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Abstract

Constraint-based analysis of metabolic networks has become a widely used approach in
computational systems biology. In the simplest form, a metabolic network is represented
by a stoichiometric matrix and thermodynamic information on the irreversibility of certain
reactions. Then one studies the set of all steady-state flux vectors satisfying these stoichio-
metric and thermodynamic constraints.

We introduce a new lattice-theoretic framework for the computational analysis of metabolic
networks, which focuses on the support of the flux vectors, i.e., we consider only the quali-
tative information whether or not a certain reaction is active, but not its specific flux rate.
Our lattice-theoretic view includes classical metabolic pathway analysis as a special case, but
turns out to be much more flexible and general, with a wide range of possible applications.

We show how important concepts from metabolic pathway analysis, such as blocked re-
actions, flux coupling, or elementary modes, can be generalized to arbitrary lattice-based
models. We develop corresponding general algorithms and present a number of computa-
tional results.
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1 Introduction

Constraint-based modeling has become a very successful approach for the analysis of genome-
scale reconstructions of metabolic networks [1H4]. Given a set of metabolites M and a set of
reactions R, the network is represented by its stoichiometric matrix S € RM*R and a subset of
irreversible reactions Irrev C R. The steady-state flux cone C' = {v € RR | Sv = 0, v1rrev > 0}
contains all steady-state flux vectors satisfying the stoichiometric and thermodynamic con-
straints. Based on this cone, many analysis methods have been introduced over the years,
among them Fluz Balance Analysis (FBA) [5,6], Elementary Mode Analysis (EMA) [79], and
Fluzx Coupling Analysis (FCA) [10}/11].

While these methods have been widely applied, various ideas have been explored of how to
modify or extend the underlying model. A lot of research concerns the question of how to include
regulatory information into the metabolic model (e.g. [12,/13]). Additionally, there has been a
discussion on whether stronger thermodynamical constraints should be applied [14}/15]. Some
try to combine the idea of FBA to analyse optimal-yield steady-states with the insight that this
condition alone does not constrain the system to a single possible state, but to a mathematical
space of different (biologically) optimal states [16]. Still other approaches give up the steady-
state assumption and use completely different modelling approaches, e.g. hyperpaths [17].



In this paper, we want to establish the algebraic framework of lattices as a unifying ap-
proach to metabolic pathway analysis. Finite lattices [18}|19] are some of the simplest algebraic
structures, but they have proven to be useful in many applications, such as knowledge repre-
sentation [20], or distributed computing [21]. As we will see, they can be employed naturally
to describe qualitative, pathway-based metabolic models, including the steady-state flux cone
and related constraint-based methods.

Here we will introduce lattice-based Elementary Mode Analysis (EMA) and a very fast Flux
Coupling Analysis (FCA) method. Our implementation L4FC (Lattices for Flux Coupling) can
be used for traditional, flux-cone-based FCA. But it also allows usage of other lattice-based
modelling approaches, just by changing a single method that looks for pathways through a
given reaction in the model.

Lattice-based models are independent from the steady-state assumption. In our models, we
can use the flux cone, but we do not have to. The only algebraic requirement a lattice-based
model has to fulfill is one that is easily proven for most approaches: any two pathways or states
a and b can be combined to a new one that uses together all the reactions of a and b. This
already defines a semi-lattice, which in our setting will automatically be a lattice.

Our approach allows for more flexibility in choosing the model constraints and provides gen-
eral analysis tools that we can immediately use without spending much time on adapting them
to our needs. We will see that lattice-based modelling is fully compatible with the traditional
steady-state flux cone and many of its extensions. However, it is also open for completely new
ideas.

2 Lattice Theory in Metabolic Pathway Analysis

Many important questions in metabolic pathway analysis involve only qualitative information:
Which reactions participate in a pathway? Which are the minimal sets of reactions needed to
realize certain biological functions? Which reactions are coupled to each other? To answer these
and other questions, we do not need the quantitative information of reaction rates. Instead we
can consider a pathway to be simply a subset a of the reaction set R, a C R, satisfying certain
properties. This idea has appeared before in the literature, e.g. as activity sets [22] or flux
patterns [23]. As a unifying framework for various modelling approaches in metabolic pathway
analysis, we propose in this paper the algebraic concept of (semi-)lattices.

A semi-lattice [19] is an algebraic structure (L, o) consisting of a set L and a binary operation
o which satisfy the following axioms:

e [ is o-closed, i.e., if a,b € L then aob € L.
e o is associative and commutative, i.e., ao(boc) = (aob)ocand aob=boa.
e o is idempotent, i.e., a o a = a.

A lattice can be defined as an algebraic structure (L, V, A) such that (L, V) and (L, A) are semi-
lattices and in addition for any a,b € L, we have a A (aVb) = a, and aV (a Ab) = a. An example
is the lattice (2%, U, N) of all subsets of a set X, together with the usual set operations of union
and intersection.

In the context of metabolic pathway analysis, we will look at semi-lattices (L,U), where
L C 2R and R is the finite set of reactions in the metabolic network. As we will see, many
metabolic models are indeed union-closed, which simply means that the union of two pathways
is a pathway again. As noted in [24], such a finite semi-lattice is already a lattice if there exists
a neutral element 0 € L, with 0Ua = a, for all @ € L. This holds if § € L. Thus for any L C 2R,
we can obtain a lattice (L,U, A) if the following two axioms are satisfied:



e [ is U-closed, i.e.,if a,b € L then aUb € L.
e There is an element 0 € L such that 0Ua = a, for all a € L.

With these two axioms, we can define a second operation A on L, so that (L,U, A) becomes a

lattice:
aNb:= U c. (1)

cCa,cCb

The operation A is well-defined because 0 C a, for all a € L.
Similarly to this construction, we can prove that every finite lattice L has a unique maximum

1L:
1p=Ja. (2)

a€l

Since a C 17, for all a € L, we call 11, the mazimum of L. In Sect. 4], we will use the maximum
to reformulate the concept of blocked reactions and flux coupling in metabolic network analysis.
Additionally, there are ways to describe finite lattices based on special sets of elements,
the so-called minimal and irreducible elements, discussed e.g. in [19]. As we will see, these
correspond exactly to the concept of elementary modes in the steady-state flux cone.

Lattices are sometimes also introduced as specially ordered sets. A partial ordering on
pathways can naturally be defined by a < b < a C b. This reflects the idea that a pathway
that is contained in another should be considered smaller in some sense. Because of their order-
theoretical roots, many concepts in lattice theory should be understood in this context, e.g. the
minimal elements, or the maximum.

The order-theoretical point of view also provides an interesting way of visualizing the rela-
tionship of different pathways via the so-called Hasse diagram. This allows us to identify how
pathways can be decomposed into smaller reaction sets. An example for this is given in Fig.

3 Steady-State Flux Spaces Can be Modeled as Lattices

Constraint-based analysis of metabolic networks is based on the steady-state flux cone C' =
{v € RR } Sv =0, Vlprev > O}, where S € RM*R ig the stoichiometric matrix over the set of
metabolites M and Irrev C R is the set of irreversible reactions. Constraint-based methods
include Flux Balance Analysis (FBA), Elementary Mode Analysis (EMA), or Flux Coupling
Analysis (FCA), which allow for growth prediction, structural understanding, or target predic-
tion in metabolic engineering [5HL1].

We will show here how two of these approaches, namely EMA and FCA, may be reformulated
in lattice-theoretic terms. Proving that we can work on a lattice LE induced by the flux cone
C, will allow us to use the general framework of lattice theory, which simplifies the development
of optimized and unified algorithms. As a first step, we prove that any polyhedron P C RR
induces a lattice.

Proposition 1. Given P = {x € R" | Az < b}, with A € R™*™, b € R™, let
LY .= {suppz | x € P} .
Then (L¥,U) is a finite lattice.

Proof. Let ai,as € L* with a; = supp (ac(i)). Define 2 = Az + (1 — X)) z® for X € [0,1]. P
is a polyhedron, thus ™ € P and supp (3:()‘)) C a1 Uag. Now we only have to show that there
is A* € [0, 1] with supp (ZL'()‘*)) = a1 U az. So let us look at the cases where this equality does



not hold. We have xl(’\) = 0 if and only if )\xgl) +(1 =X mz(?) = 0. So for each 7 € a; U ay there
is at most one A such that i ¢ supp (m()‘)). Because there are less than |R| + 1 values for A with
supp (:c(’\)) C a1 Uagy, we know that the desired A* € [0, 1] must exist. O O

So we know that the flux cone C induces a lattice:
LC = {suppv | Sv =0, vpevy > 0} . (3)

But we can also work on bounded flux vectors, where we assume minimal/maximal reaction
rates.
Llcgvgu == {suppv | Sv =0, <v<u} . (4)

A special case of a bounded flux space is the space of all optimal-yield flux vectors, used in
FBA and studied e.g. in [16]:

Lgpt == {suppv | Sv =0, <v < U, UBiomass = Max} . (5)

Fig. [T shows an example network for this case. As we will see in Sect. [4] lattice theory allows
us to define concepts equivalent to EFMs and FCA on these bounded flux spaces, too.

Figure 1: Maximize the flux through z when u,v < 1.

Given a lattice L C 2R and a subset Q C R, we define

LJ_Q = {a€L|aﬂQ:@}, (6)
Lo = {anQlaelL} . (7)

Clearly, (L1q,U) resp. (Lqg,U) satisfy the two lattice axioms from Sect. Therefore, we get
two new lattices, which we call L without @) resp. L projected on Q.

4 Methods

4.1 Elementary Modes in Lattices

An elementary mode [7] is a steady-state flux vector v € C' that is irreducible in the sense that
it cannot be written in the form v = v + v, with v!,v? € C,suppv!,suppv? C suppv. As
proven in [8], a flux vector v € C'\ {0} is irreducible if and only if suppv is minimal (w.r.t.
C). In the context of this paper, it is interesting to note that an elementary mode is uniquely
determined by its support, i.e., given two elementary modes v,v’ € C' with suppv = supp?/,
there exists A # 0 such that v = A" [8].



In general lattices, minimal and irreducible elements have to be distinguished. [19] defines
two sets of lattice elements, which we write as M (L) and Z (L).

M(L):={eeL|VacL:aCe=a=0},

I(L):={beL|VACL:b=|Ja=beA}.
acA

We call M (L) the set of (non-trivial) minimal elements of L and Z (L) the set of irreducible
elements of L. The irreducible elements generate the lattice, i.e., for all a € L there exist
bi,...,by € T(L) such that a = sz:l b;. Clearly, all minimal elements are irreducible, i.e.,
M (L) C Z(L). Lattices where both sets are the same are called atomic. While the lattice
LC is atomic, this does not hold for the lattice Lgpt of all optimal-yield pathways, cf. Fig.
Therefore, for general lattices, the two concepts are different.

In [23] the concept of elementary flux patterns was introduced to describe the generating
pathways through subsystems Q C R of a metabolic network. These may be interpreted as
the set of irreducible, but not as the set of minimal elements, in a suitably defined lattice

Lg:={anQ | ac L} (cf. (6).

I
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Figure 2: Hasse diagram for the lattice L€ corresponding to the network in Fig. [1l In the space
of optimal-yield flux distributions, there is only one minimal element M (LS, ) = {{r,v,z}}. To
describe the whole system Locpt, we need another, non-minimal irreducible element: Z (Lgpt) =

{{r,v,x} , {b,r, s, tu,v,2}} = ¢

opt

4.2 Lattice Maxima Give a New View on FCA

Flux coupling analysis (FCA) [10,/11}25] studies blocked and coupled reactions in the steady-
state flux cone C. A reaction r € R is blocked, if v, = 0, for all v € C. Two unblocked reactions
r, s are directionally coupled (r =0 s) if v, = 0 implies vg = 0, for all v € C, and partially coupled
(r pa! s) if both r =0 s and s =5 7. If neither r — s nor s — r, then r, s are uncoupled. There is
also the special case of fully coupled reactions, which correspond to enzyme subsets [26]. In the
case of the flux cone, we can find those pairs using the kernel matrix [25].

Blocked and coupled reactions can be naturally defined in the more general lattice-theoretic
framework. A reaction r € R is blocked in L if and only if r ¢ a, for all a € L. For unblocked
reactions r, s € R, we define the coupling relations

r—s:<Vael : (réa=sé¢a),
r<s<Vael : (recassca) .



Now we come back to the unique maximum 17 in a lattice L. From , we know that a
reaction 7 € R is blocked in L if and only if r ¢ 17. Next we look at the lattice L,y =
{aeL|r¢a}, cf. (0). Using again (2)), we see that two unblocked reactions r,s € 1y, are
directionally coupled if and only if s is blocked in 1, () := 1y, ) Therefore, we get:

Proposition 2. Given a lattice L C LR and a reaction r € R, we have:
r is blocked in L < r & 11, . (8)
For two unblocked reactions r,s € R, we have:
r—sesdliny . (9)

In Sect. [5, we will give a fast algorithm for determining 1, and 1, ;,y, which will allow us
to perform FCA in a simplified way.

5 Algorithms & Implementation

5.1 Finding Maxima in General Lattices

We first present an algorithm that can be used to perform FCA in any lattice-based model.
It is designed in a way that it is easily adaptable to all kinds of models and still very fast.
We achieve this by re-using intermediate results a € Ly, which we call witnesses. Using
those witnesses, we search a maximum via nested intervals. At the beginning, we do not know
anything, so we assume 1b = () C 1 1{r} € ub = R with lower and upper bounds 1b and ub.
Each element a € L, that we obtain improves the lower bound. Every time we find that
there is no a € L,y with s € a, we can decrease ub by removing s. Finally, we get 1b = ub,
which is then our maximum 1, .

Algorithm 1. FCA
forreR do
Ligy =R\ {r}
forr e R do
Wi, ={aeW|r¢a}
= Ja, wb=R

aeEW]
for s € R do

if s € ub\ lb then
a = Test(r,s)
if s € a then
b=aUlb, W= {a}UW
else
ub = ubN 1L{5}

]-L{r} = 1b

Alg. [[Juses the fact that lattices are U-closed. Therefore, we can combine each pair of already
known pathways to create a new, larger feasible solution. This gives us a lower bound for the
maxima 1] (1. The algorithm does not use any specific properties of the flux cone. It is defined
for any lattice-based model. To use it, we include the method Test (r,s) that returns a lattice
element a € L with r € a 3 s, if such an element exists, and () otherwise. This method is the
only part of the code depending on model-specific information or constraints.



To implement this method for traditional FCA, we can solve in Test the following linear
program (LP) (with a trivial objective function):

min{0-v | Sv =0, Vprey > 0,0, = 0,05 =0} . (10)

For reversible reactions s € R\ Irrev, this linear program has to be solved twice, i.e., 0 € Q5 =
{1,—1}, for irreversible reactions s € Irrev, we use Q5 = {1}. If we find a feasible solution
v € L {7}, the method Test returns a = {r € R | v, # 0}, otherwise it returns (.

Lemma 1. The LP is infeasible for all o € Qg if and only if r s,

Proof. =: If r is not directionally coupled to s, there exists a € L¢ s.t. r € a 3 s. Because of
the definition of L¢ there exists v € C' with a = {i € R | v; # 0}. Thus, v, = 0 # v,. Because
C is a cone, v is scalable by positive scalars A > 0. Thus, there exists a feasible solution of
LP (10).

<: If LP is feasible, it follows that we have found a flux vector v with support a =
{i € R | v; # 0}. We further know that s € a, but r ¢ a, thus r is not directionally coupled to
S. O O

Theorem 1. Let L C 2R be a lattice and W C L a list of known lattice elements (witnesses).
Then Alg. |1| computes the mazima 1, ¢} needed for FCA (cf. Prop. @)

Proof. Given a reaction r € R, we show that Alg. [T| computes 1,,3. Since W C L is a set of

lattice elements, we have
b=|Ja € [Ja=114y - (11)
aeEW aGLL{,,}

Therefore, 1b is a lower bound for 1, ¢, before we enter the inner loop. Since L,y C L, we
know 1, ¢,3 € 11. Thus, ub is an upper bound before we enter the inner loop. Let s € ub\ 1b
be minimal. Let a be the result of Test(r, s) in the inner loop. By the definition of Test(r, s),
we know that a € L,y and, if a # (0, then s € a. Assume s € a. Then the new 1b = a U 1b is
an element of L | (., with s € 1b. Thus, for the next iteration, it holds that s ¢ ub\ 1b. Now
assume s ¢ a. This means that s ¢ 1, 1. It follows 1, 1) C 1, 4,). Since ub 2 1, 1y, it follows
ub N 1,5 2 1, is an upper bound. Because of the first loop in Alg. [1} we know s ¢ 1, (4.
Thus, in the next iteration, we have s ¢ ub \ 1b. O O

Remark 1. We can accelerate Alg. [1] by replacing loops over R with loops over the set of all
unblocked reactions 17,.

Remark 2. Obviously, we can also modify the algorithm and the LP to calculate this
mazximum 17, of the lattice. For that, we have to replace Test(r,s) with a method Test(s) that
does not use the constraint v, = 0 in (10]).

5.2 FCA in n Steps

Alg. [I] provides a method that can be used for any lattice-based model for which we can imple-
ment the method Test(r,s). The constraints on this method are as simple as they could be:
find a pathway that goes through s but not through r, if possible. Any a € L, with s € a is
suitable. This simplicity is one of the many reasons why this algorithm is so easily adaptable
to other lattice-based models. But there may be cases where we can go even simpler. If there
is a direct way to find the lattice maxima 1, 1, we may compare this with Alg. E We will
do this for classical FCA defined on the flux cone C. According to Prop. [l the set L¢ of all



supports of flux vectors is indeed a lattice. That means there is a feasible flux vector v* € C
with 1;¢ = {r € R | v} # 0}. Obviously, the support of this flux vector has maximal cardinality.

Figueiredo et al. [9] introduce a mixed-integer linear progam (MILP) that enumerates the
(cardinality) shortest elementary modes. To achieve this, they add binary variables a; = 1 <
v; # 0 to the LP (10). A slight variation of their MILP already provides the solution to find
the lattice maximum 1;¢ in one single step. Since [9] is interested in finding elements of small
cardinality, their objective function is min ) ;g a;. Here, we want to find an element of maximal
cardinality. So we change the function to max) , g a;. Doing that we find the unique a € L
with @ = 1;c¢. For finding the maxima 1, 1,1, we just have to (re-)add the single constraint
vs = 0 or alternatively as = 0.

5.3 Implementation

We have implemented the algorithm for general lattices in C#. Our program L4FC (Lattices for
Flux Coupling) accepts files in METATOOL format |26] or separate files for stoichiometric infor-
mation and irreversibility constraints. The implementation makes full use of the flexibility of
lattices: The main program first computes the set of (un-)blocked reactions, before it calculates
the FCA-relevant maxima 1, (3. The calculation of those |R| + 1 maxima is encapsulated into
a separate calculator class. Our current version uses the idea of nested intervals introduced in
Alg. |1l The model-specific method Test(r, s) is implemented in form of a Gurobi model [27]
that solves the LPs . This design allows us to include other modelling approaches in an
easy and elegant way by implementing new calculator classes. The source code is under CC
BY-NC-SA 3.0 and can be downloaded at https://github.com/goldsteiny/L4FC.git.

6 Discussion

We have run our program on seven genome-scale metabolic networks from the BiGG database
[28]. The selection is comparable to other FCA benchmarks, e.g. [11,25]. Table [1] summarizes
the results. No calculation took longer than 4 minutes, five of them less than 40 seconds.
That puts the new L4FC in the same order of magnitude as F2C2, the fastest tool currently
available [25].

Taking a closer look at the result, we see that for all of our models only around 2/3 of the
reactions are unblocked (1718/2583 in the case of E. coli 1JO1366). Calculating these takes
around 5-10% of the total running time. Interestingly, about 10% of all LPs are solved during
this step, and about 10% of the witnesses are found. This is remarkable, because this first phase
calculates only 1 maximum, 17, whereas the second phase calculates |11| ~ 2/3 |R| maxima.

This large disproportion is a direct consequence of our use of nested intervals, where we 1)
re-use all elements found in phase 1 to get better lower bounds and 2) directly apply earlier
found upper bounds 1, (4 to improve our approximation of 1, y,1 for s < r. Doing the iteration
ub = ub N1, is an obvious improvement over ub = ub \ {s} and is quite easy to understand
with lattices in mind. Using it, we achieve similar run time improvements as discussed in [25],
where transitivity tables are analysed and proven.

We ran our algorithm on a machine with Intel Core i7-2600 (3.4 GHz, 4 cores, hyperthread-
ing) and 4GB RAM. We used Gurobi 5.1 with Windows 7 Professional, Service Pack 1 (64-bit),
NET Framework 4.0.30319. As tolerance values for zero flux, we used |v;] < 1078 = i ¢

supp (v).


https://github.com/goldsteiny/L4FC.git

Model Value Number LPs [W| Time (sec)

Total 2583 11100 4322 242.0

1r, 1718 1579 469 9.8
E. coli 1JO1366

coupled 58613 9521 3853 232.2

Total 2382 12606 4525 219.5

1r, 1543 1518 424 8.3
E. coli 1AF1260

coupled 39260 11088 4101 211.2

Total 554 2485 591 6.4

1, 436 190 44 0.3
H. pylori iIT341

coupled 62006 2295 547 6.1

Total 690 2203 886 8.3

1r, 483 340 75 0.6
M. barkeri iIAF692

coupled 76746 1863 811 7.7

Total 1025 4141 1699 25.3

1r, 744 497 158 1.3
M. tuberculosis iNJ661

coupled 60750 3644 1541 23.9

Total 743 4329 741 9.6

1g, 465 394 65 0.5
S. aureus iSB619

coupled 30160 3935 676 9.0

Total 1266 5189 1483 31.1

1r, 631 963 129 3.0
S. cerevisiae iIND750

coupled 15511 4226 1354 28.0

Table 1: Run time results for L4FC applied on 7 genome wide networks.

7 Summary

We have shown that the concept of EMs and FCA can be extended to general lattice-based
models. Using this algebraic framework, we can now apply these methods to new classes of
models. For example, we can run FCA on the space of all optimal-yield flux vectors.

We have introduced a new algorithm for computing the set of unblocked reactions 1;, and
performing FCA, using only lattice properties. This allows an easy adaptation to any lattice-
based model. We have further implemented the algorithm for traditional FCA of the flux cone
and shown on a benchmark set of genome-scale metabolic networks like F. coli iJO1366 that
our tool L4FC is comparable in speed to much more elaborated FCA algorithms.

In a follow-up paper, we will extend our framework to models that do not directly satisfy

the lattice theory axioms.
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