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Abstract. Multi-Level Monte-Carlo Finite Element (MLMC–FE) methods for the solution
of stochastic elliptic variational inequalities are introduced, analyzed, and numerically inves-
tigated. Under suitable assumptions on the random diffusion coefficient, the random forcing
function, and the deterministic obstacle, we prove existence and uniqueness of solutions of
“mean-square” and “pathwise” formulations. Suitable regularity results for deterministic,
elliptic obstacle problems lead to uniform pathwise error bounds, providing optimal-order
error estimates of the statistical error and upper bounds for the corresponding computational
cost for classical Monte–Carlo and novel MLMC–FE methods. Utilizing suitable multigrid
solvers for the occurring sample problems, in two space dimensions MLMC–FE methods then
provide numerical approximations of the expectation of the random solution with the same
order of efficiency as for a corresponding deterministic problem, up to logarithmic terms.
Our theoretical findings are illustrated by numerical experiments.

1. Introduction

Monte-Carlo (MC) methods are well established in statistical simulation. For partial dif-
ferential equations (PDEs for short) with random coefficients, numerical realization of one
MC “sample” entails the numerical solution of one deterministic PDE. Many of such “paths”
are required for sufficient accuracy, causing suboptimal efficiency even if optimal algebraic
solvers are used (see, e.g., [5, 6, 7, 19, 30]). Multi-level versions of MC were introduced,
to the authors’ knowledge, by M. Giles [20, 21] for the numerical solution of Itô stochastic
ordinary differential equations, following basic ideas in earlier work by S. Heinrich [27] on
numerical quadrature. Such Multi-Level Monte-Carlo (MLMC) methods have been shown to
provide similar efficiency for certain stochastic PDEs as in the corresponding deterministic
case [8, 33, 34].

In the present paper, we consider elliptic obstacle problems with stochastic coefficients.
Such problems arise, e.g., in the numerical simulation of subsurface flow problems or contact
problems in mechanics with uncertain constitutive equations, specifically elastic moduli or
friction coefficients (see, e.g., [35, 36, 38] and the references cited therein). Key characteristics
of elliptic variational inequalities with stochastic coefficients are low spatial regularity of the
permeability, small spatial correlation lengths (this implies slow convergence of Karhúnen-
Loève expansions), and the possible nonstationarity of realistic stochastic models, particularly
from computational geosciences. All these factors hinder the efficient numerical simulation
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of such problems by spectral methods [18]. As for unconstrained problems, MC methods
suffer from their typical lack of efficiency, even though fast multi-level solvers for discretized
symmetric obstacle problems are available (see the review article [23] and the references cited
therein). On this background, the present paper is devoted to the development, analysis and
implementation of Multi-Level Monte-Carlo Finite Element Methods (MLMC-FEM for short)
for symmetric, second order, elliptic obstacle problems with random coefficients.

In this paper, the notion of randomness of diffusion coefficients is based on a probability
space (Ω,A,P), with Ω denoting the set of all elementary events. We consider isotropic
random diffusion coefficients a(·, ω) as defined on an open, bounded Lipschitz polyhedron
D ⊂ Rd, d = 1, 2, 3, for all ω ∈ Ω. These are strongly measurable mappings

(1.1) Ω 3 ω 7→ a(·, ω) ∈ L∞(D)

where we endow the space L∞(D) of realizations of diffusion coefficients with the sigma algebra
of Borel sets to render it a measurable space. Though our algorithms will be well-defined even
for random coefficients whose realizations are merely in L∞(D), we will impose stronger,
spatial continuity (either P-a.s. Hölder continuity or P-a.s. continuous differentiability in D)
on the draws of the random coefficient in (1.1) in order to have convenient access to known
regularity results for deterministic variational inequalities. In practice, however, often only
a weaker “pathwise” regularity a(·, ω) ∈ C0,s(D) holds for some 0 < s < 1. Here C0,s(D)
denotes the (separable) Banach space of functions which are Hölder continuous with exponent
0 < s < 1 in D. In the case s = 1, we consider the (separable) Banach space C1(D) rather
than the (nonseparable) Banach space C0,1(D). For a given random source f , i.e., a strongly
measurable mapping

(1.2) Ω 3 ω 7→ f(·, ω) ∈ L2(D) ,

and a deterministic obstacle function

(1.3) χ ∈ H2(D), χ ≤ 0 in D ,

we consider the stochastic obstacle problem which, formally in strong form, amounts to finding
a random solution u(·, ω) such that for P-a.e. ω ∈ Ω and for a.e. x ∈ D there holds

(1.4)

−div(a(·, ω)∇u) ≥ f(·, ω) in D,
u ≥ χ in D,(

div(a(·, ω)∇u) + f(·, ω)
)(
u− χ

)
= 0 in D,

u|∂D = 0 .

We concentrate on deterministic obstacle functions, because random obstacles χ(·, ω) can be
traced back to the deterministic obstacle zero by introducing the new variable w = u− χ. A
direct treatment of stochastic obstacles is contained in [10].

The solution u of the stochastic obstacle problem (1.4) not only depends on x ∈ D, but
also on the “stochastic parameter” ω ∈ Ω. We prove existence and uniqueness of solutions
u(·, ω) of a “pathwise” variational formulation of the deterministic obstacle problem (1.4)
for P–a.e. realization ω ∈ Ω. Taking expectations of the pathwise variational form, we
arrive at a “mean-square” variational formulation. We show existence and uniqueness of a
solution u with finite second moments. Regularity and uniform stability for P-a.e. ω ∈ Ω of
pathwise weak solutions follows from suitable regularity assumptions on the (random) data
via regularity results for the deterministic, elliptic obstacle problem. From these regularity
results, we obtain pathwise, optimal-order error estimates for continuous, piecewise linear
Finite Element approximations. These error bounds hold uniformly for P-a.e. ω ∈ Ω. Our
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arguments strongly rely on well-known Finite Element convergence results for deterministic
problems (cf., e.g. [15, 37]).

The pathwise results are the basis for the efficient computation of the expectation value
of the mean-square solution of the stochastic obstacle problem (1.4) by Monte-Carlo-type
methods. We first prove that the classical Monte-Carlo (MC) method converges with the
order 1/2 in terms of the number M of MC samples. Then, we show that, up to a logarithmic
factor, the resulting Monte-Carlo Finite Element Method (MC-FEM) requires suboptimal

computational cost of order N3, N2, N1+ 2
3 for space dimension d = 1, 2, 3, respectively, in

terms of the number N of degrees of freedom used in the Finite Element approximation.
Therefore, following Barth et al. [8], we introduce a Multi-Level-Monte-Carlo Finite Element
Method (MLMC-FEM), which, in contrast to MC-FEM does not preserve conformity of the
deterministic samples. Assuming that suitable algebraic solvers for the pathwise sample
problems are available, we show that MLMC-FEM provides optimal-order approximations at
computational cost of order N2 for d = 1 and of optimal order N for problems in d = 2, 3
space dimensions, up to logarithmic factors.

The discretized pathwise sample problems, i.e., discretized deterministic obstacle problems
with spatially varying coefficients, can be solved iteratively up to discretization error accuracy
by recent multigrid methods [3, 4, 23, 40]. Mesh-independent polylogarithmic convergence
rates, as typically observed in numerical computations, have been recently justified theoreti-
cally for so-called Standard Monotone Multi-Grid Methods (STDMMG) [29, 31] by Badea [4]
in d = 1, 2 space dimensions. Hence, for d = 2 space dimensions MLMC-FEM with algebraic
STDMMG solver turns out to provide an optimal-order approximation of the expectation
of the random solution u at a computational cost which is essentially the same as for a
corresponding deterministic problem. These theoretical results are illustrated by numerical
experiments in one and two space dimensions using model problems with known solutions.

The paper is organized as follows. In the following Section 2, we collect basic properties of
random fields and Elliptic Variational Inequalities (EVIs) which shall be used in the ensuing
developments. In Section 3, we state the assumptions on the random diffusion coefficient
a(·, ω), the random source term f(·, ω), the deterministic obstacle χ, and the spatial domain
D, and discuss possible generalizations along with typical examples. We also provide pathwise
and mean-square formulations of the stochastic obstacle problem (1.4) and present results on
existence, uniqueness, measurability, summability, regularity, and stability of the random
solution. Section 4 first addresses the convergence analysis of a stochastic Finite Element
approximation of the pathwise variational formulation of (1.4) together with the analysis
of convergence and computational cost of MC-FEM and MLMC-FEM and then algebraic
multigrid solution of the pathwise sample problems. As a corollary, we obtain almost optimal
efficiency of MLMC-FEM with algebraic STDMMG solver for d = 2 space dimensions, which
is one of the main results of this paper. The concluding Section 5 contains several numerical
experiments illustrating our theoretical findings.

2. Preliminaries

2.1. Random Fields. Let (Ω,A,P) be a probability space, where Ω denotes a set of ele-
mentary events, A ⊂ 2Ω stands for the σ-algebra of all possible events, and P : A → [0, 1] is a
probability measure. Then, for any separable Banach space X of real-valued functions on the
domain D ⊂ Rd with norm ‖ · ‖X , we introduce the Bochner space of strongly measurable,
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r-summable mappings v : Ω→ X by (see, e.g., [16, Chap.1])

Lp(Ω,A,P;X) :=
{
v : Ω→ X | v strongly measurable, ‖v‖Lp(Ω;X) <∞

}
,

where, for 0 < p ≤ ∞,

‖v‖Lp(Ω;X) :=


(∫

Ω
‖v(·, ω)‖pXdP(ω)

)1/p

if 0 < p <∞,

ess supω∈Ω‖v(·, ω)‖X if p =∞ .

In the following, we shall not explicitly indicate the dependence of Bochner spaces and their
norms on the probability measure P, if this measure is clear from the context.

Let B ∈ L(X,Y ) denote a continuous linear mapping from X to a separable Hilbert space Y
with norm ‖B‖X,Y . For a random field v ∈ Lp(Ω;X) this mapping defines a random field
Bv ∈ Lp(Ω;Y ) with the property

‖Bv‖Lp(Ω;Y ) ≤ ‖B‖X,Y ‖v‖Lp(Ω;X).

Furthermore, there holds

B
∫

Ω
v dP(ω) =

∫
Ω
Bv dP(ω) .

We refer to Chapter 1 of [16] for further results on Banach space valued random variables.

2.2. Elliptic Variational Inequalities (EVIs). We briefly recall some basic existence re-
sults on deterministic EVIs, in particular the theorem of Stampaccia [28]. Let V be a Hilbert
space with inner product 〈·, ·〉V , associated norm ‖ · ‖V and dual space V∗. We recall that a
bilinear form b(·, ·) : V × V → R is

i) continuous, if there exists C1 > 0 such that

(2.1) |b(u, v)| ≤ C1‖u‖V ‖v‖V ∀u, v ∈ V ,

ii) coercive, if there exists C2 > 0 such that

(2.2) b(u, u) ≥ C2‖u‖2V ∀u ∈ V .

Theorem 2.1. Let b(·, ·) : V × V → R be a continuous, coercive, not necessarily symmetric
bilinear form on the Hilbert space V, and let ∅ 6= K ⊂ V be a closed, convex subset. Then, for
any ` ∈ V∗ there exists a unique solution u ∈ K of the EVI

u ∈ K : b(u, v − u) ≥ `(v − u) ∀v ∈ K .(2.3)

In the iterative solution of discretized deterministic obstacle problems as described in Sec-
tion 4.5 later on, we use the following reformulation of (2.3) in terms of convex minimization
that exclusively holds in the symmetric case.

Proposition 2.2. If the bilinear form b(·, ·) is symmetric, then the unique solution of the
EVI (2.3) is characterized as the unique minimizer of the associated potential

(2.4) J(v) :=
1

2
b(v, v)− `(v) , v ∈ V ,

over the closed, convex cone K, i.e.,

(2.5) u = arg min {J(v) : v ∈ K} .
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For given v ∈ V the error ‖u−v‖b in the energy norm ‖ · ‖b = b(·, ·)1/2 and the energy error
are related according to

(2.6) 1
2‖u− v‖

2
b ≤ J(v)− J(u) ≤ ‖u− v‖b

(
1
2‖u− v‖b + ‖u− u∗‖b

)
.

Here u∗ stands for the unconstrained solution, i.e., b(u∗, v) = `(v). Note the mismatch
between the lower and upper bound which does not occur in the unconstrained case K = V.

We shall also be interested in the following special case.

Proposition 2.3. Assume that

(2.7) K ⊂ V is a closed, convex cone with vertex 0 .

Then the solution u ∈ K of the EVI (2.3) is characterized by

(2.8) u ∈ K : b(u, v) ≥ `(v) ∀v ∈ K and b(u, u) = `(u) .

Moreover, with the constant C2 as in (2.2) there holds the a-priori estimate

(2.9) ‖u‖V ≤
1

C2
‖`‖V∗ .

Proof. Let u ∈ K be a solution of (2.3). As K is closed under linear combinations with positive
coefficients, we have w = u + v ∈ K for all v ∈ K. Inserting w = u + v into (2.3) implies
b(u,w) ≥ `(w) for all w ∈ K. Inserting w = u into this inequality and v = 0 ∈ K into (2.3),
we get b(u, u) = `(u). Conversely, if u solves (2.8), then we can subtract the equality from
the inequality in (2.8) to show that u solves (2.3). The estimate (2.9) is a straightforward
consequence of the reformulation (2.8). �

3. Elliptic obstacle problem with stochastic coefficients

After these preparations, we now turn to the variational formulation of the unilateral
stochastic boundary value problem (1.4). To this end, we first introduce a “pathwise” abstract
formulation which closely resembles the deterministic formulation (2.3) and verify its well-
posedness. We then present examples of the abstract problem which, in particular, are not
uniformly elliptic.

3.1. Random Diffusion Coefficients. We assume that the stochastic diffusion coefficient
a(x, ω) is, possibly after modification on a null–set, well-defined and computationally accessi-
ble for every ω ∈ Ω. To ensure well–posedness later on, we impose the following assumptions
on the random coefficient a(x, ω), the random source term f and the deterministic obstacle
function χ.

Assumption 3.1. The random diffusion coefficient a(·, ω) and the right hand side f(·, ω),
are strongly measurable mappings Ω 3 ω 7→ a(·, ω) ∈ L∞(D) and Ω 3 ω 7→ f(·, ω) ∈ L2(D),
respectively. The random diffusion coefficient a(·, ω) is elliptic in the sense that there exist
real-valued random variables ǎ, â such that

(3.1) 0 < ǎ(ω) ≤ a(x, ω) ≤ â(ω) <∞ a.e. x ∈ D
holds for P-a.e. ω ∈ Ω. We have f(·, ω) ∈ L2(D) for P-a.e. ω ∈ Ω, and the obstacle function
χ ∈ H2(D) satisfies χ ≤ 0 in D.

In deriving optimal convergence rates for Finite Element discretizations (cf. Proposition 3.7
ahead) we will sharpen Assumption 3.1 by the following uniform ellipticity and regularity of
the random coefficient a(·, ω).
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Assumption 3.2. a) (uniform ellipticity) There exist constants a−, a+ such that the random
variables ǎ and â in (3.1) satisfy P-almost surely

(3.2) 0 < a− ≤ ǎ(ω) ≤ â(ω) ≤ a+ <∞ ,

and the right hand side satisfies f ∈ L2(Ω;L2(D)).
b) (almost sure spatial regularity of a) The random diffusion coefficient a(·, ω) is “pathwise”
Lipschitz continuous in the sense that a is a measurable map

(3.3) Ω 3 ω 7→ a(·, ω) ∈ C1(D)

with the property

(3.4) a ∈ L∞(Ω;C1(D)) .

c) (regularity of D) The spatial domain D ⊂ Rd is convex.

The above Assumption 3.1 is satisfied, for example, for lognormal Gaussian random fields
a with the choice

(3.5) 0 < ǎ(ω) := ess inf
x∈D

a(x, ω) , â(ω) := ess sup
x∈D

a(x, ω) <∞ .

We refer to [14, Proposition 2.3], which in this case states

(3.6) â ∈ Lp(Ω) , (ǎ)−1 ∈ Lp(Ω) for all 0 < p <∞ .

For lognormal Gaussian random fields a with sufficiently smooth covariance kernel function
Ra(·, ·), the decay of the Karhúnen-Loève eigenvalues to zero increases with smoothness (see,
e.g., [39, Appendix]). Then, the C1(D) regularity in sense of (3.3) in Assumption 3.2 b) is
satisfied in mean square, but not P − a.s.. To ensure sufficient integrability for MC-error
analysis, we will assume occasionally that

(3.7) a ∈ Lp(Ω;C1(D)) for all 0 < p <∞ .

and that the mean diffusion coefficient ā satisfies

(3.8) ā = E[a] ∈ C1(D) .

We emphasize that the extra Assumption 3.2 or (3.7) and (3.8) are imposed only to ensure
P − as sufficient regularity of the random solution to yield full first order convergence of
continuous, piecewise linear Finite Element discretizations.

Moreover, assumption (3.3) also implies that the covariance kernel Ra of a, defined by

Ra := E [(a− E[a])⊗ (a− E[a])] ∈ C1(D ×D)

induces a self-adjoint integral operator Ca, the covariance operator, which is compact from
L2(D) to L2(D), via

(Caϕ)(x) =

∫
x′∈D

Ra(x, x
′)ϕ(x′) dx′ , x ∈ D .

The spectral theorem for compact, self-adjoint operators implies that Ca has a countable
sequence (λk, ϕk)k≥1 of eigenpairs with the sequence {λk}k≥1 accumulating only at zero, and
with a sequence of eigenfunctions ϕk ∈ L2(D) which we assume to be an L2(D)-orthogonal,
dense set in L2(D), i.e., we assume that the covariance operator Ca does not have finite
rank or, equivalently, that the “noise” input a is genuinely infinite-dimensional. Next, we
present several concrete examples of random diffusion coefficients a given in terms of their
Karhúnen-Loève expansions.
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Example 3.1. (Uniform Random Field)
Here, the random field a ∈ L2(Ω;C1(D)) is assumed to satisfy the uniform ellipticity condition
(3.2), i.e., we control the random coefficient with deterministic lower and upper bounds a−,
a+. The assumption a ∈ L2(Ω;C1(D)) implies the pathwise spatial regularity a(·, ω) ∈ C1(D)
for P-a.e. ω ∈ Ω, and also that ϕk ∈ C1(D). We may expand the field a(·, ω) ∈ C1(D) in a
Karhúnen-Loève series, i.e.,

a(x, ω) = ā(x) +
∑
k≥1

√
λkYk(ω)ϕk(x) ,

where, assuming that the ϕk are normalized in L2(D), the random coefficients Yk(ω) are

Yk(ω) =
1√
λk

∫
x′∈D

(a− E[a])(x′, ω)ϕk(x
′)dx′ , k = 1, 2, . . . .

Example 3.2. (Lognormal Gaussian Random Fields in D)
We assume the random field a to be such that for some deterministic ã ∈ C1(D) the field
g = log(a− ã) is a homogeneous, Gaussian random field in D with mean ḡ = log(ā) ∈ C1(D),
and with Lipschitz continuous covariance kernel

(3.9) Rg(x, x
′) := E

[
(g(x, ·)− E[g](x))(g(x′, ·)− E[g](x′))

]
= ρ(‖x− x′‖) , x, x′ ∈ D .

In (3.9), the function ρ(·) is at least Lipschitz continuous. It is well known (see, e.g., [1]), that
prescribing the (deterministic) functions ã, ḡ and ρ, the stationary, Gaussian random field g
is determined, up to null-events.

Moreover, assuming only Lipschitz regularity of ρ(·) near zero, the sample paths a(·, ω)
belong P–a.s. to C0,s(D) with s < 1/2 (see, e.g., [14, Proposition 2.1]). This is the case,
e.g., for the so-called exponential covariance function. Here, ρ in (3.9) is given by ρ1/2(r) =

σ2 exp(−r/λ) where, σ > 0 is the variance, and λ > 0 is a correlation length parameter.
Additional smoothness of ρ near r = 0 implies higher spatial regularity of the realiza-

tions a(·, ω). For example, for the Gaussian covariance kernel, where ρ equals ρ∞(r) =
σ2 exp(−r2/λ2) sample paths are infinite differentiable, in quadratic mean, in D (see, e.g. [1,
Chapter 8]).

Both kernel functions, ρ1/2 and ρ∞, the exponential and Gaussian covariance kernel, are
special cases of the so-called Matern-Covariances (see, e.g., [32]) where ρ in (3.9) is given by

(3.10) ρν(r) := σ2 21−ν

Γ(ν)

(
2
√
ν
r

λ

)ν
Kν(2

√
ν
r

λ
) .

Here, Kν denotes the modified Bessel function of the second kind. The smoothness of ρν(·)
at r = 0 and, correspondingly, the spatial regularity of realizations of a(·, ω) depends on the
parameter ν.

3.2. Pathwise Formulation and Well-Posedness. For given probability space (Ω,A,P)
and a separable Hilbert space V , we consider a stochastic analog of the abstract EVI (2.3).
To this end, we assume that a given random bilinear form b(ω; ·, ·) : V × V 7→ R satisfies

(3.11) |b(ω;w, v)| ≤ C1(ω)‖w‖V ‖v‖V ∀v, w ∈ V

and

(3.12) b(ω; v, v) ≥ C2(ω)‖v‖2V ∀v ∈ V
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for P-a.e. ω ∈ Ω with random variables C1(ω), C2(ω) ∈ Lp(Ω), 2 ≤ p <∞, with the property

(3.13) 0 < C1(ω) ≤ C2(ω) <∞ , P-a.e. ω ∈ Ω .

In later applications, these conditions will be assured by Assumption 3.1, in particular by
pathwise ellipticity (3.1), or by the stronger uniform ellipticity (3.2).

We further assume given a closed, convex subset K ⊂ V . Then, for a linear functional
`(·) ∈ V ∗, and for a given realization ω ∈ Ω, we consider the “pathwise” random EVI

(3.14) u(ω) ∈ K : b(ω;u(ω), v − u(ω)) ≥ `(v − u(ω)) ∀v ∈ K .

Theorem 3.3. Let the assumptions (3.11), (3.12), and (3.13) hold. Then the stochastic EVI
(3.14) admits, for P-a.e. ω ∈ Ω, a unique solution u(ω) ∈ K. The solution map

(3.15) Ω 3 ω 7→ Σ(ω) := {u ∈ K : u solves (3.14)}

is measurable with respect to the Borel σ-algebra B(V ) of V , i.e., u ∈ L0(Ω;V ).

Proof. For each fixed realization ω ∈ Ω the random EVI (3.14) becomes a special case of the
deterministic EVI (2.3). Hence, under the assumptions (3.11), (3.12), and (3.13), existence
and uniqueness of a solution u(ω) ∈ K of (3.14) follows from Theorem 2.1. The measurability
of the solution correspondence (3.15) is shown, for example, in [25, Section 1]. �

We note in passing that Theorem 3.3 does not require the bilinear form b(ω; ·, ·) to be
symmetric.

3.3. Stochastic Variational Formulation and Well-Posedness. Variational formula-
tions of (1.4) will be based on the Hilbert space V = H1

0 (D) which is a closed, linear subspace
of H1(D). By Poincaré’s inequality, the expressions

V 3 v → ‖v‖V :=

(∫
D
|∇v|2dx

)1/2

, ‖v‖a :=

(∫
D
ā|∇v|2dx

)1/2

are equivalent norms on V . Throughout the following, we identify L2(D) with its dual and
denote by V ∗ the dual of V with respect to the “pivot” space L2(D), i.e., we work in the
triplet V ⊂ L2(D) ' L2(D)∗ ⊂ V ∗. To state the variational formulation of the stochastic
elliptic boundary value problem (1.4), we define the set

(3.16) K := {v ∈ H1
0 (D) : v ≥ χ a.e. x ∈ D}

with given, deterministic obstacle function χ satisfying Assumption 3.1. Then K is a closed,
convex subset of V and 0 ∈ K, so that (2.7) is valid. For each realization ω ∈ Ω, the pathwise
variational form of (1.4) is then given by (3.14) with

(3.17) b(ω; v, w) :=

∫
D
a(x, ω)∇v · ∇w dx , `(ω;w) :=

∫
D
f(x, ω)w dx , v, w ∈ V ,

and K defined in (3.16). The pathwise formulation (3.14) will be the basis of MC sampling.
Existence, uniqueness, and stability follow from Theorem 3.3 and Proposition 2.3.

Proposition 3.4. Let Assumption 3.1 hold. Then the pathwise obstacle problem (3.14) has
a unique solution u(ω) ∈ K for P-a.e. ω ∈ Ω which fulfills the a-priori estimate

(3.18) ‖u(·, ω)‖V ≤
1

ǎ(ω)
‖f(·, ω)‖L2(D) P-a.e. ω ∈ Ω .
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Imposing the stronger uniform ellipticity condition (3.2) we get the uniform estimate

‖u(·, ω)‖V ≤
1

a−
‖f(·, ω)‖L2(D) P-a.e. ω ∈ Ω ,

providing the moment bound u ∈ L2(Ω;V ) for f ∈ L2(Ω;L2(D)).

Remark 3.5. From the pathwise bound (3.18), moment bounds can be obtained without
condition (3.2). Indeed, raising (3.18) to the power 1 ≤ r <∞, and using Hölder’s inequality
with conjugate indices t, t′ ≥ 1, 1/t+ 1/t′ = 1 gives

(3.19) ‖u‖Lr(Ω;V ) ≤ ‖(ǎ)−1‖Lrt(Ω)‖f‖Lrt′ (Ω;L2(D)) .

Hence, imposing the condition (3.6), we can select p = rt < ∞ sufficiently large, to find

‖u‖Lr(Ω;V ) <∞ provided that f ∈ Lr(1+δ)(Ω;L2(D)) for some δ > 0.

As a second approach to the existence of solutions to the random EVI (1.4), we formally
take expectations on both sides of this expression, and arrive at the “mean-square” weak
formulation of the stochastic elliptic boundary value problem (1.4): given a random coeffi-
cient a(x, ω), a random source term f(·, ω), and a deterministic lower obstacle χ satisfying
Assumption 3.1, we select

V := L2(Ω;V ) , K := L∞(Ω,P;K)
‖·‖V

with the convex set K ⊂ V defined in (3.16). Then, K ⊂ L2(Ω;V ) is convex and closed, and
V∗ ' L2(Ω;V ∗). The mean-square weak formulation of the random EVI (1.4) now reads

(3.20) u ∈ K : B(u, v − u) ≥ F (v − u) ∀v ∈ K .
Here the bilinear form B(·, ·) : L2(Ω;V )× L2(Ω;V )→ R is defined by

B(v, w) = E

[∫
D
a(x, ω)∇v(x, ·) · ∇w(x, ·) dx

]
,

and F : L2(Ω;V ) 7→ R takes the form

F (v) = E [`(·; v)] = E

[∫
D
f(x, ω)v(x, ·) dx

]
.

To show well-posedness of this integrated form of the sEVI, we additionally require f ∈
L2(Ω;D) and the uniform ellipticity condition (3.2) for the stochastic coefficient.

Theorem 3.6. Let Assumptions 3.1 and 3.2 a) hold. Then the weak formulation (3.20) of
the stochastic EVI (1.4) admits a unique solution u ∈ K.

Proof. Exploiting Assumption 3.1 and uniform ellipticity (3.2), we get the upper bound
(3.21)
|B(v, w)| ≤ ess supω∈Ω‖a(·, ω)‖L∞(D)‖v‖L2(Ω;V )‖w‖L2(Ω;V ) ≤ a+‖v‖L2(Ω;V )‖w‖L2(Ω;V )

and, using again the uniform ellipticity (3.2), also the lower bound

(3.22) B(v, v) ≥ a−‖v‖2L2(Ω;V ) .

Moreover, for given f ∈ L2(Ω;V ∗) we have for every w ∈ V
(3.23) |F (w)| ≤ ‖f‖L2(Ω;L2(D))‖w‖L2(Ω;V ) .

The assertion now follows from Theorem 2.1. �
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3.4. Regularity of Solutions. As a consequence of the regularity theory for deterministic
obstacle problems for the Laplacian (see, e.g., [37, Chapter 5]), Assumptions 3.1 and 3.2 ensure
that u(·, ω) ∈ H2(D) holds, P-a.s. .

Proposition 3.7. Let Assumptions 3.1 and 3.2 hold. Then the mean-square random obstacle
problem (3.20) admits a unique solution u ∈ L2(Ω;W ), where the linear space W is defined
by W := {w ∈ V : ∆w ∈ L2(D)} and is equipped with the norm

‖w‖W := ‖∆w‖L2(D) + ‖w‖L2(D) .

Further, there holds the a-priori estimate

(3.24) ‖u‖L2(Ω;W ) ≤ C(a)‖f‖L2(Ω;L2(D)) ,

where C(a) depends on a− and a+ in (3.2).

Proof. As a consequence of Assumption 3.2, i.e., the P-a.s. W 1,∞(D)–regularity of the real-
izations of the stochastic coefficient a(ω), the realization u(ω) = u(·, ω) of the random solution
u ∈ L2(Ω;V ) of the mean-square weak formulation (3.20) solves the deterministic obstacle
problem for the Laplacian

(3.25) u(ω) ∈ K :

∫
D
∇u(ω) · ∇(v − u(ω)) dx ≥

∫
D
f̃(v − u(ω)) dx ∀v ∈ K

for P-a.e. ω with the random source

f̃(·, ω) =
1

a(·, ω)
(f(·, ω) +∇a(·, ω) · ∇u(·, ω)) .

By Assumption 3.1, we have f(·, ω) ∈ L2(D) for P-a.e. ω ∈ Ω and Assumption 3.2 b) yields
uniform regularity a(·, ω) ∈ C1(D). Together with the a-priori estimate (3.18) and uniform
ellipticity a(·, ω) ≥ ǎ(ω) ≥ a− > 0, as stated in Assumption 3.2 a), this implies

(3.26) ‖f̃(·, ω)‖L2(D) ≤ C‖f(·, ω)‖L2(D) , P-a.e. in Ω ,

with a constant C independent of ω ∈ Ω. As a consequence, we may estimate

(3.27) ‖∆u(·, ω)‖L2(D) ≤ C‖f(·, ω)‖L2(D) , P-a.e. in Ω ,

with a possibly different constant C independent of ω ∈ Ω by utilizing convexity of D (cf. As-
sumption 3.2 c)) together with well-known H2(D) regularity results for the deterministic
obstacle problem (3.25) (see, e.g., [2] or [37, Corollary 5:2.3]).

Adding the corresponding bound for ‖u(·, ω)‖L2(D) (which follows from (3.18) and the
Poincaré-inequality), raising both sides of the resulting bound on the ‖ · ‖W norm of u to the
power 2 and taking expectations implies the assertion (3.24). �

We recall that the first part (3.3) of Assumption 3.2 b) is satisfied, for example, for log-
normal Gaussian random fields a with sufficiently regular covariance function Ra(x, x

′). Note
that we impose the (strong) regularity Assumption 3.2 b) only to attain full spatial regular-
ity of solutions to the pathwise random EVIs (3.14) which in turn will provide (first order)
convergence of continuous, piecewise linear Finite Element discretizations later on.

Remark 3.8. Under mere Lipschitz continuity of Ra(·, ·), Assumption 3.2 does not hold, in
general. In this case, only the weaker statement Ω 3 ω 7→ a(·, ω) ∈ C0,s(D) with 0 < s < 1/2
is available P-a.s. (see [14, Proposition 1]). However, the a-priori error estimates for MC-FE
and MLMC-FE to be stated in Theorem 4.5 and Theorem 4.9, respectively, will remain valid
in this case, albeit with lower convergence rates. Note that a lack of full regularity would
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not affect the convergence analysis of multigrid methods for discretized pathwise EVIs (cf.
Remark 4.12).

Remark 3.9. If uniform ellipticity (3.2) were dropped, and only Assumption 3.1 and pathwise
regularity (3.3) is required, then the reasoning in the proof of Proposition 3.7 above is still
valid, except for the last step: instead of (3.27), the representation (3.26) and well-known
H2(D)-regularity results for the deterministic obstable problem for the Laplacian provide the
P-a.s. bound

‖∆u(·, ω)‖L2(D) ≤
C

ǎ(ω)

(
‖f(·, ω)‖L2(D) + ‖∇a(·, ω)‖L∞(D)‖∇u(·, ω)‖L2(D)

)
.

Using the pathwise a-priori estimate (3.18) we arrive at the P-a.s. bound

(3.28) ‖∆u(·, ω)‖L2(D) ≤
C

ǎ(ω)

(
‖f(·, ω)‖L2(D) +

‖∇a(·, ω)‖L∞(D)

ǎ(ω)
‖f(·, ω)‖V ∗

)
.

Note that (3.28) provides convergence of piecewise linear Finite Element approximations with
optimal order. Squaring (3.28) and proceeding as in Remark 3.5, we obtain the desired L2-
bound (3.24), if uniform ellipticity (3.2) and uniform regularity (3.4) is replaced by the weaker

conditions (3.6) and (3.7) or even a ∈ L2(1+δ)(Ω;W 1,∞(D)) with δ > 0, respectively.

Remark 3.10. The space W can be characterized as a weighted Sobolev space with weights
vanishing at vertices and (in case d = 3) at edges of the polyhedron D (see, e.g., [24]).

4. Multi-Level Monte-Carlo Finite Element method

In the following section, we first introduce continuous, piecewise linear Finite Element
discretizations of the pathwise random obstacle problems (3.14) with constraints K, bilinear
form b(ω; ·, ·), and right hand side f defined in (3.16) and (3.17), respectively. Under suitable
regularity assumptions we state an optimal error estimate that holds uniformly for P-a.e.
ω ∈ Ω. Together with well-known convergence results on Monte-Carlo (MC) sampling [8] this
is the main tool for the convergence and complexity analysis of Monte-Carlo and Multi-Level-
Monte-Carlo Finite Element Methods (MC-FEM and MLMC-FEM for short) for stochastic
mean-square obstacle problems of the form (3.20). In the complexity analysis we assume that
almost optimal algebraic solvers for the iterative solution of the discrete pathwise obstacle
problems are available. Later in Section 4.5, we show that Monotone Multi-Grid (MMG)
methods [4, 29, 31] have this property at least for problems in space dimensions d = 1, 2.
As a consequence, as in the unconstrained case, the resulting Multi-Level Monte-Carlo Finite
Element Method with algebraic MMG solver (MLMC-MMG-FEM) for stochastic obstacle
problems achieve almost optimal complexity.

4.1. Galerkin Finite Element Approximation. Throughout this section we assume that
D is a polyhedral domain, for simplicity. We consider a sequence of partitions {Tl}l≥0 of D
into simplices as resulting from uniform refinements of a coarse, regular simplicial partition
T0 (see, e.g., [9, 11] for details). By construction, the sequence {Tl}l≥0 is shape regular (cf.,
e.g., [12, 13])) and the mesh width hl,

hl = max{diam(T ) : T ∈ Tl} ,
of Tl satisfies hl = 1

2hl−1 = 2−lh0. For each refinement level l = 0, 1, . . . we define a corre-
sponding sequence of nested Finite Element spaces

(4.1) V0 ⊂ V1 ⊂ · · · ⊂ Vl ⊂ · · ·
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with Vl given by

(4.2) Vl = {v ∈ V : v|T ∈ P1 ∀T ∈ Tl} .

Here, P1(T ) = span{xα : |α| ≤ 1} denotes the space of linear polynomials on T so that Vl
consists of all continuous functions on D, which are piecewise linear on all T ∈ Tl and satisfy
homogenous Dirichlet boundary conditions. The dimension Nl of Vl agrees with the number
of elements of the set Nl of interior nodes of Tl. Assuming χ ∈ H2(D) (cf. Assumption 3.1)
and utilizing H2(D) ⊂ C(D) for d = 1, 2, 3 space dimensions, we then may define

(4.3) Kl := {v ∈ Vl : v(p) ≥ χ(p) ∀p ∈ Nl} , Kl := L∞(Ω;Kl)
‖·‖V

.

Note that Kl /∈ K and thus Kl /∈ K, in general, but the sets Kl ⊂ Vl and Kl ⊂ Vl still are
norm-closed, convex cones in these spaces. Under Assumption 3.1 on the obstacle χ, the
cones Kl and Kl have common vertex 0, i.e., 0 ∈ Kl and 0 ∈ Kl holds for all l = 0, 1, 2, . . . so
that Proposition 2.3 is applicable.

Now the corresponding discretization of the mean-square weak formulation (3.20) of the
stochastic elliptic boundary value problem (1.4) reads

(4.4) ul ∈ Kl : B(ul, vl − ul) ≥ F (vl − ul) ∀vl ∈ Kl .

If Assumptions 3.1 and 3.2 a) hold, then, by Theorem 3.6, the discrete sEVI (4.4) has a
unique stochastic Finite Element solution ul ∈ L2(Ω;Kl) for all l = 0, 1, 2, . . . .

Rather than the mean-square projection (4.4) MC and MLMC methods will be based on
the pathwise Finite Element discretization

(4.5) ul(ω) ∈ Kl : b(ω;ul(ω), vl − ul(ω)) ≥ `(vl − ul(ω)) ∀vl ∈ Kl , ω ∈ Ω ,

of the pathwise sEVI (3.14). In particular, for each draw of a(·, ω), a discrete deterministic
obstacle problem of the form (4.5) will have to be solved in MC and MLMC sampling. As
in Proposition 3.4, existence, uniqueness, and upper bounds follow from Theorem 3.3 and
Proposition 2.3, respectively.

Proposition 4.1. Let Assumption 3.1 hold. Then there exists a unique solution ul(ω) ∈ Kl

of (4.5) for P-a.e. ω ∈ Ω and l ∈ N that satisfies

(4.6) sup
l∈N
‖ul(ω)‖V ≤

1

ǎ(ω)
‖f(ω)‖L2(D) , P-a.e. ω ∈ Ω .

Under the additional Assumption 3.2 a), the family of pathwise solutions {ul(ω) : ω ∈ Ω} ⊂
L∞(Ω;K) coincides with the unique mean-square solution ul ∈ Kl of (4.4) and we have the
a-priori estimate

(4.7) sup
l∈N
‖ul(ω)‖V ≤

1

a−
‖f(ω)‖L2(D) , P-a.e. ω ∈ Ω .

Now we are ready to show a pathwise error estimate that holds uniformly P-a.e. in Ω.

Proposition 4.2. Let Assumptions 3.1 and 3.2 hold. Then there exists a positive constant
C = C(a, f, χ) independent of ω ∈ Ω and l ∈ N, such that

(4.8) ‖u(ω)− ul(ω)‖V ≤ Chl, P-a.e. ω ∈ Ω .
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Proof. We define the representation A(ω) : V → V ∗ of b(ω; ·, ·) via the Riesz representation
theorem by 〈A(ω)w, v〉 = b(ω;w, v) ∀v, w ∈ V , where 〈·, ·〉 denotes the duality pairing of V ∗

and V . By Proposition 3.7, Assumptions 3.1 and 3.2 imply H2(D)-regularity, i.e.,

A(ω)u(ω) = ∇ · (a(ω)∇u(ω)) ∈ L2(D)

for P-a.e. ω ∈ Ω. Then the proof of the pathwise bound

(4.9)

‖u(ω)− ul(ω)‖2V ≤

inf
vl∈Kl

(
2

ǎ(ω)
‖f(ω)−A(ω)u(ω)‖L2(D)‖u(ω)− vl‖L2(D) +

â(ω)2

ǎ(ω)2
‖u(ω)− vl‖2V

)
+‖f(ω)−A(ω)u(ω)‖L2(D) inf

v∈K
‖ul(ω)− v‖L2(D)

= I + II

follows from classical arguments due to Falk [17] (cf., e.g., [15, Thm. 5.1.1], in particular [15,
(5.1.11)]). We estimate the terms I and II separately. The error estimate

(4.10) I ≤ C(a, f)h2
l , P-a.e. ω ∈ Ω

follows from the regularity assumption (3.3), the a-priori bound (3.27), uniform ellipticity
(3.2), and well-known interpolation error estimates (cf., e.g., [15, Theorem 3.1.6]). The re-
maining deterministic estimate

II ≤ C(χ)h2
l

is stated in the proof of [15, Theorem 5.1.2]. �

We proceed with an analysis of the rate of convergence of the Monte-Carlo method for the
solution of the stochastic elliptic problem (3.20). First we derive the estimate for the solution
which is not discretized in space and then generalize this result to the Finite Element solution.

4.2. Rate of Convergence of the Monte-Carlo Method. We estimate the expectation
E[u] ∈ V by the mean EM [u],

(4.11) EM [u] :=
1

M

M∑
i=1

ui ∈ V ,

over solution samples ui ∈ V , i = 1, . . . ,M , corresponding to M independent, identically
distributed realizations of the random input data a and f .

The following result is a bound on the statistical error resulting from this Monte-Carlo
estimator.

Lemma 4.3. For any M ∈ N and for all u ∈ L2(Ω;V ) we have the error estimate

(4.12) ‖E[u]− EM [u]‖L2(Ω;V ) ≤M−1/2‖u‖L2(Ω;V ) .

Proof. With the usual interpretation of the sample average EM [u] as V -valued random vari-
able, the independence of the identically distributed samples ui implies

‖E[u]− EM [u]‖2L2(Ω;V ) = E

[
‖E[u]− 1

M

M∑
i=1

ui‖2V

]
=

1

M2

M∑
i=1

E
[
‖E[u]− ui‖2V

]
=

1

M
E
[
‖E[u]− u‖2V

]
=

1

M
(E‖u‖2V − ‖E[u]‖2V ) ≤ 1

M
‖u‖2L2(Ω;V ) .
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�

4.3. Single-Level Monte-Carlo Finite Element Method. Monte-Carlo Finite Element
methods (MC–FEM) are obtained by suitable Finite Element approximations of the ‘samples’
ui occurring in (4.11). To this end, we replace ui by Galerkin Finite Element approximations
uil = ul(ω

i) ∈ Kl that can be computed from the discrete deterministic obstacle problems
(4.5) with corresponding ωi.

The Monte-Carlo Finite Element (MC–FE) approximation of E[u] thus reads

(4.13) EM [ul] :=
1

M

M∑
i=1

uil ∈ L2(Ω;Vl) .

Remark 4.4. The MC–FE approximation is conforming in the sense that EM [ul] ∈ Kl holds
for all M ∈ N, because Kl is convex, and EM [ul] is a convex combination of elements uil ∈ Kl.

We now establish a first error estimate for the MC–FE method.

Theorem 4.5. Let Assumptions 3.1 and 3.2 hold. Then we have the error bound

(4.14) ‖E[u]− EM [ul]‖L2(Ω;V ) ≤ C(a, f, χ)
(
M−

1
2 + hl

)
.

Proof. We split the left hand side of the above estimate as follows

‖E[u]− EM [ul]‖L2(Ω;V ) ≤ ‖E[u]− E[ul]‖L2(Ω;V ) + ‖E[ul]− EM [ul]‖L2(Ω;V )

≤ E [‖u− ul‖V ] + ‖E[ul]− EM [ul]‖L2(Ω;V ) .

The first term on the right hand side is bounded according to Proposition 4.2 and the second
term is estimated according to Lemma 4.3. �

The optimal choice of sample size M versus grid size hl for a fixed error is obtained by
equilibrating the statistical and the discretization error in (4.14). Hence, Theorem 4.5 yields
the basic relation

(4.15) M = O(h−2
l ) = O(22l) .

We now provide an upper bound for the computational cost of the MC–FEM (4.13) under
the following assumption, that discrete obstacle problems of the form (4.5) can be solved up
to discretization accuracy in near optimal complexity, which will be verified in what follows.

Assumption 4.6. Approximations ũl(ω) of solutions ul(ω) of deterministic obstacle problems
of the form (4.5) which provide the error bound

‖ul(ω)− ũl(ω)‖V ≤ Chl , l = 0, 1, . . . ,

can be evaluated at computational cost which is bounded, as l → ∞, by O((1 + l)νNl) with
the constant implied in O(·) being independent of l.

Theorem 4.7. Consider some fixed L ∈ N and let Assumptions 3.1, 3.2, and 4.6 hold. Then
the approximation

EM [uL] =
1

ML

M∑
i=1

ũiL , M = O(22L) ,

of E[u] with accuracy

‖E[u]− EM [uL]‖L2(Ω;V ) = O(hL)
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can be evaluated at the computational cost which is bounded, as L→∞, by

(4.16) O((1 + L)νN s
L) , with s =


3 , d = 1
2 , d = 2
1 + 2

3 , d = 3
.

Proof. The assertions follow from the discretization error estimate in Theorem 4.5 and the
basic relations (4.15). �

4.4. Multi-Level Monte-Carlo Finite Element Method. Instead of approximating E(u)
directly, the Multi-Level Monte-Carlo Finite Element (MLMC–FE) method is based on suit-
able approximations of increments on the levels l = 1, . . . , L of the hierarchy (4.1).

With the notation u0 := 0, we may write

uL =

L∑
l=1

(ul − ul−1) .

The linearity of the expectation operator E[·] yields

(4.17) KL 3 E[uL] = E

[
L∑
l=1

(ul − ul−1)

]
=

L∑
l=1

E[ul − ul−1] .

In the MLMC–FE method, we estimate E[ul − ul−1] by a level dependent number Ml of
samples, i.e. we estimate E[u] by the MLMC estimator

(4.18) EL[uL] :=
L∑
l=1

EMl
[ul − ul−1] .

Remark 4.8. We emphasize that, in contrast to the classical MC–FE method, the MLMC–
FE method is non-conforming, i.e., EL[uL] 6∈ KL, in general. The reason is that

EL[uL] = EML
[uL] +

L−1∑
l=1

(
EMl

[ul]− EMl+1
[ul]
)

with EML
[uL] ∈ KL, but EMl

[ul]− EMl+1
[ul] 6= 0, in general.

The convergence of the MLMC–FE method is guaranteed by the following result.

Theorem 4.9. Let Assumptions 3.1 and 3.2 hold. Then the MLMC–FE approximation
EL[uL] defined in (4.18) of the expectation E[u] of the solution u ∈ L2(Ω;W ) to the mean-
square weak formulation (3.20) of the sEVI (1.4) admits the error bound

(4.19) ‖E[u]− EL[uL]‖L2(Ω;V ) ≤ C(a, f, χ)

(
hL +

L∑
l=1

hlM
−1/2
l

)
.

Proof. We rewrite the error to be estimated as in the proof of Theorem 4.5 according to

‖E[u]− EL[uL]‖L2(Ω;V ) = ‖E[u]− E[uL] + E[uL]−
L∑
l=1

EMl
[ul − ul−1]‖L2(Ω;V )

≤ ‖E[u]− E[uL]‖L2(Ω;V ) + ‖
L∑
l=1

(E[ul − ul−1]− EMl
[ul − ul−1]) ‖L2(Ω;V )

=: I + II.
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We calculate the error bounds for the terms I and II separately.
Term I: By Jensen’s and by the Cauchy-Schwarz inequality, we obtain the bound

I ≤
(
E[‖u− ul‖2V ]

)1/2
= ‖u− ul‖L2(Ω;V ) ≤ C(a, f, χ)hl

for every l = 1, ..., L. In particular for l = L we obtain the asserted bound for Term I.
Term II: By the triangle inequality, we must consider for each l = 1, ..., L the term

‖E[ul − ul−1]− EMl
[ul − ul−1]‖L2(Ω;V ) .

Each of these terms is estimated as follows.

‖E[ul − ul−1]− EMl
[ul − ul−1]‖L2(Ω;V ) = ‖(E− EMl

)[ul − ul−1]‖L2(Ω;V )

≤M−1/2
l ‖ul − ul−1‖L2(Ω;V )

≤M−1/2
l

(
‖u− ul‖L2(Ω;V ) + ‖u− ul−1‖L2(Ω;V )

)
≤ C(a, f, χ)M

−1/2
l (hl + hl−1)

= 3C(a, f, χ)hlM
−1/2
l .

Here we used Lemma 4.3 and Proposition 4.2. Summation of these estimates from l = 1, ..., L
completes the proof. �

The preceding result gives an error bound for the MLMC–FE approximation, for any
distribution {Ml}Ll=1 of samples over the mesh levels. As in the single–level Monte-Carlo
approximation the key question to be answered by our error analysis is the relation of mesh-
width versus sample size, in order to retain the asymptotic rate of convergence O(hl) from
the deterministic case, while minimizing the overall work.

Theorem 4.10. Let Assumptions 3.1, 3.2, and 4.6 hold. Then the MLMC–FE approximation
EL[uL] defined in (4.18) of the expectation E[u] of the solution to the mean-square weak
formulation (3.20) of the sEVI (1.4) with the number Ml of MC samples on mesh refinement
level l given by

(4.20) Ml = O(l2+2ε22(L−l)h0) , l = 1, 2, ..., L ,

with ε > 0 admits the error bound

‖E[u]− EL[uL]‖L2(Ω;V ) ≤ ChL‖f‖L2(Ω;L2(D))

and can be evaluated at computational cost which is bounded, as L→∞, by

(4.21) O(CL,dNL) , with CL,d =


(1 + L)2+ν+2εNL , d = 1

(1 + L)3+ν+2ε , d = 2

(1 + L)2+ν+2ε , d = 3

.

Proof. The convergence result in Theorem 4.9 suggests that we choose Ml such that the
overall rate of convergence is O(hL). With the choice

(4.22) Ml = O(l2+2ε(hl/hL)2) = O(l2+2ε22(L−l)), l = 1, . . . , L ,
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for some ε > 0, we obtain from (4.19) the asserted error bound, since for ε > 0 this implies

L∑
l=1

hlM
−1/2
l ≤ C

L∑
l=1

2−ll−(1+ε)2(l−L)h0 ≤ C2−Lh0

L∑
l=1

l−(1+ε)

≤ ChL
L∑
l=1

l−(1+ε) = C(ε)hL .

It remains to estimate the computational cost. Utilizing Assumption 4.6 and (4.20), the
cost is O((1+ l)νNlMl) on each level l. There results the following upper bound for the overall
computational cost

L∑
l=1

O((1 + l)νNlMl) ≤ C
L∑
l=1

(1 + l)ν2dll2+2ε22(L−l) ≤ C(1 + L)2+ν+2εNL

L∑
l=1

2(d−2)(l−L) .

This proves the assertion. �

4.5. Algebraic Solution. We now discuss the evaluation of approximations ũl(ω) of Finite
Element solutions ul(ω) of deterministic obstacle problems of the form (4.5) by iterative
solvers.

Assumption 4.11. There is an iterative scheme Ml : Vl → Vl for the approximate solution
of deterministic obstacle problems of the form (4.5) with symmetric bilinear form b(ω; ·, ·),
ω ∈ Ω, such that Mlv can be evaluated with optimal computational cost O(Nl) and such that

(4.23) J(Mlv)− J(ul(ω)) ≤
(
1− c0(1 + l)−(ν−1)

)(
J(v)− J(ul(ω))

)
holds with some constants c0 > 0 and ν ≥ 1, independent of v ∈ Vl, of ω, and of l = 0, 1, . . . .

Remark 4.12. Assumption 4.11 is fulfilled by various multigrid methods. Tai [40] proved
logarithmic upper bounds of the form (4.23) with ν = 3 for a class of Subset Decomposition
methods. Badea [3] showed (4.23) with ν = 6 for a projected multi-level relaxation scheme [23,
Section 5.1]. Badea [4] recently extended these results to obtain ν = 5 for Standard Monotone
Multigrid (STDMMG) [23, Section 5.2] which, of these three multigrid methods, is the most
efficient one. All these results are restricted to d = 2 space dimensions but do not require
additional regularity of the exact solution.

Proposition 4.13. Assume that an initial approximation ũ0(ω) ∈ V0 with the property
‖u0(ω) − ũ0(ω)‖V ≤ C0h0 with some constant C0 > 0 (depending on the data) is given
and that Assumption 4.11 holds true. Then Assumption 4.6 is satisfied.

Proof. Exploiting that the Finite Element spaces are nested, (4.1), we inductively compute
a sequence of approximations ũi(ω) ∈ Vi, i = 0, . . . , l. To this end, starting with the given
ũ0 ∈ V0, we determine ũi(ω) ∈ Vi from the given ũi−1(ω) ∈ Vi−1 on the previous level i− 1 as
follows. If

(4.24) ‖ui(ω)− ũi−1(ω)‖V ≤ C02−i ,

then we simply set ũi = ũi−1. Otherwise, the approximation ũi(ω) = Mki
i ũi−1(ω) is computed

by ki applications of the iterative solver Mi to ũi−1(ω), where ki is chosen such that the
stopping criterion

(4.25) ‖ui(ω)−Mki
i ũi−1(ω)‖V ≤ σ

2 ‖ui(ω)− ũi−1(ω)‖V
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holds with some fixed σ < 1. This process is referred to as nested iteration (see, e.g., [26,
Chapter 5]) or full multigrid. In the case that (4.24) holds, we obviously have

(4.26) ‖ui(ω)− ũi(ω)‖V ≤ C02−i .

We assume without loss of generality that i0 = 0 is the largest level i0 ≤ l such that (4.26)
holds true which means that (4.24) does not occur.

Utilizing (4.25), we compute

‖u(ω)− ũl(ω)‖V ≤ ‖u(ω)− ul(ω)‖V + ‖ul(ω)− ũl(ω)‖V
≤ ‖u(ω)− ul(ω)‖V + σ

2 ‖ul(ω)− ũl−1(ω)‖V
≤ (1 + σ

2 )‖u(ω)− ul(ω)‖V + σ
2 ‖u(ω)− ũl−1(ω)‖V

≤ (σ2 )l‖u0(ω)− ũ0(ω)‖V + (1 + σ
2 )
∑l

i=0(σ2 )i‖u(ω)− ul−i(ω)‖V
Exploiting ‖u(ω) − ũ0(ω)‖V ≤ C0h0, hl = 2i−lhi for 0 ≤ i ≤ l, and the discretization error
estimate (4.8), we obtain the norm error estimate in Assumption 4.6.

We now estimate the computational cost. No computations are needed in the (non-generic)
case (4.24). Hence, we assume

(4.27) ‖ui(ω)− ũi−1(ω)‖V > C02−i .

Utilizing (2.6) and the equivalence of the energy norm ‖ · ‖b = b(ω; ·, ·)1/2 and the canonical
norm ‖ ·‖V together with the upper bound (4.23) for the convergence rate of the energy error,
and the upper bound (4.8) for the discretization error, it turns out that the stopping criterion
(4.25) is satisfied, if ki is chosen such that

c
(
1− c0(1 + i)−(ν−1)

)ki ≤ σ2

4 ‖ui(ω)− ũi(ω)‖V
holds with a suitable positive constant c which is independent of i and of ν. In the light of
(4.27), it is sufficient to choose ki according to

ki ≥ (log(2)i− log(C0/c))/− log(1− c0(1 + i)−(ν−1)) ≥ C(1 + i)ν .

Hence, the computational cost on each level i is bounded by O((1 + i)νNi). Utilizing Ni =
O(2i−lNl), an upper bound for the overall computational cost is given by

(4.28)

l∑
i=1

O((1 + i)νNi) = O((1 + l)νNl) .

�

Note that the additional power of 1 + l is caused by the mismatch between the lower and
upper bound in (2.6). As the initial grid is intentionally coarse, suitable initial approximations
ũ0(ω) of u0(ω) and thus of u(ω) can be often obtained by methods for complementarity
problems with moderate size.

The main result of this section is an immediate consequence of Theorems 4.7 and 4.10
together with Remark 4.12.

Corollary 4.14. Let Assumptions 3.1, 3.2 hold, assume that d = 2, and let STDMMG be
used for the approximate solution of the discrete pathwise obstacle problems of the form (4.5).
Then the resulting MC–MMG–FE approximation EM [u] and the resulting MLMC–MMG–FE
approximation EL[uL] of the expectation E[u] both have optimal accuracy O(hL) in L2(Ω;V )
and require the computational cost O((1 + L)2N2

L) and O((1 + L)8+2εNL), respectively.
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Hence, utilizing the recent convergence results by Badea [4] for STDMMG in d = 2 space
dimensions, the order of computational cost for MLMC–FE for the approximation of the
statistical mean E[u] (and also for spatial correlation functions, see e.g. [33]) turns out to
be asymptotically the same as for the multigrid solution of a single instance of the determin-
istic problem, on the finest mesh at refinement level L, up to logarithmic terms. Numerical
experiments indicate even mesh-independent convergence rates for STDMMG and for the
recently introduced Truncated Nonsmooth Newton-Multigrid (TNNMG) [22, 23] as applied in
the framework of nested iteration (see, e.g., Gräser and Kornhuber [23]). However, to the
knowledge of the authors, mathematical justification of the observed performance of TNNMG
is still open.

5. Numerical Experiments

We consider the stochastic obstacle problem (1.4) on the spatial domain D = (−1, 1)d,
d = 1, 2, with “flat” obstacle χ ≡ 0, and with parametric, stochastic diffusion coefficient

a(x, ω) = 1 +
cos |x|2

10
Y1(ω) +

sin |x|2

10
Y2(ω) ,

and with the stochastic source term f given by

f(x, ω) =



−8e2(Y1(ω)+Y2(ω))
(
d
2a(x, ω) · ((4− d)|x|2 − r2)

+(|x|2 − r2)|x|2
(
− sin |x|2

10 Y1(ω) + cos |x|2
10 Y2(ω)

))
,

|x| > r

4r2e2(Y1(ω)+Y2(ω))
(
d · a(x, ω) · (−1− r2 + |x|2)

+(−2− 2r2 + |x|2)|x|2
(
− sin |x|2

10 Y1(ω) + cos |x|2
10 Y2(ω)

))
,
|x| ≤ r

denoting

r = r(Y1(ω), Y2(ω)) := 0.7 +
Y1(ω) + Y2(ω)

10
,

and uniformly distributed random variables Y1, Y2 ∼ U(−1, 1). Then, for given ω ∈ Ω, the
exact solution of the resulting pathwise problem is given by

u(x, ω) = max{
(
|x|2 − r2

)
eY1(ω)+Y2(ω), 0}2 , x ∈ D .

The remainder of this section is devoted to a numerical comparison of the efficiency of single
level MC-FE (cf. Section 4.3) and of the MLMC-FE approach (cf. Section 4.4).

To this end, each pathwise problem is discretized by finite elements as described in Sec-
tion 4.1. To build up the hierarchy (4.1), we start from the coarse partition T0 consisting
of four invervals with length h0 = 1/4 for d = 1 and T0 resulting from uniform refinement
of a partition of D into two congruent triangles for d = 2 space dimensions. Approximate
solution of the resulting discrete pathwise problems of the form (4.4) is performed by the trun-
cated nonsmooth Newton multigrid method (TNNMG) [22, 23] with nested iteration (cf. [26,
Chapter 5] and the proof of Proposition 4.13). The reason is that TNNMG is easier to im-
plement and usually converges faster than STDMMG [23]. Denoting one step of TNNMG on
refinement level i by Mi, the stopping criterion (4.25) is replaced by the verifiable condition

‖Mki+1
i ũi−1(ω)−Mki

i ũi−1(ω)‖V ≤ sσ2 ‖Miũi−1(ω)− ũi−1(ω)‖V
with a safety factor s ≤ (1−q)/(1+q). This condition relies on the a posteriori error estimate

(1− q)‖ui(ω)− v‖V ≤ ‖Miv − v‖V ≤ (1 + q)‖ui(ω)− v‖V , v ∈ Vi ,



20 KORNHUBER, SCHWAB, AND WOLF

1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5

refinement level L

c
o

m
p

u
ta

ti
o

n
a

l 
c

o
s

t

 

 

MMG cost 1D

MMG cost 2D

Figure 1. Averaged computational cost per unknown for the TNNMG multi-
grid solution of obstacle problems as occurring in a MLMC computation over
number of levels i.

involving the (unknown) convergence rate q < 1 of Mi. We use s = 0.1 and σ = 1
2 in our

computations. Figure 1 shows the computational cost per unknown for the approximate so-
lution of deterministic obstacle problems of the form (4.5) by TNNMG. More precisely, it

shows the ratio of the average of the computational cost
∑i

j=1 kj(ω
i)Nj for all the discrete

pathwise problems as occurring in the Monte Carlo computations on the levels i = 1, . . . , l
of a MLMC-FE step and of the number of unknowns Ni. These (empirical) results indi-
cate that the computational cost on level i is bounded by about 4.0Ni and 2.7Ni in d = 1
and d = 2 space dimensions, respectively. This means that, numerically, Assumption 4.6
holds with the optimal parameter ν = 0. We obtained essentially the same results for STD-
MMG. We now select the numbers of samples M and M1, . . . ,ML to be used in MC-FE and
MLMC-FE, respectively. By Theorem 4.10, the number of MC samples at mesh level l, i.e.
Ml = bc0l

2+2ε22(L−l)h0c (Gaussian brackets) in MLMC-FE is determined only up to positive
constants c0 and ε. Instead of selecting these constants explicitly, we want to determine
M = (M1, . . . ,ML) ∈ NL by minimizing the computational cost for one MLMC-FE sweep,
i.e., by solving the minimization problem

(5.1) (M1, . . . ,ML) = arg min
M∈NL

L∑
l=1

NlMl

(recall that ν = 0), subject to the constraints

(5.2) 3
L∑
l=1

M
− 1

2
l hl ≤ hL , M1 ≥ h−2

L , Ml ≥ 1 ∀l = 1, . . . , L .

The particular choice Ml = bc0l
2+2ε22(L−l)h0c fulfills these constraints for suitably chosen

parameters c0 and ε (which choices are independent of L, l and of ε). Hence, (4.21) still
provides an upper bound for the computational cost associated with the numbers of samples
M1, . . . ,ML obtained by our optimization procedure. We use the approximate solution of the
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Figure 2. Statistical error of MC-FE and MLMC-FE over the number of
refinement levels L in d = 1 space dimensions.
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Figure 3. Computational cost of MC-FE and MLMC-FE over the number
of refinement levels L in d = 1 space dimensions.

nonlinear integer programming problem given by (5.1) and (5.2) as obtained by rounding up
the solution in RL which in turn is computed numerically by a Matlab routine.

As a consequence of Theorems 4.5 and 4.9, the conditions (5.2) and the selection of M =
M1 ≥ h−2

L for single-level MC-FE provide the error estimate

(5.3) ‖E[u]− EM [uL]‖L2(Ω,V ) ≤ ‖E[u]− EL[uL]‖L2(Ω,V ) ≤ 2C(a, f, χ)hL .

The evaluation of the statistical error

‖E[uL]− E[uL]‖L2(Ω,V ) =
(
E
[
‖E[uL]− E[uL]‖2V

])1/2
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Figure 4. Statistical error of MC-FE and MLMC-FE over the number of
refinement levels L in d = 2 space dimensions.
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Figure 5. Computational cost of MC-FE and MLMC-FE over the number
of refinement levels L in d = 2 space dimensions.

associated with the discrete approximations E[uL] = EM [uL], EL[uL] requires the evalua-
tion of the expectation value of the random variable ‖E[uL] − E[uL]‖2V . We approximate
E
[
‖E[uL]− E[uL]‖2V

]
by a Monte-Carlo method or, more precisely, by the sample average of

10 numerically computed, independent realizations of ‖E[uL]− E[uL]‖2V .
We now report on the numerical solution of the model problem introduced above in d = 1

space dimension. Figure 2 nicely illustrates the O(hL) behavior of the statistical errors of
MC-FE (-•–•-) and MLMC-FE (-�–�-) indicated by the dashed line. As expected from the
error estimate (5.3), MC-FE is slightly more accurate than MLMC-FE. The corresponding

computational cost NLM of MC-FE (-•–•-) and
∑L

l=1NlMl of MLMC-FE (-�–�-) over the
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refinement levels L = 1, . . . , 8 is depicted in Figure 3. It turns out that the cost of MC-FE
asymptotically behaves like O(N3

L) (dotted line) while MLMC-FE only requires O(N2
L) point

operations (dashed line). For this moderate number of refinement levels, the logarithmic term
occurring in the theoretical upper bound (4.21) for ν = 0 is not visible.

The corresponding results for d = 2 space dimensions are shown in Figure 4 and Figure 5.
According to Figure 4, the statistical error again behaves like O(hL) (dashed line) and MC-
FE (-•–•-) is slightly more accurate than MLMC-FE (-�–�-). Figure 5 indicates that the
computational cost of MC-FE (-•–•-) is of order O(N2

L) and that MLMC-FE (-�–�-) provides
approximations with O(hl) accuracy at optimal computational cost O(NL).

References

[1] R. J. Adler, The geometry of random fields, John Wiley & Sons Ltd., Chichester, 1981. Wiley Series in
Probability and Mathematical Statistics.

[2] H. W. Alt, L. A. Caffarelli, and A. Friedman, Variational problems with two phases and their free
boundaries, Trans. Amer. Math. Soc., 282 (1984), pp. 431–461.

[3] L. Badea, Convergence rate of a Schwarz multilevel method for the constrained minimization of non-
quadratic functionals., SIAM J. Numer. Anal., 44 (2006), pp. 449–477.

[4] L. Badea, Global convergence rate of a standard multigrid method for variational inequalities, preprint,
Institute of Mathematics of the Romanian Academy, 2011.

[5] A. Barth, A Finite Element Method for martingale-driven stochastic partial differential equations, Comm.
Stoch. Anal., 4 (2010), pp. 355–375.

[6] A. Barth and A. Lang, Almost sure convergence of a Galerkin–Milstein approximation for stochastic
partial differential equations. in review, February 2010.

[7] A. Barth and A. Lang, Simulation of stochastic partial differential equations using Finite Element
methods. to appear in Stochastics, 2010.

[8] A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic
PDEs with stochastic coefficients, Numer. Math., 119 (2011), pp. 123–161.

[9] J. Bey, Finite-Volumen- und Mehrgitterverfahren für elliptische Randwertprobleme, Teubner, Stuttgart,
1998.

[10] C. Bierig and A. Chernov, Analysis of multilevel variance estimators in Multilevel Monte Carlo methods
and application for random obstacle problems, in preparation, (2013).

[11] F. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems
in two and three space dimensions, SIAM J. Numer. Anal., 33 (1996), pp. 1188–1204.

[12] D. Braess, Finite Elemente, Springer, Berlin, 3rd ed., 2002.
[13] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, Berlin,

2nd ed., 2002.
[14] J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random

coefficients, SIAM J. Numer. Anal., 50 (2012), pp. 216–246.
[15] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amster-

dam, 1978. Studies in Mathematics and its Applications, Vol. 4.
[16] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, vol. 44 of Encyclopedia of

Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.
[17] R. S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comput.,

28 (1974), pp. 963–971.
[18] R. Forster and R. Kornhuber, A polynomial chaos approach to stochastic variational inequalities, J.

Numer. Math., 18 (2010), pp. 235–255.
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E-mail address: schwab@math.ethz.ch

(Maren-Wanda Wolf) FU Berlin
FB Mathematik und Informatik
Institut für Mathematik
Arnimallee 6
D-14195 Berlin Germany

E-mail address: mawolf@math.fu-berlin.de


