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Abstract

The huge number aflementary flux modd&FM) in genome-scale metabolic networks makes
analysis based on elementary flux modes intrinsically dilfidcdowever, it has been shown that the
elementary flux modes with optimal yield often contain hyglédundant information. The set of
optimal-yield elementary flux modes can be compressed nsotyles. Up to now, this compression
was only possible by first enumerating the whole set of alhagityield elementary flux modes.

We present a direct method for computing modules of the thdymamically constrained opti-
mal flux space of a metabolic network. This method can be useed¢ompose the set of optimal-
yield elementary flux modes in a modular way and to speed up ¢benputation. In addition, it
provides a new form of coupling information that is not obtad by classical flux coupling analysis.
We illustrate our approach on a set of model organisms.
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1 Introduction

Constraint-based methods have provided a very successful mearalypeagenome-scale metabolic
network reconstructions (Papét al, 2004; Pricest al,, 2004). Instead of predicting explicit flux distri-
butions, constraints are used to characterize biologically feasible pheaorier metabolic networks,
the most typical constraint is the steady-state assum@@ica 0, whereS denotes the stoichiometric
matrix andv the flux vector. It is based on the assumption that no internal metabolite is dllovae-
cumulate or degenerate. Additional constraints may be thermodynamic git@lrées vi;ey > 0 (here
Irrev denotes the set of irreversible reactions), bounds on nutake, etc.

To understand théeasible flux spacei.e., the set of all flux vectors satisfying the given con-
straints, various methods have been proposdelementary mode¢Schuster and Hilgetag, 1994;
Schusteet al, 2000), extreme pathway$Schilling et al, 2000), andminimal metabolic behaviors
(Larhlimi and Bockmayr, 2009) have been developed to describe allvpgthof the network. Un-
fortunately, the number of elementary flux modes, extreme pathways or minintabotie behaviors
usually grows exponentially with the size of the network. Therefore, ibeas impossible so far to per-
form this kind of analysis for large genome-scale models. Also, even setalbnks pose the problem
that so many pathways are generated that understandable resultdycha ohtained using additional
post-processing steps. Hence, other methods have been develdapedtteudy specific characteris-
tics of the network. Flux variability analysis(FVA) (Burgardet al, 2001; Mahadevan and Schilling,
2003) is used to study the range of flux rates in which reactions cantepé&ilax coupling analysis
(FCA) (Burgardet al., 2004; Larhlimiet al,, 2012) and correlation analysis (Papin and Palsson, 2004;
Sariyaret al., 2006) study dependencies between fluxes through pairs of reactions
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Another possibility is to reduce the feasible flux space by an optimality criter@ptimization-
based methods likBux balance analysiéFBA) (Varma and Palsson, 1994; Mahadevan and Schilling,
2003; Priceet al, 2004; Terzeet al, 2009; Durotet al, 2009; Schustegt al,, 2007; Teusinlet al.,,
2009; Orthet al, 2010) formulate queries on the model and can give quantitative resultgpidal
objective function asks for the maximal possible biomass production yieldt@®d Palsson, 2010),
i.e., we consider the optimisation problem

opt := max{Veiomass: SV=0, £ <v<u},

where/ andu denote lower and upper flux bounds. This can efficiently be solved witlarlipeo-
gramming. A deeper analysis, however, requires the study of all the écbors realizing the optimal
objective value. Usually, we do not get a single optimal flux vector (Khahpoet al., 2008), but again
a set of optimal solutions, which we call thptimal flux space

Popt := {V: Sv=0, £ <V < U, Vgiomass= Opt}.

This space is mathematically very similar to the feasible flux space. Hencdatdagp of the above
methods can also be used to study the optimal flux space.

Kelk et al.(2012) analyzed the optimal flux space using the theory of polyhedra (ge€&iinbaum
(2003)). After removing linealities and rays (which are caused by theynmadically infeasible cycles),
they obtain a polytope. They observe that this polytope can be decompésetbdules Their decom-
position has the nice property that the modules can be analyzed indepgaeitogether they provide
a comprehensive understanding of the whole polytope. In other wibrelsnodules allow a losslessly
compressed description of the extreme points of the polytope of optimal fluxes

The contributions of this paper are the following:

e We introduce a mathematical framework for studying such modules. In parisve give a
simple mathematical definition of a module. We prove that it is sufficient to an#tgzmodules
independently from each other to understand the optimal flux space ohtble wetwork.

e We derive an alternative method to determine these modules, which doesjoiverthe removal
of linealities and rays. An important difference to (Kelkal,, 2012) is that we do not need to
compute all optimal-yield elementary flux modes in our method. Since the numblenoértary
flux modes grows exponentially with the size of the network, this result is mégorithmic
improvement.

e We present a novel analysis method for metabolic networks, which wieloeking graphs These
graphs contain information such & flux through reaction r is fixed to its maximal value, then
reaction s cannot carry any flix We show that this gives useful additional information that
complements standard flux coupling analysis.

¢ We show how the modules can be used to compute the set of optimal-yield elgnilerxtanodes.

The paper is organised as follows. We start in Sect. 2 with an intuitiveigésarof our method. In
Sect. 3, we develop the necessary mathematical theory. The corregponthputational methods are
derived and presented in Sect. 4. In Sect. 5 we apply these method$evardiffenome-scale networks
and discuss the results. Finally, in Sect. 5.2, we compare our method with thedhaftKelk et al.
(2012).



2 Approach

When studying the minimal and maximal possible flux through reactions in the oglimalpace, one
usually observes that many reactions do not show any flux variability diafice, these reactions must
be part of any optimal flux vector. In the following, we are interested indgheactions that show flux
variability in the optimal flux space. Here, the organism has abilities to adjusiimament changes
or knockouts without changing its biomass production rate.

As an example, let us consider the network shown in Fig. 1. Assume thagdtrection to opti-
mal fluxes enforces a flux of 1 through reactian As one can easily see, this implies that reactions
ris,r14,r15 also have a fixed flux. We now want to find out how the remaining (unfireajtions group

into modules.
s r7 6
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Figure 1: All stoichiometric coefficients in this example are 1. Assume flux tiraeactionr is
fixed to 1. Then flux through reactions (r13,r14,r15) is fixed and we get the three modules, (3,r4),

(rs,re,r7,rs,ro), and €10,r11,r12).

Informally speaking, we consider a set of reactions to beduleif they behave together like one
reaction with a fixed flux. This means that the rate (or interface flux) of roétab that are produced
and consumed by the reactions in the module must be constant for all optirredéiors. For example
the reactions1g,r11,r12 form a module, since those reactions together always take up 1 of metabolite
mg and always produce 1 ofyo. The interface flux of this module {9,0,0,0,0,0,0,—1,0,1).

The algorithm for finding modules follows the following idea: Suppose we tix through reaction
ri1 to its maximal value (in this case,, = 1). It follows that there is no flux possible anymore through
reactiong1g,r12. The other reactions, however, are not affected by this choice athdfl.ig a hint that
reactionsio,ri1,r12 belong to the same module, while the other reactions are independent.

However, this approach requires that for each reaction we must becatiethe flux to its maxi-
mal value. This is not possible if we just do standard flux variability analy=¥&\). Let us consider
reactionrg. Since this reaction is part of an internal cycte, (g, r5,rg), we can send unbounded flux
throughrg. Hence, we cannot set flux through this reaction to its maximal flux rate bsenee the
effects. To cope with this problem, we ueermodynamically constrained flux variability analysis
(tFVA) (Schellenbergeet al,, 2011; Miller and Bockmayr, 2013). Since thermodynamic constraints
prohibit fluxes along internal cycles, these reactions obtain a finite maxinxaldte. We can now use
this flux rate to perform our analysis.



3 Mathematical Theory

In this section, we develop the mathematical theory underlying our apprdaetcorresponding analy-
sis methods will be described in Sect. 4.

3.1 Preliminaries

A metabolic network\' = (M, R,Z,S b,/,u) is given by a finite set ofmetabolitesM, a finite set of
reactionsR, a subsef C R of internal reactions the stoichiometric matrix & R™*®, and vectors
be RM, ¢,uc RE,, whereR.., := RU{—o,+w}. Reactions ir€ := R\ Z areexchange reactions
that can supply the network with inflow or outflow from the environmenst@ady-state fluks a vector
v € R that satisfieSv= 0. More generally, we consider flux vectarg R® satisfyingSv= b, for
some right-hand side< RM. In addition we will usdower andupper boundg, u € R, for which we
require/ < v < u. By abuse of notations < o resp.—o < v; means that, is unbounded from above
resp. below. We use subscripts to index flux through reactionsy;i.@gnotes flux through reaction

We will also be interested in the flux through a set of reactddasRR. Hence, we write/a to denote
the components of corresponding to the reactions Mand we useSa, to denote the stoichiometric
matrix that only contains the columns corresponding to the reactiofis in

A set of vectord C R is called aflux space ForA C R, we define the projection R(P) := {Va:
ve P} CRA. For disjoint setsA B C R andX C RAY C RB we defineX xY := {ve RAB: v, €
X,vg €Y} Here,U denotes the union of disjoint sets. Finally, we asto denote subsets with equality,
andc for subsets without equality.

3.2 Thermodynamically feasible fluxes

Following Beardet al. (2004), we introduce the notion of a thermodynamically feasible flux.

Definition 1 (Thermodynamically Feasible Flux) A flux vectorv € R® is thermodynamically feasible
(thermo. feasible) if there exists a vecore RM s.t.

USVy <0orv, =0, for every internal reactione 7.

Note that other authors, e.g. Flemiagal. (2012), use a slightly stronger definition whege= 0 is
not always allowed. As shown in (Beaetlal, 2004; Nooret al,, 2012; Miller, 2012), Def. 1 can be
equivalently restated as follows:

Theorem 1 (Looplaw) A flux vector = R is thermodynamically feasible if and only if there exists no
w e R\ {0} with

Ssw=0
w, >0 vr e Z with v, >0,
w, <0 Vr € Z with v, <0.

From this theorem, we observe the importance of steady-state fluxeset@ilysnternal reactions.

Definition 2 (Internal Cycle) We callw € RZ\ {0} aninternal cycleif it satisfies
SIW:07 EZSWSUZ~
Theset of reactions contained in internal cycieglefined as

C:={reZ:w #0, for some internal cyclev}.
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We say that an internal cycleis contained in a flux vector & R if

sign(w) C sign(v),
where for vectors € R” and setX ™, X, Y*,Y~, we define

sign(x) := ({r e A:x >0}, {r e A: x < 0}),
(XT X)) (YY) e XTCYrAX  CY™.

Using this notion, we can say that a flux vector is thermodynamically feasibtelibaly if it does not
contain an internal cycle.
3.3 Decomposition of Flux Spaces into Modules

The main goal of this paper is the decomposition of flux spaces into modules. r&V@rdpose a
definition of module for general flux spaces- R,

Definition 3 (Module) A set of reaction®\ C R is called amodule w.r.t. a flux space(ERR, or shortly
Ais called aP-module if there exists a vectal € RM with Sava = d for all flux vectorsv € P. The
vectord is called theright-hand sideof the moduleA. Sinced operates as the interface of the module
to the rest of the network, we refer tlalso as thénterface fluxof A. O

We observe that if and only B # 0 then the interface flux of eadhtmodule is well defined. Hence, all
of the following theorems will requir® # 0. If P C {v € R : Sv= b}, thenR is itself aP-module. We
also observe that, given two disjoiRtmodulesA andB, their union is again  module:

Lemma 1 Let PC R” be an arbitrary flux space and let A and B be disjoint P-modules with righigh
sides &, d® respectively. Then#B is also a P-module with right-hand sidé d d®. 0

PROOF For everyv € P, we haveSava = d* andSgvg = dB, which impliesSy gVas = Sava + Ssve =
d”+ dB. Hence AUB is aP-module with right-hand sidé* + dB. -

We now focus on flux spaces consisting of steady-state fluxes and tieerestricted flux spaces, where
the fluxes are also thermodynamically feasible.

Definition 4 (Thermodynamically constrained flux space)Given a metabolic network
N = (M,R,Z,Sb,¢,u), thethermodynamically constrained flux spacésTdefined as

T:={veR®:Sv=Db, £ <v<u, vthermo. feasiblp 1)
If T £ 0, we similarly define foil -modulesA C R with right-hand sidel
TA:={veR*: Sw=d, fa <V < ua,vthermo. feasible} 2)
and in addition
TA:=pry(T). (3)
Definition 5 (Steady-state flux space)Given a metabolic network\' = (M, R,Z,Sb,¢,u), the
steady-state flux spaceif defined as
F:={veRR:Sv=h, f<v<ul. (4)
For F-modules (ifF # 0) andT-modules (ifT # 0) A C R with right-hand sidel we define
FA:={veR":Sww=d, la<v<up}. (5)



Observe thafF” is also well defined ifA is both aF-module and & -module (if T # 0), because
T C F and thus the right-hand sides must coincide. We will later see (ApplicationnflGithZ = 0)
that for F-modulesA we haveF” = pr,(F). While TA C TA holds for anyT-moduleA, we do not
always havél A = TA (see however Cor. 1 and the supplementary material for an example).

In what follows, we will useP to denote general flux spaces, whileandF always denote the flux
spaces defined above.

Before we study the decomposition of the flux sp&i¢eve first investigate the decomposition of the
flux space of a union of twd-modules.

Lemma 2 Assume T 0. Then for any disjoint T-modules A and B we have
-I"iAUB C -]'ZA % TB C TA % TB - FAL',IB'
If {c <0< uc, thenTAYB = TAx TB, o

PROOF By the definition of module, we have“® C T4 x T8 andTA C TA, T8 C TB. Hence, we get
TABCTAXTBC TAXTBC TAX TB. Letd?, dB denote the right-hand sides of tiemodulesA and
B respectively. By Lemma 1, it follows th&tUB is aT-module with right-hand sided” + dB.

Letx € TAy € T® be fixed but arbitrary. Defing € RA“B by v, := x andvj :=y. SinceA andB are
T-modules, we hav&y gV = d*+dB. Sincela < X < ua andlg <y < ug, it follows thatv € FAB,
Hence TA x TB C FAYB,

Now we continue with the cage < 0 andug > 0. SinceT # 0, there existsv € T. Definew € R?
by waug := V andwg, (a'g) = V\/R\(AUB). SinceAUB is aT-module, it follows thatv € F, as defined
in (4). Letv be the flux vector obtained from by subtracting all contained internal cycles using Alg. 1
from Muller and Bockmayr (2013). Sinadge < 0 < ug, it follows by Thm. 2 in Miller and Bockmayr
(2013) thatv € T and sigriw — v) C sign(w).

SinceAis aT-module, we hav&ava = d*. FromSax — Sava = dA —d” = 0, we getSa(x—va) = 0.
If x—vp # 0, it follows thatx would have contained an internal cycle (note that sigava) C sign(x)).
This is a contradiction and henog, = x. By the same argument, we can sheyv=y. Sinceve T, we
obtainV' = v g € TAYB and since we can do this for every TA andy € T8, we getTA® O TA x TE,
Therefore TAYB = TA x T8, -

Corollary 1 1f T # 0 with ¢ <0< uc and A is a T-module, thenT= TA = pra(T). -

PROOF LetB:=TR\A. SinceAis aT-module andl C {ve R”? : Sv= b}, Bis aT-module, too. With
Lemma 2, it followsTAYB = T = TA x TB and by projectiom” = pra(T) = TA. n

Using Lemma 2, we can now show by induction that from a partition of the reeséitik into a set
of T-modules, we can get a decomposition of the thermodynamically constrainespéuaeT .
Theorem 2 (Product Space from Modules)Assume T#£ 0. If X = {Aq,...,Aq} is a partition of R

into T-modules, then
TC |‘!(TA CF.
Ac

T= |‘LTA.
Ac

If £ <0< ug, then



ProOF DefineB; := A; andB; := AlUBj_1,i = 2,...,n. It follows from the definition of module and
Lemma 1 tha®y andB;, i = 1,...,n, areT-modules. By Lemma 2 it follows thatB C TBi-1 x TA,
for all j =2,...,n. We already observed thd®: C TB = T, hence it follows by induction that
TBi C _, TA. SinceB, = R we obtain thalr C [, TA.

To prove[]; TA C F, letv' € TA be arbitrary but fixed. Sinc& # 0, it follows that there exists
awe T. Letd' denote the right-hand side @-moduleA. We getSywa, = d', foralli=1,...,n,
which impliesb = Sw= " ; S\wp, = S, d'. Now definev € R® with v, := V', foralli=1,...,n.

It follows thatSv= S ; S\V' = 5" ; d' = b. Clearly,v also satisfieg < v < u. We concluder € F and
thus[], TA CF.

If in addition, we have/e < 0 < u¢, then by Lemma 2 and Cor. 1 we also get the equalitiés=
TB =TBi-1 x TA and henceT =, TA. -

3.4 Unique Decomposition

Next we study the existence and uniqueness of the decomposition of ark@tteominimal modules.

Definition 6 (Minimal Module) Let P C R be a flux space. A-moduleA C R is minimalif there
exists noP-moduleB s.t. B C A. o

The following result shows that we can always decompose a network infioalimodules.

Proposition 1 (Existence)Let P be a flux space. Every P-module A can be partitioned into minimal
P-modules, i.e., there exist minimal P-modulgs. A, A s.t. A= At UAU ... UA.. o

PrROOF Assume the proposition is false. Then there exists a non-mirfamabduleA C R that cannot
be partitioned into smallgP-modules and a minima&-moduleB C A. By definition there exisa,b €
RM with Sava = aandSsvg = b. It follows a—b = Sava — Sgvg = SA\BVA\B +SRVg— SV = SA\BVA\B,
which implies thatC := A\ B is also aP-module. ThuCUB is a partition ofA, which contradicts the
assumption. -

Note that this proposition holds for arbitrary flux spa&esThe following lemma holds for every flux
space that satisfies the steady-state assumption. In particular, it holtie fimermodynamically con-
strained flux spacg&.

Lemma 3 (Modules form Product Space)Let PC {v e R®: Sv= b}._ Assume P=[1; R With R C
RA, where AC R. Then for every i= 1,...,n, there exists a vector Iz RM s.t. S,vp = b, for all
veP,i.e., Ais a P-module. O

PrROOF Assume the lemma is false. Then there ekist{1,...,n} andv,w € P s.t. Syvp # SAWa .
Definew € R* by wj, = Wa, Wr\a = VR\A- SinceP = L, A, it follows thatw' € P.  Since

SaWa 7# SaVa, We getSW = SyWa, + Sp\a Vr\a = SAWa +b—Syva # b. Thusw ¢ P, which is
a contradiction. -

To prove uniqueness of the decomposition into minimahodules (Thm. 3), we use Thm. 2 from
the previous section. Given a partition of the reactionf@énto T-modulesA, the thermodynamically
constrained flux spacE can be written as the product of the flux spatés Assuming that there exist
two different partitions with minimal -modules, we show that we can writeas a product of smaller
factors (Lemma. 4). We then go in the reverse direction and show with Lemna 8dm this we can
obtain smalleiT -modules, contradicting the minimality.

Lemma 4 Let X, | be sets. Let B X'. Let P=[]"; A and P=[]", B;, with A C X& and B C Xb,
whereaCl,i=1,...,n,andbCl,i=1,...,m. Then P=], L, Cjj with G;j = Pra b, P o
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PROOF For everyj = 1,...,mholdsB; = pr, (P) = pry, (MiL1A) = ity PlanpA = [MiL1Cij- Since
P="1Bj = M1 Mit1Cij = M1 N1 Gij, the claim follows. n

Theorem 3 (Uniqueness)Assume T 0, wherele < 0 < ue. Then the partition ofR into minimal
T-modules exists and is unique. o

PROOF SinceR is aT-module, it follows by Prop. 1 that there always exists a partition into minimal
T-modules. Assume there exist two partitiokis# ) of R into minimal T-modules. By Thm. 2 and
Cor. 1, we can write

[P=™=™=T="= [P
XE XE ye

yey

By Lemma 4 it follows that there exists a partitidhof R which is finer thant’, ), i.e., everyze Z is
contained in somg € X andy € ). The partitionZ also satisfies

T= |1PFZ(T)~

It follows by Lemma 3 that everg € Z is also aT-module. SinceY' # ), there exists at least one
T-module of Z that is strictly contained in @-module of X. This contradicts the minimality of the
T-modules inX. -

3.5 Elementary Flux Modes

An important consequence of the decomposition ihtmodules is that we can describe the set of el-
ementary flux modes in a more compact form. This result follows basicallytlyireom the product
form of the flux space (Thm. 2). We define the seel@mentary flux modes of a flux spaca$the flux
modes with minimal sign-support:

EFM(P) := {ve P:signw) ¢ sign(v) vw € P\ {0} }.
From this, we can derive the following relationships between the elementarsnfides oF» andTA:
Proposition 2 Assume T£ 0. Let A be a T-module with right-hand sideAd0. Let
P:={(v,x) e RAXR": Sav—dx=0,a <V < Up}.
Then
a) EFM(TA) C EFM(FA)
b) {veRA:(v,1) € EFM(P)} C EFM(TA)
) Iflanc <0< upnc, thenEFM(TA) = EFM(FA).

d) Ifé € {—,0} and y € {0,00} forallr € A, then{ve R*: (v,1) € EFM(P)} = EFM(TA). o

PrROOF We show all statements separately:

a) Letve EFM(TA). Assumev ¢ EFM(F”). SinceTA C FA, it follows that there existsr € FA with
sign(w) C sign(v) andw is thermodynamically infeasible. By Thm. 1, there exists an internal cycle
c € RA with sign(c) C sign(w). It follows that sigric) C sign(v), contradictingv € TA.



b) Let(v,1) € EFM(P). Assumev ¢ EFM(TA). SinceTA C pr(P), it follows thatv ¢ TA. By Thm. 1,
there exists an internal cyctewith sign(c) C sign(v). It follows that sigric) C sign({v,1}). This
contradictsv,1) € EFM(P).

c) Assumelp~c < 0 < ua-c, and suppose there existss EFM(FA)\ EFM(TA). We conclude that
v ¢ TA, hencev contains an internal cycle Sincelaqc < 0 < uprc, We can subtract all internal
cycles using Alg. 1 from Mller and Bockmayr (2013). By Thm. 2 inifler and Bockmayr (2013),
we obtainv' € FA with sign(V') C sign(v), contradictingy € EFM(F4).

Thus, it follows that EFMFA) C EFM(T#). Together with a) we get that ERIA”) = EFM(T#).

d) We will now consider the case whénec {—o, 0} andu, € {0,} for all r € A. Assume there exists
v € EFM(TA) with (v,1) ¢ EFM(P). Since(v,1) € P, it follows that(v, 1) is not minimal. Hence,
there exists &w,x) € P with sign(w,x) C sign(v,1).

If x> 0 we scalgw,x) to (w,1). Since the bounds are only 0 or infinity, the flux bounds will also
be satisfied byv. It follows thatw' € TA. Since sigw’) C sign(v), this is a contradiction to the
minimality of v. Therefore, we only need to consider the case whet®.

Let vV =v— aw, wherea is chosen as large as possible such that(sigi@ sign(v). Sincela <

0 < ua, it follows thatv' € P and sigriv') C sign(v). Since(w,0) € P, we haveSw= 0 and hence,
Sv =d. Sincev was thermodynamically feasible, is also thermodynamically feasible, hence
v € TA, which contradicts the minimality of. n

Theorem 4 Letb#0and T# 0. LetX = {Aq,...,A,} be a partition ofR into T-modules, then

EFMT)c M x  [] EFM(TH),
AcX:0gTA
EFM(T) C EFM(F)

whereON € RN with ON = 0for all r € N = (Jacy-0etA A
fT =acx TA, then the first inclusion becomes an equality.
If /¢ <0< ug, then both inclusions become equalities. o

PROOF We start with the first inclusion. Letc EFM(T) be fixed but arbitrary. Assume there exists
A€ X with 0 TAandva # 0. We definavc R® by wg = v, for all B X'\ {A}, andw, = 0. It follows
by Thm. 2 thatw € F. By construction, we have sigw) C sign(v). Sincev is thermodynamically
feasible, it follows thatv is thermodynamically feasible, heneec T. Sinceb # 0, it follows that
w # 0, which is a contradiction to the minimality of

Assume there exists a € X with 0 ¢ TA s.t. va &€ EFM(TA). Sinceva € TA by Thm. 2, it
follows that there existe/* € T with sign(w”) C sign(va). We now definav € R® by wg = v, for all
Be &'\ {A}, andwa =wA. It follows by Thm. 2 thatv € F. By construction we have sigw) C sign(v).
Sincev is thermodynamically feasible, it follows thatis thermodynamically feasible, heneec T,
which is a contradiction to the minimality of Therefore

EFMT) OV x [ EFM(TA.
ACX:0gTA

The second inclusion follows directly from Prop. 2 a) by chooging R.

Now we consider the case wheFe= [acx TA. LetVv* € EFM(TA) be a fixed but arbitrary elemen-
tary flux mode for eaclh € X with 0 ¢ TA. By assumption, it follows that € R® defined byva = VA,
for Ac X with 0 ¢ TA, andva = 0, for A € X with 0 € TA, satisfiess € T. Assume there exists a flux
vectorw € T with sign(w) C sign(v). It follows that there exists a reactiore supgVv) \ supgw), where
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supp denotes the support (non-zero entries). Sincé tmodules form a partition dR, it follows that
there exists & -moduleA € X with r € Aand 0¢ TA. It follows that sigriwa) C sign(V*). By Thm. 2 it
follows thatwa € T#, a contradiction to the minimality of*. Hence, we conclude thatT = [[acx T4,
then

EFM(T) 20N x  [] EFM(TH),
ACX:0gTA

which implies

EFM(T)=0"x ] EFM(TH).
AcX:04TA

If we havel; <0 < uc andT # 0, it follows by Thm. 2 thall = [acx TA and thus we get the first
inclusion. The second inclusion follows from Prop. 2 ¢) by choogirgR. n

4 Methods

The following methods operate on the thermodynamically constrained fluxe spacintroduced in
Def. 4:

T:={veR®:Sv=b, £ <v<u, vthermo. feasiblp.

We recall that a flux vector is considered thermodynamically (thermo.) feasible, if it does not contain
any internal cycles (Def. 1, Thm. 1).

Note that usually the steady-state assumption is formulat&Vas0, i.e., by choosindp = 0. We
also allowb to be different from 0. Ib,, > O for a metaboliten € M, this means that there is a constant
consumption with rate,, of the metaboliten by some reaction that is not explicitly modeled. Similarly
bm < 0 means that there is a constant production with rabg of the metabolitan by some reaction
that is not explicitly modeled. With these formulations the flux spaceTofmodule can be understood
as the flux space of the subnetwork.

According to Def. 3, al-module is a subseh C R of the reactions such that the interface flux
d € RM with the rest of the network is constant for each feasible flux vectorT. Formally, we
have Sava = d for eachv € T. For the definition of the flux space of tHiemodule, we turned this
property around and considered all flux vecters R* (through the module) that satisfy the interface
flux condition (Def. 4):

TA:={veR*: Ssw=d, fa <V < U, vthermo. feasible

Observe thal A is just a thermodynamically constrained flux spacé asxcept that we chose a different
stoichiometric matrix and a different right-hand side vectbingtead ot).

For simplicity we will restrict the generality of the flux spateand assume in the following that the
bounds? andu on the fluxes satisfy; < 0 anduz > 0, whereZ denotes the set of internal reactions.
This means that we have no bound on an internal reaction that forcemafluxfrom 0. This condition
can be slightly relaxed, the reader is referred to Sect. 3 for details.

All the results also hold without thermodynamic constraints. To see this, \ab#sat we impose
no restrictions on which reactions must be considered internal reactitersce, it is also possible to
(artificially) declare all reactions to be exchange reactions. In this case gannot exist any internal
cycles and hence, only the steady-state assumption and flux boundszamed.
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4.1 Formulation of the Optimal Flux Space

Usually, T-modules can only be found when analyzing a flux space subject to an ogtionizriterion,
for example, when the fluxes that maximize biomass production are studiece @indlux spacd’,
as defined in (1), does not allow the addition of arbitrary linear constrair@sow discuss how the
constraints that restrict the flux space to only optimal fluxes can be forrdulslife point out that for
many cases it will be possible to get a formulation in the form of (1), but iregethis is not true to its
full extent. We therefore consider a special and a more general case.

4.1.1 Special Case:

We assume that our objective is to maximize flux through a given reacti@d. Usuallyt is the biomass
reaction. Formally, we solve

opt :=max{v : Sv=0, ¢ <v <u, vthermo. feasibl.
The optimal flux space can then be formulated as
Topt:= {VE R®:Sv=0, ¢/ <v<u, opt< v < opt vthermo. feasibl}.

Note that we assume théat < 0 < uz. If t is the biomass reaction, it is an exchange reaction and thus,
this will not be an issue. However, fifis an internal reaction (like th&TPase reaction), this condition
will be violated. We refer the reader to Sect. 3 for more details to this case.

If t is an exchange reaction, we can also eliminate it and write Rith= R \ {t}

épt = {ve RR: Spv=—-§-opt fr <V < ug,Vvthermo. feasibl}.

This is a useful transformation if the boun@landu just encode irreversibilities, like in elementary flux
mode analysis. It follows that we then obtain a network, wheredu still only encode irreversibilities.
4.1.2 General Case:

We assume that we are given an arbitrary cost funatiand we solve
opt=max{cv: Sv=0, ¢ <v < u, vthermodynamically feasibje
The optimal flux space can then be formulated as
Popt:= {ve R® : Sv=0, £ <v<u, cv=optvthermo. feasiblé.

However, our results do not allow the addition of arbitrary linear congtrdilke cv = opt. Hence, we
will have to slightly modify the metabolic network to account for the additionakt@mt. This can be
done by introducing a new metabolite with right-hand side opt and modifyingetations with ¢; £ 0
to produce this new metabolite with stoichiometric coefficignt

opt = {ve RR: <S> V= < 0 ) , £ <v<u,vthermo. feasibl}
c opt

Ignoring thermodynamic feasibility, this corresponds to adding the lineaticontcv = opt. However,

since we modify the reactions of the network, we also modify the structuraerhia circuits. Hence,
thermodynamic feasibility properties will in general only be retained if alltieasr with ¢, # 0 are

exchange reactions.
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4.2 Computing Minimal Modules

The central result of this paper is the following direct method for computieglétomposition oR into
minimal (w.r.t. set inclusion] -modules. We have already shown that this decomposition is always well
defined (Thm. 3). The algorithm for computifigmodules is based on the insight that the flux spkce
can be written as the Cartesian product of the flux spaces for4medules (Thm. 2). From this, we
can derive that if we fix the flux value of one reaction to a fixed value, tili$vave no influence on the
flux variability of a reaction in a differenf-module:

Corollary 2 Let P:={v:Sv=Db,/ <v<u}orP:=T with/z <0< uz. Assume B£0. LetR be
partitioned into P-modules. Let A be a P-module arelA s< R\ A. Let x be a feasible flux rate forr,
i.e., xe pr,(P). Then

max{CVvs: V€ P,vy =x} = max{cvs: Vv € P} forallc e R.

PrROOF Sincex is a feasible flux rate for, there exists a flux vectav € P with w;, = x. Letv be a flux
vector maximizing magcvs : v € P}. By Thm. 2 it follows that/ € R, with Vi = Wa and\/R\A =VR\As
satisfiesv € P. Sinces ¢ A, it follows thatcvs = ¢V, showing maxcvs : v € P,v; = x} > max{cv :
v € P}. The other direction follows immediately, since addition of constraints carr rieseease the
objective value. -

We can now use this result to put together our method for computing midimabdules. Since we
want to see dependencies between reactions in the same minimatlule, we choose extreme values
for x (minimal and maximal flux). This will likely cause big effects on the variability afattons in the
same minimall -module, but by Cor. 2 we will see no effect on the variability in other reastio

To compute candidate sets ®fmodules, we compute a graggh= (R,E) using Alg. 1. For the
algorithm to work, we assume that there exists no pathway that can cdroynded flux with thermo-
dynamic constraints (this is only possible if nutrient/energy uptake is unieaiynd

Algorithm 1 Computation of candidate sets formodules.

1. Compute thermodynamic flux variability € [ViMin v for each reactiom in the network. De-
fineV = {r:v"" < v"&}.

2. Each reaction ¢ V forms aT-module by itself.
3. For each reactione V do the following

(a) Fixr to its maximal/minimal flux rate (which exists because of thermodynamic feasibility)
(b) Compute thermodynamic flux variabilit € [Vi"™"  v"'] for each reactios € V.

(©) If VM > ymin o X yMaX then we say thatis influenced by and add the edgge,s)
toE.

(d) If V@™ > yinin > 0 or v < vMaX < 0, we say that forces flux througts.
(e) If V™ — 0 ="' we say that blocks flux througts.

4. Compute the connected componetits- {A;,..., Ay} of G.

To runthermodynamically constrained flux variability analy§iEVA), we use the fast-tFVA tool
(Muller and Bockmayr, 2013). With it, we were able to run this algorithm on gerscake networks
like E. coliiAF1260 andS. cerevisia@ND750.
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By Cor. 2 it follows that every connected component®is a subset of a minimal-module.
However, in practice usually all connected components are indleedules. To check if a subset
A C R is indeed aT-module, we run Alg. 2 witlP = T. This algorithm returns YES if and only if
Ais aP-module, because we individually minimize and maximize each component (metabbtite
right-hand side of the candidaRmodule. If and only ifA is aP-module,d is a fixed vector, i.e., for
each metabolite the minimum and maximum must be the same. If there were a fluxwedtowith
different right-hand side, then also the maximum or minimum would be different.

Algorithm 2 Checks if a candidate sétis indeed a-module. This algorithm works not only for the
flux spaceP = T, but for arbitrary flux spaceB.
Input: ACR
M:={meM:3reA: Sy #0}
for me M do
Omin := MIN{Synava : v € P}
dmax:= max{Spava : v € P}
if dmin # dmax then
return NO
end if
end for
return YES

In practice, it rarely happens that the connected components afemodules. If, however, con-
nected components are detected that arelAmtodules, these have to be combined manually to form
T-modules. This is an easy task if only two connected comporfeatsdB are notT-modules. Since
the T-modules partition the set of all reactions, it follows that the unio® @ind B forms a minimal
T-module. In general, however, there are exponentially many combinatomsiye. This would then
require an additional algorithm, but since we did not encounter this in oucdsss, we did not imple-
ment an algorithm for it.

4.3 Blocking Graph

The blocking graph visualizes reactions that are on alternative pathWegsiefine it as the directed
graphB = (R,E), where

E:={(r,s): (% ="V =0)V (v =" - vs=0) We T}

Observe that these arcs are computed in step 3e of the Alg 1. It followadhaiactions of different
T-modules will be connected iB.

Hence, we will usually only look at the subgraph of the blocking interactraply consisting of the
nodes of ar-module. We will call this subgraph thHdocking graphof the T-module. An example can
be seen in Fig. 2.

4.4 Modular Decomposition of Optimal-Yield Elementary Flux Modes

An important application of the decomposition ifftemodules is that we can write the set of elementary
flux modes into a more compact form. This result also follows from the ptddum of the flux space
(Thm. 2).

In this subsection, we assume that the flux spaces only have irreversitaktitex bounds (i.e.
¢ € {—o0,0}® andu € {0,}7), as it is common in elementary flux mode analysis. However, since we
are particularly interested in looking at the optimal flux space, we allow thetk@ntSv= b with b £ 0
in the definition of the flux space. We refer the reader to Sect. 4.1 on hobtamesuch a formulation.

13



We point out that the original definition by Schuster and Hilgetag (1994) defines elementary
flux modes for flux cones witBv= 0. Hence, we will use a slightly extended version of elementary flux
modes. For a given arbitrary flux spaee R, we defined (Sect. 3.5) the set of elementary flux modes
of P as the flux modes with minimal sign-support:

EFM(P) = {ve P:signw) ¢ signlv) Yw € P\ {0}},

where sign is defined as in Sect. 3.1. We observe that this definition, if dgplithe flux cone, is
equivalent to the definition given by Schuster and Hilgetag (1994).

First of all, we observe that in this sense the set of thermodynamically feaddgmentary flux
modes is not very different from the set of elementary flux modes of tlhegtstate flux spade itself.
More formally we showed that

EFM(T)=0"x [] EFM(T*) =EFM(F) (by Prop. 2)
AcX:0gTA
EFM(TA) = EFM(FA) = {ve R”: (v,1) € EFM(P)} (by Thm. 4)

where for al -moduleA with right-hand sided, we have

F:={veRR:Sv=b, ¢ <v<u},
FA={veR":Swwv=d,la<v<up},
P:={(\,X) € RAx Rxg: Sav—dx=0,/a <V < Up}.

We conclude that we can easily combine the elementary flux modes dfthedules to obtain all
elementary flux modes of the network and although our definition of elemefttarynode is slightly
different from the definition given in Schuster and Hilgetag (1994), #mesalgorithms can be applied
to compute the elementary flux modes of thenodules. We only need to enumerate the elementary
flux modes(v,x) of P and filter out those which have> 0.

Theoretically, this can be done with any kind of elementary flux mode enumertatibnlike
metatool (von Kamp and Schuster, 2006),EfMtool (Terzer and Stelling, 2008). We point out tlaat
(the stoichiometry of the artificial reaction with flxxis the result of an optimization step (if we analyze
the optimal flux space). Hence,is very likely to be not exact and have non-integer coefficients which
are also not approximable by nice fractions. This turned out to be a samtificoblem forEFMtool,
which sometimes did not find any elementary flux modes withO, although there clearly existed flux
modes withx > 0. Hence, we usefletatool, which did not have these problems if the presolver was
turned off. If theT-modules are very small, also a MILP based approach (de Figuesdteadp 2009)
works very well.

5 Results and Discussion

Using the presented method, we were able to compute the modules of the optirsgddee of many
genome-scale networks lile coliiAF1260,S. cerevisia@\ND750, orM. tuberculosisNJ661. Compre-
hensive lists of the detected modules for each of the analyzed netwarkedaund in the supplemen-
tary material. There we also list the optimal elementary flux modé&s obliiJR904 grown orthreonine
resp.arginine. With the help of the modules, it was possible to write down all optimal elementaty flu
modes on a single page.

Next to the modules, we also get interaction relationships between the redciae of modules
(see Sect. 4.3 and steps 3c, 3d, 3e of Alg. 1). Let us consider the mamhgesting of the reactions
L-alanine transaminas@alATA L), valine transaminas& £LTA), and valine-pyruvate aminotransferase
(VPAMT). This is depicted in Fig. 2a and the blocking graph is shown in Fig. 2b. Blystg Fig. 2a,
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we might think thatvALTA andVPAMT together form an alternative route ARATA L. However, a look
at Fig. 2b reveals that ifALTA carries maximal flux, theWPAMT does not carry any flux and vice versa.
The blocking interaction graph actually shows us trtMT and ALATA_L together form an alternative
route toVALTA. Furthermore, we can derive th&tATA L is also important for other pathways, since
even maximal or minimal flux throughALTA cannot force flux througALATA_L to zero.
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Figure 2: Graphical representations of a modul& ofoliiAF1260.

a) The subnetwork of the module consistings@fATA_L, VPAMT, andVALTA. The participating metabo-
lites are drawn in ellipses. Stoichiometric coefficients are not shown.

b) The blocking graph of the module. An arc from reactiaro r, means that if1 has minimal or
maximal flux, then no flux is possible through In this example it means th#PAMT andVALTA block
each other when carrying optimal flux. HoweWLTA does not blocALATA_L when carrying optimal
flux. This shows thatLATA L is also necessary for other pathways and crucial for optimal growth.

The blocking graph may also give us information about which reactions mawtiject to regulatory
control in order to obtain a specific effect. For example, if we considemibéule ofS. aureusSB619
shown in Fig. 3, we see that regulatory controliai D or LDH_L will potentially influence what kind
of lactate is produced.

5.1 Sensibility to Growth Conditions in E. coli

When we analyzed. coli iAF1260 grown onglucose we discovered instead of the biggest module
found by Kelket al. (2012) three smaller modules, seen in Figs. 4, 5, 6, which mostly containrtiee sa
reactions. It turns out that the difference was actually not causedehyiffierent analysis methods, but
actually by slight modifications of the metabolic network. Ketlkal. (2012) used an uptake flux of at
most 127777mmofgDW/h (mmol per gram dry weight per hour) fglucose while we used an uptake
flux of 8mmol/gDW/h for glucoseas originally given in the model. All other bounds on the network
were essentially the same (they additionally allow uptak€éati(l)alamin which however is blocked in
the network).

A careful analysis of the network revealed that fluxes do not scalerin@éh the uptake ofjlucose
as assumed in Kel&t al. (2012). This is caused by two reactions with small absolute flux bounds: Th
network requires a flux throughTP maintenancef 8.39mmo)/gDW/h and maximabxygeruptake of
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LDH_D

EX_lac_D(e) EX_lac_L(e)

D_LACt2 L_LACt2r

Figure 3: The blocking interaction graph shows clearly thati(D, D_LACt2, EX_lac_D(e)) forms an
alternative pathway td.0H_L, D_LACt2r, EX_lac_L(e)).

| ACt2rpp | | GLUt2rpp | | GLYCLTt2rpp | | PROt2rpp | | SERt2rpp | | THRt2rpp |

| ACt4pp | | GLUt4pp | | GLYCLTt4pp | | PROt4pp | | SERt4pp | | THRt4pp |

Figure 4: An arrow is drawn between two reactions in this module abliiAF1260 (grown orglucos¢

if the reactions do not have a blocking interaction. This module is part ofigfyeet module found for
this network in Kelket al. (2012). This figure raises the assumption that we have 6 alternativegpathw
that realize the same function and that each of the pathways is realized tayotheactions connected
by an edge. Indeed, this is the case: This module transports sodium feqreriplasm to the cytosol in
exchange to hydrogen.

18.5mmol/gDW/h. These values are fixed and do not scale withglbeoseuptake.

If E. coliiAF1260 is allowed to have only an uptake flux of 8mpgiDW/h for glucose it will
not consume all th@xygento achieve optimal growth. However, with an uptake flux greater than
12mmol/gDW/h for glucose it will require all the supplied oxygen to grow optimally. It follows that
in this case the structure of the optimal flux spacezofcoli IAF1260 will also change structurally.
Consequently the optimal flux space gets partitioned into different modules.

To understand this structural change, we also analyzed anaerohith@®E. coliiAF1260 under
glucose Interestingly, the modules shown in Figs. 4, 6 also existed under anagnawth condi-
tions. This was unexpected since in the aerobic growth case with limited osyggaty as studied by
Kelk et al. (2012), these modules do not exist. Instead of the module in Fig. 5, wal faunodule
consisting only of a subset of the reactions, as shown in Fig. 7.

A comparison of the modules in Fig. 5 (aerobic) and Fig. 7 revealed thabthef is transforming
succinateinto fumerate while the latter is doing the reverse transformation (see Tab. 1). Heree, th
modules just look similar but actually perform a different metabolic functiohis &lso explains why
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Figure 5: Blocking interaction graph of a modulefcoliiAF1260 (grown orglucose aerobic). This
module is part of the biggest module found for this network in Katlkl. (2012). Here, we see that the
this module has 4 submodules which interact by the reaci&Dbg, FRD3 andSUCDi.

under limited oxygen supply these modules do not appear.

Furthermore, we found small changes regarding the second largestenfodnd by Kelket al.
(2012). Although it stays mostly the same, the reactigtir, ACS, ADK1, PTAr, R15BPK, R1PK leave
and enter the module depending on the amounixgfiensupply. It is interesting to note thatkr and
PTAr are actually contained in the largest module from Katllal. (2012) (the module that decomposed
into 3 smaller modules under high or no oxygen supply).

5.2 Evaluation on Genome-Scale Networks

Using fast-tFVA tool (Miller and Bockmayr, 2013) we were able to run this algorithm on many genome-
scale networks. The results are given in Table. 2. In nearly all inssaheealgorithm directly computed
the modules of the networks. Only in two casé&s ¢oli iIJR094 grown orthreonineresp. trypto-
phan), two connected components of the interaction graph were not moduleslrésgly pointed out

in Sect. 4.2, this is in accordance with our theoretical results. The exampig.if with the following

flux polytope shows how this can happen:

[REN
[REN

P={vecR®

O Fr O

0
0
1
0

OO0 O0OR R
oORr OO
R OoOo
ooor O
oOr OO0 ©
R oOoOoo©

<

I

0
1
1
1
1

0 0

For this reason, we always check at the end of Alg. 1 if the computedecteth components are
indeed modules (Alg. 2). It follows from Thm. 3 that this problem is not aririgic property of minimal
modules. Instead, it is caused by how we detect interactions betwedionsatVe also remark that the
addition of thermodynamic constraints can also not be its sole cause, sirc@thple network does not
involve thermodynamic constraints. We consider it likely that these effectsataayhappen to different
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Figure 6: Blocking interaction graph of a module Bf coli iIAF1260 (grown onglucose aerobic).
This module is part of the biggest module found for this network in Ketlél. (2012). This diagram
proposes the thesis thB6PA andDHAPT form an alternative pathway tBBA, PFK, andPYK. Indeed,
both form two alternative pathways for transforming D-fructose 6-phate and phosphoenolpyruvate
into dihydroxyacetone phosphate, pyruvate and glyceraldehydessphte. The reason why the edges
from FBA andPFK are not bidirectional is that these reactions are also used in other pathway

module-finding algorithms that do not use thermodynamic constraints, like theothstiygested by
Kelk et al. (2012).

We remark that our new method only works well for the optimal flux space.ofitih theoretically
it can also be applied to analyze the full flux space, it will most probably oaiypute one module.
Fluxes in the optimal flux space usually have the following property:i$fa feasible flux vector, then
avwith 0 < a < 1 is also a feasible flux vector. It follows that the interface flux of eachuteodan
only be 0. This implies that the network is simply the union of several netwosktsithnot interact. For
well curated models this is very unlikely to be the case.

6 Related Work

Our work was highly inspired by the work of Ketit al. (2012). Both methods decompose the optimal
flux space of a metabolic network into independent modules. Howeveg, dinersome differences next
to algorithmic issues that we want to point out.

Using the mathematical theory introduced in this paper, the idea of the methoellbgtial. (2012)
can be considered an application of Thm. 2, or more precisely of the folipearollary:

Corollary 3 Let P:={v:Sv=b/<v<u}orP:=T with P£Z0and/; <0<uz. LetX be a
partition of R into P-modules. For every A X' let Qa = pra(P) be the sample space of a fixed but
arbitrary probability space. Let B X, r € B,s€ R \ B be arbitrary but fixed. Let

Ei={veP:v e X}, Eo={veP:veY}

be events, where X C R. Then, g,E, are independent in the product probability space=P
[Macx Qa. O
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FRD2

Figure 7: In anaerobic growth d@&.coli IAF1260 underglucose fumarate reductaséFRD2) and two
kinds of L-aspartate oxidas€ASP04, ASPO5) already form a module. Under aerobic growth, these are
only part of a bigger module, which is shown in Fig. 5. This module essentialhstormsfumarate
andL-aspartateinto iminoaspartateandsuccinate FRD2 again is also used in a different pathway and
additionally transforms small amountsmEnaquinol 8nto menaquinone .8

PROOF By Thm. 2, we haveé® = [[acx Qa. The independence follows directly from the definition of
product probability space. |

Let us consider the following discrete probability measure for each méd@ader the assumption
b £ 0 it follows that EFMP) is finite):

Pr(ve pra(P)) := {we E\Tzl\é(l\j()F;)YA =V}

whereP = {ve R® : Sv=b, ¢/ <v<u}andb# 0. It follows by Cor. 3 that the random variables
X, Xs : R® — R with X, : vi— Vi, Xs: Vi— Vs are independent if ands belong to different modules. It
follows thatX; andXs can only be correlated ifands belong to the same module.

By Thm. 4 it follows that the elementary flux modes are uniformly distributed in thdyzt proba-
bility spaceP, i.e.,

1
Pr(ve P) = Eviey] V€ EFM(P)
0 otherwise.

Thus, X, Xs are exactly those flux variables that Kelkal. (2012) used to compute flux correlations (if
one ignores the fact that they modify the network first to get rid of linealities)

Note, that also our method can be considered an application of Cor. 3ndihalifference between
our method and Kellet al. (2012) can hence be considered in the choice of probability measuwtes an
events that are used to detect interactions between reactions.
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Metabolite

interface flux
aerobic module

interface flux
anaerobic module

L-Aspartate —0.001678 —0.0005999
Iminoaspartate 0.001678 00005999
Fumarate 3.729 —0.08771
Succinate —-3.729 Q08771
H* —1142 0.0005999
H* (periplasm) 85.67 0
Glyoxylate 0.0004929 0
Glycolate —0.0004929 0
NAD 28.56 0
NADH —2856 0
(S)-Dihydroorotate —0.2437 0
Orotate 0.2437 0
Ubigquinone-8 —-3253 0
Ubiquinol-8 3253 0
Menaquinol 8 0 —0.08711
Menaquinone 8 0 0.08711

Table 1. Interface flux comparison of the Modules shown in Fig. 5 and FigAll metabolites are
cytosolic except where stated otherwise. The flux units are in prgbW/h (mmol per gram dry
weight per hour). By definition of module these interface fluxes aretanhfor all optimal flux vectors
under the corresponding growth condition.

Figure 8: The proposed method computes fnatrs}, {r2,rs}, {rs,rz}, {ra,rs} are minimal modules.
However, this network only consists of exactly one minimal module.

Next to the fact that flux variability analysis is much easier to compute (eventmgtimodynamic
constraints) than the enumeration of all elementary flux modes, an additigoattamic difficulty is
posed by internal cycles in the network. We solved the problem by usimgéalynamic constraints.
Kelk et al. (2012) handled the problem by first eliminating the cycles using a projedim $lence,
both methods do not solve the original problem directly, but slightly modifiednes.

In the case of Kellet al. (2012), the actual modules may be obtainable by integrating information of
the lineality space and the detected rays back into the computed modules. Tvigigehnot discussed
in the original paper and it is not clear how it can be done in general. Xaongle, the modul€ALATA L,
VALTA, VPAMT}, which we found in alE. colimodels (under various growth conditions) was detected
by Kelk et al.(2012) as a ray and hence did not appear in the list of modules. It sheuldted that not
every ray is a module. For example, in Bll coli networks,{ ACCOAL, SUCOAS, PPCSCT} was detected
as a ray, but in only some of the networks we detected this also as a modglattibular, this is not
recognizable by the results presented by Katlil. (2012), since there always exists a different ray that
involvesACCOAL.
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Model no. reactions no. modules no. efms run time

E. coliiJR904 onGlucose 1075 8 %% 90x 96 162
E. coliiJR904 onL-Threonine 1075 12 20%6x90 152
E. coliiJR904 onL-Arginine 1075 11 3x62x9 13%
E. coliiJR904 onCitrate 1075 11 8 x6x15x90 138
E. coliiJR904 onFumarate 1075 11 8% 6x90 144
E. coliiJR904 onL-glutamine 1075 10 Z x6x90x 222 14%
E. coliiJR904 onLactose 1075 8 P x8x? 16G
E. coliiJR904 onL-Malate 1075 10 Z x6x15x90 135
E. coliiJR904 onL-Tryptophan 1075 7 2 x 18x 96 136
E. coliiAF1260 onGlucose aerobic 2382 9 D% 3P x6x54%x5184

E. coliiAF1260 onGlucose anaerobic 2382 9 62« 3% 6 x 2592 53%
E. coliiAF1260 onGlucose limited oxygen 2382 6 Dx 3x 2592« ? 976
E. coliiAF1260 onL-Threonine aerobic 2382 9 Dx 3x 82 x108x 4944 6836
H. pyloriilT341 554 5 2x18

M. barkeriiAF62 690 7 2 x3x28x 156 945
M. tuberculosisNJ661 1025 10 9% 3¥x? 1623
S. aureusSB619 743 10 2% 4x192

S. cerevisiaéND750 1266 8 2 x 5% 6x80x?

Table 2: For each of the analyzed networks the table shows the numlzemptited modules in the optimal flux space with respect to the specified growth
condition. If no growth condition is specified, the default from the BiG&Hase (Schellenbergeral., 2011) was used. We also computed the number
of optimal elementary flux modes through each module. Since every combiodtementary flux modes of the modules gives an optimal elementary
flux mode of the whole network, we did not compute the product and simphddtategactors. We use ’'?’ to denote that the we were not able to compute
the elementary flux modes through a module, because there were too mangtatgriiex modes¥ 300). We remark that we used the original networks
from the BiGG-database, where no duplicate reactions were removed.



The modules of Kellet al. (2012) have the property that it is possible to combine the vertices of the
modules together to obtain the vertices of the whole projected flux spacesvidovihis does not work
for the original space, since this space may contain linealities. With our dexsitiop and definition of
elementary flux mode, we actually can combine the elementary flux modes of théemabagether to
obtain the elementary flux modes of the optimal flux space.

The addition of thermodynamic constraints eliminates thermodynamically infeasiblescand
hence may also fix reactions that would otherwise be part of modules aecbdifferent modules.
Hence, our method may find smaller modules than the method bydfelk (2012). However, ther-
modynamically constrained flux balance analysis is stilN®thard problem (Miller and Bockmayr,
2013). There are many networks where even fast-tFVA needs morédétiaan hour of computation
time. Since we need to run many iterations of tFVA, this may make the algorithm i@mvy & we
are only interested in the modules however, there is no need to compute akiitas between all
reactions. Hence, we assume that there is a lot of potential that cand®sged up the algorithm.

7 Conclusion

We introduced a mathematical theory for the analysis of modules in the optimapfwe of a metabolic
network. We gave a nice and clean definition of module (invariance of aterfiuxes) and derived
properties on the decomposition of the network into modules and the strutthesftux space.

We showed that these modules can safely be analyzed independentlgdaobnother. In such an
analysis each module can be considered a metabolic network on its own.oWedsthat if we have
feasible fluxes for each module separately, these fluxes together afs@ fieasible flux in the whole
network.

In addition, we also proved that we only need to compute elementary flux niodeach of the
modules separately. These elementary flux modes can then be easily cotobilestribe the set of
all elementary flux modes in the network. Hence, a full enumeration of eleméehia modes is not
necessary anymore. We applied this on the optimal flux spaEeaifliiJR904 on two different growth
conditions. There, it gives us a description of the set of optimal elemefiargnodes that can be even
analyzed manually.

Using our mathematical framework, we derived a novel method for compuotodules of the op-
timal flux space. We also showed how the method by Kelal. (2012) can be understood as an ap-
plication of the theory that we introduced. However, it was only possible théformal definition of
module that we were able to mathematically prove the properties of the modulésaph&bund.

Another concept introduced in this paper are blocking graphs. Bloakiaghs are an alternative
method to analyze the possible pathways of modules without enumerating alhé&deynux modes.
From this, we were able to read off alternative pathways directly.

We demonstrated our methods to compute and analyze the modules of severnalegscale net-
works. We showed that blocking graphs are a useful tool for the sisabf metabolic networks that
complements flux coupling analysis. Also the definition of module itself provee teby useful since
the interface flux already gives a direct interpretation of the functioneofrtbdule in the whole network.

Unfortunately, our methods only work well on the optimal flux space, sinedh flux space is
usually not decomposable into modules as we defined them (see Sect.ubt@hlesgeneralizations of
the notion of module as defined in this paper, however, might be used tmgese also the whole flux
space. This would give us the opportunity to also compute a compact destiop the whole set of
elementary flux modes directly. Thus, the problem of enumerating elementampéldes may become
tractable in this way even for genome-scale networks.

Finally we want to point out that our method relies on many runs of tFVA. Wektthiat this is not
really necessary and the algorithm can be sped up considerably. Thiseaextension to the whole flux
space will be the focus of our future work.
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