket al. (2012), since there always exists a different ray that
involvesACCOAL.
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Model no. reactions no. modules no. efms run time
E. coli iJR904 onGlucose 1075 8 26×90×96 162s
E. coli iJR904 onL-Threonine 1075 12 210×6×90 152s
E. coli iJR904 onL-Arginine 1075 11 28×62×9 139s
E. coli iJR904 onCitrate 1075 11 28×6×15×90 138s
E. coli iJR904 onFumarate 1075 11 28×6×90 144s
E. coli iJR904 onL-glutamine 1075 10 27×6×90×222 145s
E. coli iJR904 onLactose 1075 8 26×8×? 160s
E. coli iJR904 onL-Malate 1075 10 27×6×15×90 135s
E. coli iJR904 onL-Tryptophan 1075 7 25×18×96 136s
E. coli iAF1260 onGlucose, aerobic 2382 9 24×32×6×54×5184
E. coli iAF1260 onGlucose, anaerobic 2382 9 26×3×6×2592 531s
E. coli iAF1260 onGlucose, limited oxygen 2382 6 23×3×2592×? 976s
E. coli iAF1260 onL-Threonine, aerobic 2382 9 24×3×82×108×4944 6836s
H. pylori iIT341 554 5 24×18
M. barkeri iAF62 690 7 24×3×28×156 941s
M. tuberculosisiNJ661 1025 10 26×33×? 1623s
S. aureusiSB619 743 10 27×4×192
S. cerevisiaeiND750 1266 8 24×5×6×80×?

Table 2: For each of the analyzed networks the table shows the number of computed modules in the optimal flux space with respect to the specified growth
condition. If no growth condition is specified, the default from the BiGG-database (Schellenbergeret al., 2011) was used. We also computed the number
of optimal elementary flux modes through each module. Since every combinationof elementary flux modes of the modules gives an optimal elementary
flux mode of the whole network, we did not compute the product and simply stated the factors. We use ’?’ to denote that the we were not able to compute
the elementary flux modes through a module, because there were too many elementary flux modes (≥ 300). We remark that we used the original networks
from the BiGG-database, where no duplicate reactions were removed.
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The modules of Kelket al. (2012) have the property that it is possible to combine the vertices of the
modules together to obtain the vertices of the whole projected flux space. However, this does not work
for the original space, since this space may contain linealities. With our decomposition and definition of
elementary flux mode, we actually can combine the elementary flux modes of the modules together to
obtain the elementary flux modes of the optimal flux space.

The addition of thermodynamic constraints eliminates thermodynamically infeasible cycles and
hence may also fix reactions that would otherwise be part of modules or connect different modules.
Hence, our method may find smaller modules than the method by Kelket al. (2012). However, ther-
modynamically constrained flux balance analysis is still anNP-hard problem (M̈uller and Bockmayr,
2013). There are many networks where even fast-tFVA needs more thanhalf an hour of computation
time. Since we need to run many iterations of tFVA, this may make the algorithm very slow. If we
are only interested in the modules however, there is no need to compute all interactions between all
reactions. Hence, we assume that there is a lot of potential that can be used to speed up the algorithm.

7 Conclusion

We introduced a mathematical theory for the analysis of modules in the optimal fluxspace of a metabolic
network. We gave a nice and clean definition of module (invariance of interface fluxes) and derived
properties on the decomposition of the network into modules and the structure of the flux space.

We showed that these modules can safely be analyzed independently fromeach other. In such an
analysis each module can be considered a metabolic network on its own. We showed that if we have
feasible fluxes for each module separately, these fluxes together also form a feasible flux in the whole
network.

In addition, we also proved that we only need to compute elementary flux modesfor each of the
modules separately. These elementary flux modes can then be easily combinedto describe the set of
all elementary flux modes in the network. Hence, a full enumeration of elementary flux modes is not
necessary anymore. We applied this on the optimal flux space ofE. coli iJR904 on two different growth
conditions. There, it gives us a description of the set of optimal elementaryflux modes that can be even
analyzed manually.

Using our mathematical framework, we derived a novel method for computingmodules of the op-
timal flux space. We also showed how the method by Kelket al. (2012) can be understood as an ap-
plication of the theory that we introduced. However, it was only possible withthe formal definition of
module that we were able to mathematically prove the properties of the modules thatthey found.

Another concept introduced in this paper are blocking graphs. Blockinggraphs are an alternative
method to analyze the possible pathways of modules without enumerating all elementary flux modes.
From this, we were able to read off alternative pathways directly.

We demonstrated our methods to compute and analyze the modules of several genome-scale net-
works. We showed that blocking graphs are a useful tool for the analysis of metabolic networks that
complements flux coupling analysis. Also the definition of module itself proved to be very useful since
the interface flux already gives a direct interpretation of the function of the module in the whole network.

Unfortunately, our methods only work well on the optimal flux space, since the full flux space is
usually not decomposable into modules as we defined them (see Sect. 5.2). Suitable generalizations of
the notion of module as defined in this paper, however, might be used to decompose also the whole flux
space. This would give us the opportunity to also compute a compact description of the whole set of
elementary flux modes directly. Thus, the problem of enumerating elementary flux modes may become
tractable in this way even for genome-scale networks.

Finally we want to point out that our method relies on many runs of tFVA. We think that this is not
really necessary and the algorithm can be sped up considerably. This and the extension to the whole flux
space will be the focus of our future work.
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Grünbaum, B. (2003).Convex Polytopes. Graduate Texts in Mathematics. Springer, 2 edition.

Kelk, S. M., Olivier, B. G., Stougie, L., and Bruggeman, F. J. (2012). Optimal flux spaces of genome-scale stoichiometric models are determined by a few
subnetworks.Scientific Reports, 2, 580.

Khannapho, C., Zhao, H., Bonde, B. L., Kierzek, A. M., Avignone-Rossa, C.A., and Bushell, M. E. (2008). Selection of objective function in genome scale flux
balance analysis for process feed development in antibiotic production.Metabolic Engineering, 10(5), 227–233.

Larhlimi, A. and Bockmayr, A. (2009). A new constraint-based description of the steady-state flux cone of metabolic networks.Discrete Applied Mathematics,
157(10), 2257–2266.

Larhlimi, A., David, L., Selbig, J., and Bockmayr, A. (2012). F2c2: a fast tool for the computation of flux coupling in genome-scale metabolic networks. BMC
Bioinformatics, 13, 57.

Mahadevan, R. and Schilling, C. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.Metabolic Engineering, 5,
264–276.

Müller, A. (2012). Thermodynamic Constraints in Metabolic Networks. Master’s thesis, Freie Universität Berlin, Fachbereich Mathematik und Informatik.
http://page.mi.fu-berlin.de/arnem/theses/master.pdf.

Müller, A. and Bockmayr, A. (2013). Fast thermodynamically constrainted flux variability analysis.Bioinformatics, 29(7), 903–909.

Noor, E., Lewis, N. E., and Milo, R. (2012). A proof for loop-law constraints in stoichiometric metabolic networks.BMC Systems Biology, 6, 140.

Orth, J. D., Thiele, I., and Palsson, B. O. (2010). What is flux balance analysis. Nature Biotechnology, 28, 245248.

Papin, A. J., Stelling, J., Price, N. D., Klamt, S., Schuster, S., and Palsson, B. O. (2004). Comparison of network-based pathway analysis methods.TRENDS in
Biotechnology, 22(8), 400–405.

Papin, Jason A. Reed, J. L. and Palsson, B. O. (2004). Hierarchical thinking innetwork biology: the unbiased modularization of biochemical networks.TRENDS
in Biochemical Sciences, 29(12), 641–647.

Price, N. D., Reed, J. L., and Palsson, B. Ø. (2004). Genome-scale models of microbial cells: evaluating the consequences of constraints.Nature Reviews
Microbiology, 2, 886–897.
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