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Abstract

We introduce a new operator for stabilizing error that arises from the weak enforcement of
mass conservation in finite element simulations of incompressible flow problems. We show this
new operator has a similar positive effect on velocity error as the well-known and very successful
grad-div stabilization operator, but the new operator is more attractive from an implementation
standpoint because it yields a sparser block structure matrix. That is, while grad-div produces
fully coupled block matrices (i.e. block-full), the matrices arising from the new operator are
block-upper triangular in two dimensions, and in three dimensions the 2,1 and 3,1 blocks are
empty. Moreover, the diagonal blocks of the new operator’s matrices are identical to those of
grad-div. We provide error estimates and numerical examples for finite element simulations with
the new operator, which reveals the significant improvement in accuracy it can provide. Solutions
found using the new operator are also compared to those using usual grad-div stabilization, and
in all cases, solutions are found to be very similar.

1 Introduction

Weak enforcement of mass conservation in finite element simulations of incompressible flows is
well known to cause instabilities and poor solution accuracy. Many methods have been developed
that address this problem, including grad-div stabilization [22, 24], strongly divergence free finite
element methods [5, 31, 7, 28, 1], and discontinuous Galerkin methods [5]. Of these methods, grad-
div stabilization is likely attractive to the widest audience because it can easily be included into an
existing conforming finite element code without adding any restrictions on elements or mesh type.
As codes get older and bigger, making major changes can be a serious obstacle, but adding grad-div
stabilization (or the related stabilization we propose herein) should not present major challenges,
but can have a significant positive impact on accuracy.

Although grad-div stabilization has seen significant interest and success in recent years [10,
22, 24, 19, 8, 6, 23], it also has a downside in its computational cost, although many believe it
is often worth it for the gain in accuracy [25]. Although many common discretization methods
for the Navier–Stokes equations (NSE) yield block diagonal matrices for the velocity components,
the grad-div operator creates fully coupled matrices for velocity, which often makes solving the
resulting linear algebraic systems more difficult. To address this issue, we propose and study a new
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divergence stabilization operator that (we will show) has a similar positive effect on error as grad-
div stabilization, but has a more efficient implementation because its matrices have a sparser block
structure. The purpose of this paper is to introduce this new divergence penalization operator as
a more efficient alternative to grad-div stabilization that it is simple to add it to an existing NSE
(or similar) code, penalizes for lack of mass conservation, reduces the effect of the pressure error
on the velocity error, and can dramatically improve accuracy. We introduce this new stabilization
operator now.

Definition 1.1. Let Ω be a bounded regular domain, and u, v ∈ H1(Ω)d, d = 2 or 3. Define the
divergence penalization operator g by

g2d(u, v) =

∫
Ω

(
u1xv1x + u2yv2y + 2u2yv1x

)
(1.1)

g3d(u, v) =

∫
Ω

(
u1xv1x + u2yv2y + u3zv3z + 2u2yv1x + 2u3zv1x + u3zv2y + u2yv3z

)
. (1.2)

It is easy to observe that in g2d, there is no interaction of the u1 and v2 functions, which means
the resulting matrix is upper triangular. For g3d, there is no interaction of u1 with either v2 or v3,
which means for the resulting 3x3 resulting block matrix, the 2,1 and 3,1 blocks are 0. This is in
contrast to the grad-div stabilization operator

grad-div(u, v) =

∫
Ω

(u1x + u2y + u3z)(v1x + v2y + v3z),

which is block-full because each of u1, u2, and u3 have interaction with each of v1, v2, and v3.
The fundamental properties which allow the g operator to have a positive impact on incom-

pressible flow simulations are provided in the following lemma. From here on, we denote the L2(Ω)
inner product by (u, v) :=

∫
Ω uv dx.

Lemma 1.1. The operator g has the following properties.

1. The operator g can be written as

g2d(u, v) = (∇ · u,∇ · v)−
(
(u1x , v2y)− (u2y , v1x)

)
, (1.3)

g3d(u, v) = (∇ · u,∇ · v)−
(
(u1x , v2y)− (u2y , v1x) + (u1x , v3z)− (u3z , v1x)

)
. (1.4)

2. Similar to grad-div stabilization, g satisfies in 2d or 3d,

g(u, u) = ‖∇ · u‖2 . (1.5)

3. If ∇ · u = 0, then in 2d or 3d,

g(u, v) = −(u1x ,∇ · v). (1.6)

Proof. To show (1.3), we add and subtract u1xv2y to g(u, v) in its definition (1.1), and group terms
accordingly. For (1.4), we add and subtract u1xv2y and u1xv3z , then regroup terms. For the equality
(1.5), setting v = u produces the result immediately.
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To prove (1.6) for the 2d case, use use directly that ∇ · u = 0 and that u1x = −u2y to find

g2d(u, v) = (∇ · u,∇ · v)−
(
(u1x , v2y)− (u2y , v1x)

)
= −(u1x , v2y) + (u2y , v1x)

= −(u1x , v2y) + (−u1x , v1x)

= −(u1x ,∇ · v)

For (1.6) in the 3d case, a similar string of equalities that uses u1x = −u2y − u3z provides

g3d(u, v) = (∇ · u,∇ · v)− ((u1x , v2y)− (u2y , v1x) + (u1x , v3z)− (u3z , v1x)

= −(u1x , v2y) + (u2y , v1x)− (u1x , v3z) + (u3z , v1x)

= (u2y + u3z , v1x)− (u1x , v2y)− (u1x , v3z)

= (−u1x , v1x)− (u1x , v2y)− (u1x , v3z)

= −(u1x ,∇ · v),

which completes the proof.

The results and proofs from Lemma 1.1 reveal another interpretation of the g function: it is
the resulting variational formulation of the sum of grad-div stabilization and the gradient of u1x ,
since for v ∈ H1

0 (Ω) and solenoidal u,

−∇(∇ · u), v) + (∇u1x , v) = (∇ · u,∇ · v)− (u1x ,∇ · v) = g(u, v).

It is well known that gradient terms can be combined with the true pressure to create a modified
pressure (P = p+ γu1x in this case) that does not alter the velocity solution in the continuous case
(for example, when computing with rotational form NSE, often the Bernoulli pressure PBernoulli =
p + |u|2/2 is used [12, 19]). Thus, the addition of g can be interpreted as grad-div stabilization
together with a pressure alteration that creates a more efficient linear algebraic system for grad-div
stabilization. We note that similar results can be achieved by using u2y or (in 3d) u3z instead of
u1x , and still 2 blocks of the velocity matrix will be zero (but which 2 blocks will be different). It is
intuitive, and revealed by our analysis, that if it is known which of u1x , u2y , u3z will be smallest,
then this is the term that should be used to modify the pressure. Unfortunately, there does not
appear to be any gradient term that can be added to the system in 3d that would yield a g operator
that satisfies g(u, u) = ‖∇ · u‖2 and produces a block upper triangular matrix.

Although most of the common finite element discretization methods for the NSE have inter-
actions of ui with vj only if i = j (and so have block-diagonal velocity matrices), whether this
difference in block structure between g and grad-div makes a significant difference in efficiency will
depend on both the timestepping method and the solver. For Chorin-type projection methods (see,
e.g. [25]), which use decoupled momentum equations with explicit pressure treatment, using g
instead of grad-div will clearly provide for more efficient linear solves. For solvers that find velocity
and pressure together, linear systems of the form(

A B
BT 0

)(
U
P

)
=

(
F
0

)
must be solved, with the A block representing the contributions of velocity with the momentum
equations’ test functions. In many discretizations (e.g. linearly extrapolated Crank-Nicolson [2]
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which is studied herein), the A matrix will have a block-diagonal structure, and thus using grad-div
will make A block-full while using g will lead to a block upper triangular matrix in 2d, or in 3d
to a block matrix that has 2,1 and 3,1 blocks which are empty. Iterative solvers for these type of
systems generally have two systems to (repeated solve/approximate), one with the A block and the
other with the Schur complement. Compared to usual grad-div, using the proposed stabilization
operator will simplify the A block solve but complicate the Schur complement, and hence it will
require future studies to determine if/when the proposed stabilization operator will deliver an
improvement over usual grad-div stabilization. In some preconditioners, simply by the nature of
the factorization and approximations they are based on, grad-div may still be more appropriate,
for example the modified Augmented Lagrangian type preconditioner of Benzi and Olshanskii [3]
which has been shown quite successful [13], where usual grad-div stabilization can be considered
an integral part of the theory of how the preconditioner works. In this case, there is often a
tradeoff between the optimal grad-div stabilization parameters for accuracy and for efficiency, and
here the use of the proposed g stabilization operator could offer an advantage since it stabilizes
the divergence without adding the grad-div type augmentation to the linear algebraic system (i.e.
the g operator could be used together with the augmentation, and have different parameters for
stabilization and augmentation). Hence, from the solver point of view, there are many questions to
be answered, most of which will be specific to individual solvers and preconditioners, and we leave
this for future work.

Since the potential implementation advantage in many cases of g over grad-div is clear, it
remains to show that the g operator does indeed have a positive effect on simulations (as grad-div
stabilization does), and this paper is dedicated to showing it. In section 2, we give notation and
preliminaries that will allow for a smooth analysis in the sections that follow. Section 3 gives
a rigorous study of the new operator in the Stokes equations. Here, stability is proven, as is
optimal convergence of both velocity and pressure. Numerical tests are provided that confirm the
convergence rates, and that show using the new stabilization operator can have a significant positive
influence on solution accuracy. In section 4, we extend the results to the case of the NSE. Here,
we prove stability and optimal convergence of the stabilized linearly extrapolated Crank-Nicolson
method, and give several more numerical examples that show how the use of g can improve solutions.

2 Notation and Preliminaries

In this section, we will present notation and mathematical preliminaries to allow for a smoother
presentation in later sections.

For simplicity of analysis, we consider the domain Ω ⊂ Rd, d = 2 or 3, to be regular with
piecewise smooth boundary. In our numerical experiments, we will also consider domains with
holes (flow around a cylinder) and non-convex polygons (flow over a step). We will denote the L2

inner product and norm by (·, ·) and ‖·‖, respectively. All other norms will be clearly labeled.
The natural velocity and pressure spaces for the Stokes and NSE are

X := {v ∈ H1(Ω)d, v|∂Ω = 0},

Q := {q ∈ L2
0(Ω),

∫
Ω
q = 0}.

Denote by τh a regular, conforming mesh of Ω. Let (Xh, Qh) ⊂ (H1
0 (Ω)d, L2

0(Ω)) be an LBB
stable pair of finite element spaces defined on τh, and define the weakly and strongly divergence
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free subspaces of Xh by Vh and Vh,0 by

Vh := {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh}
Vh,0 := {vh ∈ Xh, ∇ · vh = 0}

We consider the space Vh,0 because in settings where this space has optimal approximation prop-
erties (see definition 2.1), our error analysis can be improved. Examples of such settings are the
settings where Scott–Vogelius mixed finite elements satisfy the LBB condition, which includes the
cases Xh = Pk with k ≥ d on barycenter refined triangulations/tetrahedralizations [27, 1] and
k ≥ d− 1 on Powell-Sabin grids [29, 30].

Definition 2.1 (Optimal approximation properties of the divergence-free subspace). Consider a
sequence of quasi-uniform meshes with characteristic mesh size h and the corresponding spaces Vh,0
and Xh. If for all solenoidal v ∈ X ∩Hk+1(Ω)d,

inf
wh∈Vh,0

‖∇v −∇wh‖ ≤ CVh,0 inf
wh∈Xh

‖∇v −∇wh‖

with CVh,0 independent of h, then the sequence of spaces Vh,0 is said to possess optimal approximation
properties.

3 A new divergence stabilization method for finite element ap-
proximations of the Stokes equations

For simplicity, we consider first finite element approximations to the incompressible Stokes equations
with the new divergence stabilization term. The positive effects of the new divergence stabilization
term can be shown in this case, and the analysis developed here will extend to timestepping methods
for the NSE in the next section.

The incompressible Stokes equations under homogeneous Dirichlet boundary conditions are
given by

−ν∆u+∇p = f, (3.1)

∇ · u = 0, (3.2)

u|∂Ω = 0, (3.3)∫
Ω
p dx = 0. (3.4)

The purpose of studying the operator g together with Stokes is that this is a simplest setting
to analyze the behavior of g. It is our ultimate intention to use the operator in finite element
approximations for NSE flows, where it is well known that grad-div stabilization can make a
dramatic improvement in solution accuracy.

3.1 A discrete stabilized Stokes algorithm and its well-posedness

We now define a stabilized algorithm for Stokes, based on the use of g.
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Algorithm 3.1 (Stokes with new divergence stabilization operator). For a given stabilization
parameter γ > 0, the stabilized finite element formulation of the Stokes equations studied herein is
given by: Find (uh, ph) ∈ (Xh, Qh) satisfying

ν(∇uh,∇vh)− (ph,∇ · vh) + γg(uh, vh) = (f, vh) ∀vh ∈ Xh, (3.5)

(∇ · uh, qh) = 0 ∀qh ∈ Qh. (3.6)

We note that ph + γ(uh)1x represents an approximation to the true Stokes pressure, and we
will prove below that this ‘modified pressure’ converges optimally to the true Stokes pressure. The
pressure ph in Algorithm 3.1 does not represent an approximation to the Stokes pressure, since as
is discussed in the introduction, the use of g implicitly creates a modified pressure.

For analysis purposes, we will also consider the Vh formulation of (3.5)-(3.6): Find uh ∈ Vh
satisfying

ν(∇uh,∇vh) + γg(uh, vh) = (f, vh) ∀vh ∈ Vh. (3.7)

With (Xh, Qh) satisfying the LBB condition, the formulations (3.7) and (3.5)-(3.6) are equivalent.
We begin our analysis by proving (3.7) is stable and well-posed.

Lemma 3.1. Solutions to the Algorithm 3.1 (the discrete Stokes approximation) exist uniquely,
and satisfy

ν ‖∇uh‖2 + 2γ ‖∇ · uh‖2 ≤ ν−1 ‖f‖2−1 . (3.8)

Remark 3.1. From (3.8), we observe that stabilization using the g operator with the parameter γ
provides control over the divergence error.

Proof. Starting from the Vh formulation (3.7), we note that this system is linear and finite dimen-
sional, so proving the stability estimate (3.8) will also imply that solutions exist uniquely. Choosing
vh = uh in (3.7) yields

ν ‖∇uh‖2 + γg(uh, uh) = (f, uh).

From (1.5), g(uh, uh) = ‖∇ · uh‖2, and using this and majorizing the right hand size in the usual
way gives us

ν

2
‖∇uh‖2 + γ ‖∇ · uh‖2 ≤

ν−1

2
‖f‖2−1 .

Multiplying both sides by 2 finishes the proof.

3.2 Error analysis

Here, we prove optimal convergence of both the velocity and a modified pressure in the stabilized
Stokes algorithm of Algorithm 3.1. We begin with the velocity error, as the pressure error will
depend on the velocity error.

Theorem 3.1 (Optimal velocity convergence). Let (u, p) solve the Stokes problem (3.1)-(3.4). Then
the velocity error in Algorithm 3.1 satisfies

ν ‖∇(u− uh)‖2 + γ ‖∇ · (u− uh)‖2 ≤

C

(
(ν + γ2ν−1) inf

wh∈Xh

‖∇(u− wh)‖2 + γ−1 inf
qh∈Qh

‖(p− γu1x)− qh‖2
)
. (3.9)
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Remark 3.2. If (Xh, Qh) = ((Pk)
d, Pk−1) elements, then convergence of algorithm (3.7) is easily

seen to be asymptotically optimal. By standard approximation theory [4], we have that

ν ‖∇(u− uh)‖2 + γ ‖∇ · (u− uh)‖2 ≤ Ch2k
((
ν + γ2ν−1

)
|u|2k+1 + γ−1|(p− γu1x)|2k

)
. (3.10)

Remark 3.3. Without the use of g, the standard error estimate for Stokes has the form [18]

ν ‖∇(u− uh)‖2 ≤ C
(
ν inf
wh∈Xh

‖∇(u− wh)‖2 + ν−1 inf
qh∈Qh

‖(p− qh‖2
)
. (3.11)

This estimate and that of Theorem 3.1 suggest that the g operator acts to reduce the effect of the
pressure discretization error on the velocity error, but increases the effect of the velocity discretiza-
tion error. Particularly for the cases of large, complex pressures (relative to velocities) and small
viscosities, the error estimate provided by the use of g appears quite advantageous. We also note
that the scaling of the error with γ suggests that it will most often be the case that good choices of
γ will be O(1) or smaller.

Proof. We begin by multiplying the Stokes equations by vh ∈ Vh, and integrating by parts. Next,
add γg(u, vh) to both sides of the equation, and since ∇·u = 0, use property (1.6) of g on the right
hand side of the equation to get

ν(∇u,∇vh)− (p,∇ · vh) + γg(u, vh) = (f, vh)− γ(u1x ,∇ · vh) ∀vh ∈ Vh.

Subtracting from this the Vh form of the stabilized Stokes approximation (3.7), then and writing
e = u− uh, we get

ν(∇e,∇vh) + γg(e, vh) = (p− γu1x ,∇ · vh) ∀vh ∈ Vh.

Since vh ∈ Qh, we have that for any qh ∈ Qh,

ν(∇e,∇vh) + γg(e, vh) = (p− γu1x − qh,∇ · vh) ∀vh ∈ Vh.

Next, we write e = (u − wh) + (wh − uh) =: η + φh, where wh ∈ Vh is arbitrary. Using this
decomposition, and choosing vh = φh gives

ν ‖∇φh‖2 + γ‖∇ · φh‖2 = −ν(∇η,∇φh)− γg(η, φh) + ((p− γu1x)− qh,∇ · φh), (3.12)

and applying Cauchy-Schwarz and Young’s inequalities provides

ν

2
‖∇φh‖2 +

γ

2
‖∇ · φh‖2 ≤

ν

2
‖∇η‖2 − γg(η, φh) +

γ−1

2
inf

qh∈Qh

‖(p− γu1x)− qh‖2 . (3.13)

To bound the g function on the right hand side, we use

|γg(η, φh)| ≤ Cγ ‖∇η‖ ‖∇φh‖ ≤
ν

4
‖∇φh‖2 + Cν−1γ2 ‖∇η‖2 ,

and combining this with (3.13) and reducing gives the estimate

ν ‖∇φh‖2 + γ‖∇ · φh‖2 ≤ C
(

(ν + ν−1γ2) ‖∇η‖2 + γ−1 inf
qh∈Qh

‖(p− γu1x)− qh‖2
)
.

Applying the triangle inequality and using the assumption of LBB on (Xh, Qh) to change the
infimum to be over Xh instead of Vh, completes the proof.
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Next, we prove optimal convergence of a modified pressure ph + γ(uh)1x from Algorithm 3.1 to
the true Stokes pressure.

Theorem 3.2 (Optimal convergence of a modified pressure). Let (u, p) solve the Stokes problem
(3.1)-(3.4). The pressure error in the approximation (uh, ph) from Algorithm 3.1 satisfies

‖p− (ph + γ(uh)1x)‖ ≤

C

(
(1 +

ν1/2

γ1/2
+
γ1/2

ν1/2
) inf
rh∈Qh

‖(p− γu1x)− rh‖+ (ν1/2γ + ν3/2 + γ2ν−1/2) inf
wh∈Xh

‖∇(u− wh)‖

)
.

(3.14)

Remark 3.4. If (Xh, Qh) = ((Pk)
d, Pk−1) elements, then convergence of algorithm (3.7) is easily

seen to be asymptotically optimal. By standard approximation theory [4]

‖p− (ph + γ(uh)1x)‖ ≤ Chk
(

(1 +
ν1/2

γ1/2
+
γ1/2

ν1/2
)|p− γu1x)|k + (ν + γ + γ2ν−1)|u|k+1

)
. (3.15)

Proof. Similar to the beginning of the proof of Theorem 3.1, we have that for vh ∈ Xh, the true
Stokes solution satisfies

ν(∇u,∇vh)− (p− γu1x ,∇ · vh) + γg(u, vh) = (f, vh).

Subtracting (3.5) from this gives the error equation

((p− γu1x)− ph,∇ · vh)) = ν(∇e,∇vh) + γg(e, vh) ∀vh ∈ Xh. (3.16)

Next, adding and subtracting an arbitrary rh ∈ Qh in the pressure term gives

(rh − ph,∇ · vh) = − ((p− γu1x)− rh,∇ · vh) + ν(∇e,∇vh) + γg(e, vh) ∀vh ∈ Xh,

and then applying the Cauchy-Schwarz inequality, using ‖∇ · vh‖ ≤ ‖∇vh‖, and dividing both sides
by ‖∇vh‖ provides the equation

(rh − ph,∇ · vh)

‖∇vh‖
= ‖(p− γu1x)− rh‖+ ν ‖∇e‖+ γ

g(e, vh)

‖∇vh‖
. (3.17)

Bounding g as in the velocity convergence proof, taking the supremum over vh ∈ Xh and applying
LBB now gives

‖rh − ph‖ ≤ C (‖(p− γu1x)− rh‖+ (ν + γ) ‖∇e‖) , (3.18)

and thus by the triangle inequality,

‖(p− γu1x)− ph‖ ≤ C (‖(p− γu1x)− rh‖+ (ν + γ) ‖∇e‖) . (3.19)

Again using the triangle inequality, along with (3.19), we have that

‖p− (ph + γ(uh)1x)‖ = ‖p− γu1x + γu1x − ph − γ(uh)1x‖
≤ ‖p− γu1x − ph‖+ γ ‖e1x‖
≤ C (‖(p− γu1x)− rh‖+ (ν + γ) ‖∇e‖) . (3.20)

Taking the infimum over all rh ∈ Qh, then using the results of Theorem 3.1 finishes the proof.
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3.3 Error analysis in the special case that Vh,0 has optimal approximation prop-
erties

In certain finite element settings, depending on the mesh type and approximating polynomial degree
of the velocity space, the pointwise divergence free subspace of the velocity space can have optimal
approximation properties (see definition 2.1). The advantage of such spaces with regards to analysis
of Algorithm 3.1 is that here we can get an improved estimate of the term γg(η, φh) in the velocity
error estimate, which will reduce the poor scaling of the error with larger γ in Theorem 3.1. We now
prove error estimates for the velocity and pressure in the case that Vh,0 has optimal approximation
properties.

Theorem 3.3. Let (u, p) solve the Stokes problem (3.1)-(3.4). If Vh,0 has optimal approximation
properties, then the velocity error in Algorithm 3.1 is bounded by

ν ‖∇(u− uh)‖2 + γ ‖∇ · (u− uh)‖2 ≤

C

(
(ν + γ) inf

wh∈Xh

‖∇(u− wh)‖2 + γ−1 inf
qh∈Qh

‖p− γu1x − qh‖
2

)
, (3.21)

and the pressure error satisfies

‖p− (ph + γ(uh)1x)‖ ≤

C

(
(1 +

ν1/2

γ1/2
+
γ1/2

ν1/2
) inf
rh∈Qh

‖(p− γu1x)− rh‖+ (ν1/2γ1/2 + ν + γ + γ3/2ν−1/2) inf
wh∈Xh

‖∇(u− wh)‖

)
.

(3.22)

Remark 3.5. The gain from requiring the space Vh,0 to have optimal approximation properties is
that the coefficients in the error bounds are smaller than in the general case if γ is taken to be larger
than 1. Of course, comparing errors by comparing respective upper bounds does not necessarily
provide a good comparison. In the general case, since ∇ · η is expected small in some sense, the
bound we use in the proof of Theorem 3.1 may be pessimistic.

Proof. The proof follows that of Theorem 3.1 almost exactly up to (3.13), with the only difference
being that we take wh arbitrary in Vh,0. This gives that ∇ · η = 0, and with this in mind, we start
from (3.13), which is the relation

ν

2
‖∇φh‖2 +

γ

2
‖∇ · φh‖2 ≤

ν

2
‖∇η‖2 − γg(η, φh) +

γ−1

2
inf

qh∈Qh

‖(p− γu1x)− qh‖2 . (3.23)

we can now bound the g term with

|γg(η, φh)| = |γ(η1x ,∇ · φh)| ≤ γ

4
‖∇ · φh‖2 + 2γ ‖∇η‖2 .

and combining this with (3.23) and reducing gives the estimate

ν ‖∇φh‖2 + γ‖∇ · φh‖2 ≤ C
(

(ν + γ) ‖∇η‖2 + γ−1 inf
qh∈Qh

‖(p− γu1x)− qh‖2
)
.

Applying the triangle inequality and using the assumption of LBB on (Xh, Qh) completes the proof
for velocity. For the pressure estimate, we simply combine this new velocity error bound with the
last step of the proof of the pressure error estimate of Theorem 3.2.
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3.4 Numerical experiments for Stokes

Here we test the predicted convergence rates of Theorems 3.1 and 3.2, both in 2d and 3d, and then
for a test problem with smaller viscosity and larger pressure, we compare errors found by the pro-
posed stabilized method, an unstabilized method, and a method using usual grad-div stabilization.

3.4.1 Convergence rate verification for 2d test problem

We now test the predicted optimal convergence rates of Algorithm 3.1 on an analytical test problem.
The solution is given on Ω = (0, 1)2 by

u1(x, y) = sin(πx) cos(πy),

u2(x, y) = − sin(πy) cos(πx),

p(x, y) = sin(π(x+ 2y)).

We choose ν = 1, and calculate f from the Stokes equations. We compute using ((P2)2, P1) Taylor-
Hood elements with Algorithm 3.1 and γ = 1, on successively refined uniform triangular meshes.
Dirichlet boundary conditions for velocity are enforced so that the computed solution interpolates
the true solution at the boundary nodes. H1(Ω) errors and convergence rates for velocity, and
L2(Ω) errors and convergence rates for modified pressure, are shown in Table 1. We observe the
convergence rates are optimal, as predicted by the theory.

h dof ‖u− uh‖1 Rate ‖p− (ph + γ(uh)1x)‖ Rate

1/4 162 1.9859e-1 - 1.9610e-1 -

1/8 578 4.8390e-2 2.037 4.2442e-2 2.208

1/16 2,178 1.1985e-2 2.014 1.0106e-2 2.070

1/32 8,450 2.9883e-3 2.004 2.4949e-3 2.018

1/64 33,282 7.4658e-4 2.001 6.2175e-4 2.005

1/128 132,098 1.8661e-4 2.000 1.5531e-4 2.001

Table 1: H1 Velocity and L2 pressure errors and rates for the proposed stabilized Stokes system
for the 2d test problem. We observe optimal convergence for both.

3.4.2 Convergence rate verification for 3d test problem

We now test the predicted optimal convergence rates of Algorithm 3.1 on a 3d analytical test
problem. The solution is given on Ω = (0, 1)3 by

u1(x, y, z) = cos(2πz),

u2(x, y, z) = sin(2πx),

u3(x, y, z) = sin(2πy),

p(x, y, z) = sin(2π(x+ y + z)).

Again, we choose ν = 1, and calculate f from the Stokes equations. We compute in 3d using
((P2)3, P1) Taylor-Hood elements with Algorithm 3.1, and γ = 1, on successively refined uniform
tetrahedral meshes. Dirichlet boundary conditions for velocity are enforced so that the computed
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solution interpolates the true solution at the boundary nodes. H1(Ω) errors and convergence rates
for velocity, and L2(Ω) errors and convergence rates for modified pressure, are shown in Table 2
for the computations on the varying meshes. We observe the convergence rates are optimal, as
predicted by the theory.

h dof ‖u− uh‖1 Rate ‖p− (ph + γ(uh)1x)‖ Rate

1/4 2,312 6.812e-1 - 1.951e-1 -

1/8 15,468 1.751e-1 1.960 4.216e-2 2.210

1/12 49,072 7.827e-2 1.993 1.818e-2 2.0751

1/16 112,724 4.411e-2 1.990 1.011e-2 2.040

1/20 216,024 2.826e-2 1.978 6.430e-3 2.206

1/24 368,572 1.964e-2 2.015 4.453e-3 2.016

1/32 859,812 1.105e-2 2.000 2.499e-3 2.008

Table 2: H1 Velocity and L2 pressure errors and rates for the proposed stabilized Stokes system
for the 3d test problem. We observe optimal convergence.

3.4.3 Error comparison for a test problem with smaller ν and larger pressure

We next compare errors found by Algorithm 3.1 using γ = 1 with those found using no stabilization
(i.e. γ = 0), and those found using usual grad-div stabilization (with stabilization parameter of
1). We use a similar test problem and setup as for the 2d convergence rates test, but here we take
ν = 0.01 and true pressure solution

p(x, y) = 100 sin(π(x+ 2y)).

From our analysis, this is a case when it is expected that the stabilization operator will increase
accuracy. H1(Ω) velocity errors and L2(Ω) divergence and pressure errors are displayed in Figure 3.
Although each method converges optimally (rates not shown), we observe the stabilized methods
have an order of magnitude less error in the H1(Ω) norm, and two orders of magnitude decrease
in the L2(Ω) norm of the divergence error, compared to the unstabilized method. The errors in
the pressures are about the same for all the methods. Also, we observe the errors of the proposed
stabilization and grad-div stabilization methods’ solutions are very close.

h ‖u− uh‖1 ‖∇ · uh‖ ‖p− p̃h‖ ‖u− uh‖1 ‖∇ · uh‖ ‖p− ph‖ ‖u− uh‖1 ‖∇ · uh‖ ‖p− ph‖
1
4

2.80e1 9.17e0 1.33e1 2.99e1 1.08e1 1.46e1 9.81e2 9.53e2 1.47e1
1
8

6.93e0 1.33e0 2.86e0 8.38e0 1.60e0 3.10e0 1.36e2 1.33e2 3.11e0
1
16

1.16e0 1.78e-1 7.07e-1 1.78e0 2.10e-1 7.28e-1 1.76e1 1.73e1 7.28e-1
1
32

1.68e-1 2.29e-2 1.78e-1 2.98e-1 2.51e-2 1.78e-1 2.24e0 2.21e0 1.78e-1
1
64

2.25e-2 2.92e-3 4.45e-2 4.21e-2 2.99e-3 4.45e-2 2.83e-1 2.79e-1 4.45e-2
1

128
2.90e-3 3.85e-4 1.11e-2 5.54e-3 3.81e-4 1.11e-2 3.56e-2 3.51e-2 1.11e-2

Table 3: Velocity, divergence, and pressure errors for the proposed stabilized method, grad-div
stabilized method, and unstabilized method, on various meshes. In the table, we use p̃h = (ph +
γ(uh)1x).
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Figure 1: The domain and boundary conditions for the Rayleigh–Bénard convection problem.

3.5 Numerical test for Rayleigh–Bénard convection for silicon oil

The next test problem we study is the differentially heated cavity with Rayleigh number Ra=106,
and Prandtl number Pr=∞ (corresponding to silicon oil), using the unit square as the domain, with
boundary conditions for the velocity taken to be no-slip, and mixed Dirichlet/Neumann conditions
for temperature, see Figure 1. Although this system is modeled by the Boussinesq equations, with
Pr=∞, the momentum equations are reduced to a Stokes equation with a forcing f = 〈0, RaT 〉T ,
and so it is appropriate to study this system in the context of approximating Stokes.

A standard finite element approach, see, e.g., [11], is to use (Xh, Qh) = ((P2)2, P1) Taylor–Hood
elements for velocity and pressure, and P2 to approximate the temperature. The finite element
formulation, together with our proposed stabilization, for a specified Ra takes the form: Find
(uh, ph, Th − Td,h) ∈ Xh ×Qh ×X1d

h such that for all (vh, qh, sh) ∈ Xh ×Qh ×X1d
h

(∇uh,∇vh) + γg(uh, vh)− (∇ · vh, ph) = ((0, Ra Th)T, vh),

(∇ · uh, qh) = 0,

(∇Th,∇sh) + (uh · ∇Th, sh) = 0,

(3.24)

where Td,h is an extension of the Dirichlet data to the finite element space with inhomogeneous
Dirichlet boundary conditions. The nonlinearity of (3.24) is resolved to a relative difference of
10−10 in successive iterates using Newton’s method. We used a continuation method in Ra to get
convergence Ra = 106, via Ra ∈ {104, 105, 106}. Plots of the resolved solution’s velocity streamlines
and temperature contours are shown in Figure 2. This solution was found using a Delaunay mesh
that provided 47,644 total degrees of freedom with ((P2)2, P1, P2) elements, and using γ = 0. We
note this resolved solution matches the one found in [16] very well.

To illustrate the positive effects of the proposed stabilization operator, we computed solutions
to (3.24), again using ((P2)2, P1, P2) elements for velocity-pressure-temperature, but now on a much
coarser Delaunay triangulation that provided only 9,893 total degrees of freedom, and using γ =0
and 10 (the larger γ was optimal for this problem, which is not surprising since large divergence
stabilization is known to help heated cavity simulations [16, 8]). Solutions are shown in Figure 3,
and it is clear to observe that the stabilized solution does a better job approximating the streamlines
near the center of the cavity.
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Figure 2: Shown above are the resolved solution’s velocity streamlines and temperature contours.

Figure 3: Shown above are the coarser mesh solutions’ velocity streamlines and temperature con-
tours for γ = 0 (top) and γ = 10 (bottom).

4 A new divergence stabilization method for finite element ap-
proximations of the Navier-Stokes equations

In this section, we extend analysis and testing of the divergence stabilization operator g to finite
element discretizations of the time dependent, incompressible NSE, which are given in the case of
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wall bounded flows by

ut + u · ∇u− ν∆u+∇p = f, (4.1)

∇ · u = 0, (4.2)

u|∂Ω = 0, (4.3)

u(0, x) = u0, (4.4)∫
Ω
p dx = 0. (4.5)

Define the skew-symmetric operator b∗ : X ×X ×X → R by

b∗(u, v, w) =
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v)

If ∇ · u = 0, then b∗(u, v, w) = (u · ∇v, w), and no matter the divergence of u, b∗(u, v, v) = 0.
Consider the linearly extrapolated Crank-Nicolson in time, finite element in space algorithm for

approximating solutions to the NSE (i.e. the method of Baker [2]). The system (4.6)-(4.7) is an
example of a system which has a block-diagonal velocity matrix if γ = 0. We denote the average
of the n and n+1st timesteps by

φn+1/2 :=
φn + φn+1

2
.

Algorithm 4.1. Given u0
h ∈ Vh, f ∈ L∞(0, T ;H−1(Ω)), end time T, timestep ∆t = T

M , for
n=1,2,...,M-1, find (un+1

h , pn+1
h ) ∈ (Xh, Qh) satisfying ∀(vh, qh) ∈ (Xh, Qh),

1

∆t
(un+1
h − unh, vh) + b∗

(
3

2
unh −

1

2
un−1
h , u

n+1/2
h , vh

)
+ ν(∇un+1/2

h ,∇vh)

−(pn+1/2,∇ · vh) + γg(u
n+1/2
h , vh) = (f(tn+1/2), vh),(4.6)

(∇ · un+1
h , qh) = 0. (4.7)

We note the initial pressure p0
h is not needed. Second order temporal accuracy can be maintained

if the first timestep is taken using backward Euler, and then Crank-Nicolson is used for subsequent

timesteps. Alternatively, one may solve for p
n+1/2
h directly, and interpret the solution as the pressure

approximation to p(tn+1/2).
Due to the assumption that (Xh, Qh) satisfies LBB, the system (4.6)-(4.7) is equivalent to the

Vh formulation at each timestep: Find un+1
h ∈ Vh satisfying

1

∆t
(un+1
h − unh, vh) + b∗

(
3

2
unh −

1

2
un−1
h , u

n+1/2
h , vh

)
+ ν(∇un+1/2

h ,∇vh)

+ γg(u
n+1/2
h , vh) = (f(tn+1/2), vh) ∀vh ∈ Vh. (4.8)

4.1 Analysis of the stabilized algorithm for NSE

Lemma 4.1. Solutions to Algorithm 4.1 exist uniquely, and satisfy

∥∥uMh ∥∥2
+ν∆t

M−1∑
n=0

∥∥∥∇un+1/2
h

∥∥∥2
+γ∆t

M−1∑
n=0

∥∥∥∇ · un+1/2
h

∥∥∥2
≤
∥∥u0

h

∥∥2
+ν−1∆t

M−1∑
n=0

∥∥∥f(tn+1/2)
∥∥∥2

−1
. (4.9)
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Proof. We begin by proving estimate (4.9). Let unh ∈ Vh, n=0,1,2,...,M be a velocity solution to

Algorithm 4.1. Setting vh = u
n+1/2
h in (4.8) vanishes the nonlinear term, and then applying Lemma

1.1 yields

1

2
(
∥∥un+1

h

∥∥2 − ‖unh‖
2) + ν

∥∥∥∇un+1/2
h

∥∥∥2
+ γ

∥∥∥∇ · un+1/2
h

∥∥∥2
= (f(tn+1/2), u

n+1/2
h )

≤ ν

2

∥∥∥∇un+1/2
h

∥∥∥2
+
ν−1

2
‖f‖2−1 .

From here, reducing and summing over timesteps proves (4.9) for any solution of Algorithm 4.1.
This result immediately proves that solutions at each timestep must be unique, and since the
problem is linear and finite dimensional at each timestep, existence and uniqueness of solutions
follows.

Theorem 4.1. Let (u, p) be a sufficiently smooth NSE solution, so that the norms on the right
hand side of (4.10) exist . The velocity error in approximating NSE with Algorithm 4.1 is bounded
by

∥∥u(T )− uMh
∥∥2

+ ν∆t
M−1∑
n=0

∥∥∥∇(u(tn+1/2)− un+1/2
h )

∥∥∥2
+ γ∆t

M−1∑
n=0

∥∥∥∇ · un+1/2
h

∥∥∥2
≤

C
(

(ν + γ2ν−1 + ν−1 + ν−2) ‖|u(t)|k‖2L∞(0,T ) h
2k + γ−1 ‖|p(t)− γu1x(t)|k‖2L∞(0,T ) h

2k + C∆t4
)

(4.10)

Remark 4.1. If the stabilization had not been used, the error estimate becomes

∥∥u(T )− uMh
∥∥2

+ ν∆t
M−1∑
n=0

∥∥∥∇(u(tn+1/2)− un+1/2
h )

∥∥∥2
≤

C
(

(ν + ν−1 + ν−2) ‖|u(t)|k‖2L∞(0,T ) h
2k + ν−1 ‖|p(t)|k‖2L∞(0,T ) h

2k + C∆t4
)

(4.11)

Thus we see that for smaller ν, the use of the proposed stabilization operator g reduces the effect of
the pressure discretization error on the velocity error. Moreover, for ν � γ ≤ O(1), comparing the
estimates suggests the new stabilization operator does not appear to provide any negative influence
on the solution.

Proof. Denote un := u(tn) for the NSE velocity solution at time t = tn, for n=0,1,2,...,M, and note
that un+1/2 is not necessarily equal to 1/2(un + un+1). Similar to Stokes analysis of section 3, we
multiply the NSE by vh ∈ Vh, then add γg(un+1/2, vh) to both sides, reduce the right hand side

with γg(un+1/2, vh) = (−γun+1/2
1x

,∇ · vh), and subtract off the discrete scheme (4.8) to get

1

∆t
(en+1 − en, vh) + ν(∇en+1/2,∇vh) + γg(en+1/2, vh) = −(p(tn+1/2)− γun+1/2

1x
,∇ · vh)

− b∗
(

3

2
unh −

1

2
un−1
h , en+1/2, vh

)
− b∗

(
3

2
en − 1

2
en−1, un+1/2, vh

)
− Φ(n, vh), (4.12)
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where en := un − unh and

Φ(n, vh) :=

(
ut(t

n+1/2)− un+1 − un

∆t

)
+ b∗

(
u(tn+1/2), u(tn+1/2), vh

)
− b∗

(
3

2
un − 1

2
un−1, un+1/2, vh

)
+ ν(∇(u(tn+1/2)− un+1/2),∇vh). (4.13)

A priori estimates, from [18] for example, give us that

|Φ(n, vh)| ≤ ν

4
‖∇vh‖2 + Cν−1∆t4, (4.14)

for a constant C dependent on norms of the NSE solution, but independent of h and ∆t. Writing

en = un −wnh +wnh − unh =: ηn + φnh for wh = PL
2

Vh
(un) (so ηn ⊥ Vh), then setting vh = φ

n+1/2
h gives

1

2∆t
(
∥∥φn+1

h

∥∥2 − ‖φnh‖
2) + ν

∥∥∥∇φn+1/2
h

∥∥∥2
+ γ

∥∥∥∇φn+1/2
h

∥∥∥2
= ν(∇ηn+1/2,∇φn+1/2

h )

+ γg(ηn+1/2, φ
n+1/2
h )− (p(tn+1/2)− γun+1/2

1x
− rh,∇ · φ

n+1/2
h )− b∗

(
3

2
unh −

1

2
un−1
h , ηn+1/2, φ

n+1/2
h

)
− b∗

(
3

2
ηn − 1

2
ηn−1, un+1/2, φ

n+1/2
h

)
− b∗

(
3

2
φnh −

1

2
φn−1
h , un+1/2, φ

n+1/2
h

)
− Φ(n, φ

n+1/2
h ), (4.15)

where rh ∈ Qh is arbitrary. Using g(η, φ) ≤ C ‖∇η‖ ‖∇φ‖, and applying standard upper bounds to
the rest of the terms gives

1

2∆t
(
∥∥φn+1

h

∥∥2 − ‖φnh‖
2) + ν

∥∥∥∇φn+1/2
h

∥∥∥2
+ γ

∥∥∥∇φn+1/2
h

∥∥∥2
≤ C(ν + γ2ν−1 + ν−1)

∥∥∥∇ηn+1/2
∥∥∥2

+ γ−1
∥∥∥p(tn+1/2)− γun+1/2

1x
− rh

∥∥∥2
+ Cν−1

∥∥∥∥∇(3

2
unh −

1

2
un−1
h

)∥∥∥∥2 ∥∥∥∇ηn+1/2
∥∥∥2

+ Cν−1 ‖u‖2L∞(tn,tn+1;L∞(Ω)) (‖φnh‖
2 +

∥∥φn−1
h

∥∥2
) + Cν−1∆t4. (4.16)

From here, standard techniques along with the use of the alternate Gronwall lemma from [14] (as
is done in [15], since there are no φn+1

h appearing on the right hand side) completes the proof.

4.2 2d Channel Flow over a step

We now test the proposed method on the benchmark 2d problem of channel flow over a forward-
backward facing step. The domain is taken to be a 40x10 rectangle, with a 1x1 step that is five
units into the channel at the bottom. We prescribe no slipboundary conditions on all walls, and a
parabolic inflow and outflow conditions given by (y(10− y)/25, 0)T . The correct physical behavior
with f = 0 and ν = 1/600 is a smooth velocity profile, with eddies forming and detaching behind
the step [20]. A resolved NSE solution at T=40 is shown in figure 4, which is resolved using
21,593 degrees of freedom with ((P2)2, P1) elements and a linearly extrapolated Crank-Nicolson
timestepping with a timestep of ∆t = 0.01 (note this is the scheme (4.8) with γ = 0), and we note
this matches well the solution found in [20].

We test the proposed scheme on a coarser mesh, where the unstabilized NSE is not resolved.
Here, we again use ((P2)2, P1) Taylor-Hood elements, but on a mesh that provides only 4,780 degrees
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Figure 4: Shown above is the resolved NSE solution at T=40.

of freedom, and we keep all other problem parameters the same. A plot of the unstabilized NSE at
T=40 is shown in Figure 5 (top) as velocity streamlines over speed contours as well as divergence
contours, and it is observed that the solution is clearly incorrect, as significant oscillations are
present in the speed contours. Results for the proposed scheme (4.8) with γ = 1 are shown
for T=40 in Figure 5 (middle). Here the proposed stabilization operator is observed to create
a dramatic increase in accuracy over the unstabilized solution, as there are no oscillations, and
the streamlines match those of the true solution quite well. We also ran the same test using
usual grad-div stabilization (with stabilization parameter 1) instead of the proposed divergence
stabilization. The T=40 solution for this test is also shown in Figure 5, and we observe that its
solution looks nearly identical to that found using the proposed stabilization. From the divergence
contour plots, we observe that solution from both the new stabilization operator and the usual
grad-div stabilization reduce the divergence error by an order of magnitude.

4.3 2D Flow around a cylinder

Next, we test the proposed method on two dimensional channel flow around a cylinder, which is a
well studied problem often used in benchmarking for NSE algorithms [26, 17]. The flow patterns
are driven by interaction of the fluid with the (solid wall) cylinder, which is an important scenario
for many industrial flows. The domain is a 2.2× 0.41 rectangular channel with a cylinder centered
at (0.2, 0.2) with radius 0.05. No slip boundary conditions are enforced on all walls, and the inflow
and outflow profiles are set as

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

The viscosity is taken to be ν = 10−3, and the external force f = 0. The flow is started from rest,
and run to T=8. The correct behavior is for a vortex street to start to form behind the cylinder
by T=4, and to persist through time T=8, as shown in [17].

We computed solutions using Algorithm 4.1 with timestep ∆t = 0.001 and ((P2)2, P1) Taylor-
Hood elements on two different meshes, which provided 32,606, and 56,189 total degrees of freedom
respectively. We ran the tests with γ =0 and 1 with the proposed divergence stabilization, and for
comparison, with usual grad-div stabilization (with stabilization parameter 1). Plots of the velocity
solution from the finest mesh at times T=4,6,7,8 using γ = 1 are shown in Figure 7, and agree well
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Figure 5: Shown above are the (left) velocity streamlines over speed contours and (right) absolute
divergence |∇ · uh| contours for varying stabilizations.

Figure 6: Shown above is the mesh used for the two dimensional flow past a cylinder numerical
experiment, which provided 56,189 total degrees of freedom when used with ((P2)2, P1) elements.

with those of the benchmark paper [17]. Plots of the solutions from the other meshes and other
stabilization choices yielded similar plots.

To further evaluate and compare the computed solutions, we compute values for the maximal
drag cd,max and lift cl,max coefficients at the cylinder, and compare them to those found in the
benchmark tests that used over 1 million degrees of freedom and timesteps as small as 0.0001
[17]. The benchmark lift and drag coefficients for fully resolved NSE flows will lie in the reference
intervals ([26, 17])

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49].
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Figure 7: Shown above are the velocity vector plots and speed contours for the 2d flow around
a cylinder benchmark problem, at T=4, 6, 7, and 8, using the proposed divergence stabilization
operator with γ = 1.
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In table 4, we show the calculated lift and drag coefficients from our numerical tests. On the finest
mesh, we observe that all solutions produced lift and drag coefficients in the reference intervals.
However, on the coarser mesh, we observe that the stabilized solutions gave coefficients much closer
to the reference intervals. We note again there is little difference between the solutions stabilized
using the proposed divergence stabilization and usual grad-div stabilization.

New stabilization Grad-div stabilization No stabilization

dof cd,max cl,max cd,max cl,max cd,max cl,max

32,606 2.920 0.450 2.916 0.457 3.665 0.677

56,189 2.940 0.480 2.935 0.470 2.961 0.479

Table 4: Max lift and drag coefficients for 2d flow around a cylinder simulations, using various
meshes and stabilizations.

4.4 The 3d Ethier-Steinman problem

Our final experiment is for computing approximations to the Ethier-Steinman exact NSE solution
from [9], on [0, 1]3. For chosen parameters a, d and viscosity ν, this exact NSE solution is

u1 = −a (eax sin(ay + dz) + eaz cos(ax+ dy)) e−νd
2t, (4.17)

u2 = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd
2t, (4.18)

u3 = −a (eaz sin(ax+ dy) + eay cos(az + dx)) e−νd
2t, (4.19)

p = −a
2

2
(e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y))e−2νd2t. (4.20)

This problem is a 3d analog to the Green-Taylor vortex problem, for the purpose of benchmarking.
Although unlikely to be physically realized, it is a good test problem because it is not only an exact
NSE solution, but also it has non-trivial helicity which implies the existence of some turbulent
structure [21] in the velocity field. We compute approximations using a = 1, d = 1, viscosity
ν = 0.002, timestep ∆t = 0.01, endtime T = 1, and initial velocity u0 = (u1(0), u2(0), u3(0))T ,
using Algorithm 4.1 with ((P2)3, P1) elements on a tetrahedral mesh that provided 112,724 total
degrees of freedom. Dirichlet boundary conditions we enforced nodally using the true solution, on
all sides of the box. We computed using γ = 0 and 1, and plot H1(Ω) spacial error vs. time for
both computed solutions in Figure 8. A clear reduction of error is observable for the γ = 1 solution.

5 Conclusions and future directions

A new divergence stabilization operator for finite element simulations of incompressible flow prob-
lems has been introduced, which behaves in many ways like the well-known grad-div stabilization
operator, but the new operator has the advantage of a sparser block structure in its linear algebraic
system. By interpreting the new operator as grad-div stabilization together with the gradient of u1x

(for example), analysis was given for finite element approximations of Stokes and NSE that showed
the new operator maintains optimal convergence of standard finite element methods, penalizes the
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Figure 8: H1 error vs. time, for solutions using γ = 0 and 1, to approximate the solution of the
Ethier-Steinman problem with a = d = 1 and ν =0.002.

divergence error and can reduce the effect of the pressure error on the velocity error. Several
benchmark numerical tests were performed which verified the theory, and showed the (sometimes
dramatic) positive effect the proposed operator can have on solution accuracy.

Important future directions for the proposed stabilization operator are detailed studies of al-
gebraic solvers for the linear systems that arise from the use of g. In particular, Chorin-type
projection methods appear to be well suited to use the proposed operator (as opposed to usual
grad-div), and so this seems to be a natural next step. For preconditioners and solvers that aug-
ment the Lagrangian, it may be interesting to study whether the new stabilization operator can be
used together with the augmentation to achieve a better balance of accuracy and efficiency, since
here the stabilization and augmentation parameters will be different.
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