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Abstract. The weighted matching problem is to find a matching in a weighted graph
that has maximum weight. The fastest known algorithm for this problem has running time
O(nm + n2 log n). Many real world problems require graphs of such large size that this run-
ning time is too costly. We present a linear time approximation algorithm for the weighted
matching problem with a performance ratio of 2

3
− ε. This improves the previously best

performance ratio of 1

2
.

1 Introduction

A matching M in a graph G = (V,E) is a subset of the edges of G such that no two
edges in M are adjacent. In a graph G = (V,E) with edge weights given by a function
w : E → R+ the weight of a matching is defined as w(M) :=

∑

e∈M w(e). The weighted
matching problem is to find a matching M in G that has maximum weight. The first
polynomial time algorithm for the weighted matching problem is due to Edmonds [4].
A straightforward implementation of this algorithm requires a running time of O(n2m),
where n and m denote the number of vertices and edges in the graph. Lawler [8] and
Gabow [6] improved the running time to O(n3). The fastest known algorithm to date for
solving the weighted matching problem in general graphs is due to Gabow [7] and has a
running time of O(nm + n2 log n).

Many real world problems require graphs of such large size that the runtime of Gabow’s
algorithm is too costly. Examples of such problems are the refinement of FEM nets [9],
the partitioning problem in VLSI-Design [10], and the gossiping problem in telecommuni-
cations [2]. There also exist applications were the weighted matching problem has to be
solved extremely often on only moderately large graphs. An example of such an application
is the virtual screening of protein databases containing the three dimensional structure of
the proteins [5]. The graphs appearing in such applications only have about 10,000 edges.
But the weighted matching problem has to be solved more than 100,000,000 times for a
complete database scan.

Therefore, there is considerable interest in approximation algorithms for the weighted
matching problem that are very fast, have ideally linear runtime, and that nevertheless
produce very good results even if these results are not optimal.
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The quality of an approximation algorithm for solving the weighted matching problem
is measured by its so-called performance ratio. An approximation algorithm has a perfor-
mance ratio of c, if for all graphs it finds a matching with a weight of at least c times the
weight of an optimal solution.

A simple approximation algorithm for the weighted matching problem with perfor-
mance ratio 1

2
is obtained by the following greedy approach [1]: Start with an empty

matching and extend it in each step by the heaviest edge currently available. The running
time of this algorithm is O(m log n) as it requires sorting the edges by decreasing weight.
The first linear time 1

2
-approximation algorithm for the weighted matching problem was

proposed by Preis [11] using the idea of locally heaviest edges. Drake and Hougardy [3]
obtained a simpler linear time approximation algorithm with the same performance ratio
by using a completely different approach. In this paper we improve these results by proving
the existence of linear time approximation algorithms for the weighted matching problem
which have approximation ratios arbitrarily close to 2

3
.

Main Theorem. For each ε > 0 there exists a linear time approximation algorithm for
the weighted matching problem with a performance ratio of 2

3
− ε.

The main idea of our algorithm is to start with a maximal matching M and to increase
its weight by local changes. These local changes which we call short augmentations add
in each step at most two new edges to M while up to four edges of M will be removed.
A graph can possess up to Ω(n4) short augmentations. To achieve linear running time
only some part of these can be looked at. For each edge of the maximal matching M our
algorithm only looks at all short augmentations that involve the endpoints of this edge.
This way the short augmentations considered by the algorithm are in some sense spread
evenly over the graph and their number is linearly bounded.

As the short augmentations are partly overlapping it can happen that after perform-
ing one short augmentation several others are no longer available. For the performance
ratio it is therefore important to be able to reject short augmentations that achieve only
minor improvements in the weight of the matching. This is achieved by only taking short
augmentations into considerations that gain at least some constant factor β and that
additionally yield the largest possible gain from all these. Such augmentations will be
called β-augmentations. In linear time it seems not to be possible to find the best β-
augmentation. However we will show that in linear time a constant factor approximation
of the best β-augmentation can be found.

To prove the performance ratio of our algorithm we use an amortized analysis. The
idea is that the gain that is achieved by an augmentation is not realized immediately but
part of it is stored in certain edges of the graph for later use. This way we are able to prove
that the algorithm increases the weight of the given matching by some constant factor.
By repeating the algorithm a constant number of times and choosing β sufficiently small
the resulting matching will have a weight that comes arbitrarily close to 2

3
.



The paper is organized as follows. In Section 2 we give basic definitions. In Section 3
we define short augmentations and use these to prove the existence of the set of local
improvements upon which our algorithm is based. In Section 4 we present the algorithm
and prove that its performance ratio is 2

3
− ε for any ε > 0.

2 Preliminaries

Let G = (V,E) be a weighted graph with weight function w : E → R+. For a subset F ⊆ E

the weight of F is defined as w(F ) :=
∑

f∈F w(f). A matching M ⊆ E is called maximal
if no proper superset of M in E is a matching. By Mopt we denote a maximum weight
matching in G, i.e. a matching that satisfies w(Mopt) ≥ w(M) for all other matchings M .
A path or cycle is called M -alternating if it uses alternately edges from M and E\M . Note
that alternating cycles must contain an even number of edges. Let P be an alternating
path such that if it ends in an edge not belonging to M then this endpoint of P is not
covered by an edge of M . The path P is called M -weight-augmenting if

w (E(P ) ∩ M) < w (E(P ) \ M) .

If P is an M -weight-augmenting path then M 4 P (the symmetric difference between M

and P ) is again a matching with strictly larger weight than M . The notion of M -weight-
augmenting cycles is defined similarly. More generally we call an augmentation any process
that replaces some edges of a matching M by some new edges and increases the weight of
the matching.

3 Short Augmentations

A weight-augmenting path or cycle with respect to a matching M is called short if it
contains at most two edges not belonging to M . The only weight-augmenting short cycle
is by this definition an alternating cycle of length four and there exist six different types
of weight-augmenting short paths. The following result shows that it is indeed enough
to consider such short augmenting paths and cycles to obtain a 2

3
-approximation of the

maximum weight matching.

Lemma 1. For any matching M there exists a node disjoint set of weight-augmenting
short paths and cycles such that augmenting along all these paths and cycles results in a
matching of weight at least 2

3
· w(Mopt).

Proof. Consider the symmetric difference M4Mopt. It consists of even length alternating
cycles and of alternating paths. Order these paths and cycles arbitrarily and number the
edges of Mopt in the order in which they appear in these paths and cycles. Now partition
Mopt into three sets by taking the edge numbers modulo 3. By removing any of these



three sets from M4Mopt one obtains a set of alternating paths and cycles each of which
contains at most two edges of Mopt. Removing the lightest of these three sets shows that
M can be augmented to a matching of weight at least 2

3
· w(Mopt) by paths and cycles

each of which contain at most two edges not in M . ut

In the following we need the notion of a β-augmentation. For a constant β > 1 a β-
augmentation of a matching M is an augmentation that has the property that the weight
of the edges that are removed from M is at least by the factor β smaller than the weight
of the edges that are added to M by the augmentation. The following result shows that
for small enough β any matching M can be augmented by short paths and cycles each of
which is a β-augmentation to a matching that has a weight close to 2

3
· w(Mopt).

Lemma 2. Let M be an arbitrary matching and β > 1 be constant. Then there exists
a node disjoint set of weight-augmenting short paths and cycles each of which is a β-
augmentation such that augmenting along all these paths and cycles results in a matching
of weight at least 2

3β
· w(Mopt).

Proof. By Lemma 1 we know that there exists a node disjoint set of augmenting paths
and cycles each of which contains at most two edges not in M such that augmenting
along all these paths and cycles results in a matching M̃ of weight at least 2

3
· w(Mopt).

We now claim that if we take the subset of these augmenting paths and cycles that are
β-augmentations, we get a matching of the desired weight.

Partition the set M̃ into two sets M̃≥β and M̃<β such that M̃≥β contains all edges
of M̃ that are obtained by β-augmentations and let M̃<β be all other edges of M̃ . The
set M similarly can also be partitioned into two sets M<β and M≥β according to the
augmenting paths and cycles in M4M̃ that contain these edges. By performing only the
β-augmentations one obtains the matching M<β ∪ M̃≥β. The weight of this set can be
bounded from below as follows:

w(M<β) + w(M̃≥β) ≥
1

β
w(M̃<β) + w(M̃≥β) ≥

1

β
w(M̃ ) ≥

2

3β
w(Mopt) .

ut

Let M be an arbitrary matching and let M̃ be a matching of weight at least 2

3
·w(Mopt)

such that the symmetric difference of M and M̃ consists of weight-augmenting short paths
and cycles. The existence of M̃ is guaranteed by Lemma 1. For each cycle or path in M4M̃

choose an edge in M that is adjacent to all edges of M̃ in this path or cycle. Call the set
of all these chosen edges M ∗. For each edge e ∈ M ∗ denote by Se the (at most two) edges
of M̃ that are adjacent to e. For an arbitrary set F of edges denote by inc(F ) all edges in
M that are incident to the endpoints of edges in F . Then inc(Se) contains at most three
edges of M and Se∪ inc(Se) is the set of edges of the path or cycle in M4M̃ that contains
the edge e.



For a given constant β > 1 we partition the set M ∗ into two subsets M ∗
<β and M∗

≥β

such that M ∗
<β contains all edges of M ∗ such that w(Se) < β ·w(inc(Se)) and M ∗

≥β contains
all other edges of M ∗.

The following result shows that if an algorithm achieves at least a constant fraction of
the value 1

β
·w(Se)−w(inc(Se)) for all e ∈ M ∗

≥β then it will improve a given matching by
a constant factor.

Lemma 3. Let M be a matching of weight w(M) ≥ α ·w(Mopt). If the matching M ′ has a

weight that is larger than the weight of M by at least ε ·
∑

e∈M∗
≥β

(

1

β
· w(Se) − w(inc(Se))

)

then

w(M ′) ≥

(

α + ε ·

(

2

3β
− α

))

· w(Mopt) .

Proof. By the definition of M ∗
<β we have w(inc(Se)) > 1

β
·w(Se) for e ∈ M ∗

<β and w(M) =
∑

e∈M∗ w(inc(Se)). Applying these two facts we get

w(M ′) ≥ w(M) + ε ·
∑

e∈M∗
≥β

(

1

β
· w(Se) − w(inc(Se))

)

= (1 − ε) · w(M) + ε ·
∑

e∈M∗
<β

w(inc(Se)) + ε ·
∑

e∈M∗
≥β

1

β
· w(Se)

> (1 − ε) · w(M) + ε ·
∑

e∈M∗
<β

1

β
· w(Se) + ε ·

∑

e∈M∗
≥β

1

β
· w(Se)

= (1 − ε) · w(M) +
ε

β
·

∑

e∈M∗

w(Se)

≥ (1 − ε) · α · w(Mopt) +
ε

β
·
2

3
· w(Mopt)

=

(

α + ε ·

(

2

3β
− α

))

· w(Mopt)

ut

4 The Algorithm

For the algorithm we have to extend the notion of weight-augmenting short paths and
cycles slightly. Let S ⊂ E be a set of at most two non-adjacent edges such that there
exists an edge e in E that is adjacent to all edges in S. Then by removing all edges from
a matching M ′ that are adjacent with some edge in S and by adding S one obtains a new
matching M ′′. If w(M ′′) > w(M ′) we say that S is a (short) augmenting set centered at e

with respect to M ′. As S contains at most two edges there are at most four edges in M ′



that will be removed. Note that the sets Se introduced in Section 3 are augmenting sets
centered at e with respect to M .

For the description of the algorithm and the proof of its performance ratio we need the
following additional definitions. Let M denote the maximal matching that the algorithm
begins with and which is the matching that defines the set Se as described in Section 3.
Let M ′ denote the matching that is continuosly updated by the algorithm by means of
augmentations. Let aug(e) denote the set of edges that the algorithm chooses for a β-
augmentation at e ∈ M . For an arbitrary set F of edges denote by inc′(F ) all edges in M ′

that are incident to the endpoints of edges in F .

Algorithm improve matching (
�

= ( ����� ) ��� : ���
	 +, M)

1 make M maximal
2 M ′ := M

3 for e ∈ M do begin
4 if there exists a β-augmentation with center e

5 then augment M ′ by a good β-augmentation with center e

6 end
7 return M ′

Fig. 1. Algorithm improve matching for increasing the weight of a matching.

The algorithm, which we call improve matching, is shown in Figure 1. Starting from
a maximal matching M the algorithm visits each edge e ∈ M exactly once. For each
e ∈ M the algorithm determines if there is any β-augmenting set centered at e in M ′. If
there is none then the algorithm moves on to the next edge in M . Otherwise, there is a
β-augmenting set centered at e. The algorithm then tries to find the best β-augmenting set
centered at e. The gain of an augmenting set S is defined to be w(S) − w(inc′(S)) which
is the amount by which M ′ increases by augmenting S. We define the best β-augmenting
set centered at e to be the β-augmenting set centered at e with the largest gain.

However, the algorithm is not guaranteed to find the best β-augmenting set centered
at e but rather it finds a good β-augmenting set at e. We define a good β-augmenting set
centered at e to be a β-augmenting set centered at e with a gain of at least β−1

4
times

the gain of the best β-augmenting set centered at e. For technical reasons we assume from
now on that 1 < β ≤ 3

2
which is no restriction as in the end β will turn out to be very

close to 1.

Figure 2 shows our algorithm for finding a good β-augmentation. It takes an edge e as
input and returns a good β-augmenting set centered at e if any such set exists. We need
a few more definitions to describe the algorithm. For an arbitrary edge x let wM (x) be
0, if x 6∈ M and define wM (x) = w(x) otherwise. Arbitrarily label the endnodes of e as



left and right. Then any edge a 6∈ M ′ that is incident to left together with inc′(a) \ {e}
form a left arm of e. The definition of a right arm of e is symmetrical to this. The gain
of an arm of e that consists of a 6∈ M ′ together with inc′(a) \ {e} is defined as gaina :=
wM (a)−wM (inc′(a) \ {e}). The gain of an arm of e that consists of just a 6∈ M ′ is defined
in the obvious way as just gaina := wM (a).

Algorithm good-β-augmentation (
�

= ( ��� � ) ��� : ���
	 + � ��� � )

1 find the right and left arms of e

2 determine the gains and surpluses of the left and right arms
3 left := largest left allowable arm and its best extension
4 right := largest right allowable arm and its best extension
5 if left= ∅ and right= ∅
6 then return ∅
7 else return max(left, right)

Fig. 2. Algorithm for finding a good β-augmentation.

We define a left arm a ∪ (inc′(a) \ {e}) to be allowable if there exists a right arm
b ∪ (inc′(b) \ {e}) such that a ∪ b or a alone forms a β-augmenting set at e. We calculate
the left allowable arms as follows: First, we calculate the greatest surplus from among the
right arms, where we define the surplus of the right arm b ∪ (inc′(b) \ {e}) as wM (b) −
β · (wM (inc′(b) \ {e}) + wM (e)). One can think of the largest surplus from among all the
right arms, denoted surpr, as the maximum value that a right arm can loan to a left arm
in order to make it part of a β-augmenting set at e. A left arm is allowable if and only if
wM (a) − β · wM (inc′(a) \ {e}) + surpr ≥ 0. The definition of a right allowable arm, the
maximum left surplus surpl, as well as the process for calculating these is symmetrical.

Once the algorithm has calculated the left and right allowable arms of e it chooses
from among these the one with the largest gain. Without loss of generality let it be a left
arm. Let a 6∈ M ′ be the uncovered edge in this arm. Then the algorithm returns the best
β-augmenting set centered at e that contains a.

Lemma 4. If there exists a β-augmenting set centered at e then the algorithm good-β-
augmentation (Figure 2) returns a good β-augmenting set centered at e. The running time
is proportional to the sum of the degrees of the end-vertices of the edge e.

Proof. Sketch of proof: If the largest possible gain of an arm is larger than twice the weight
of e then one easily gets that the algorithm finds a β-augmentation that achieves at least
1

3
of the largest possible gain. This is because then the best β-augmentation gains at most

3 times the weight of e and the algorithm finds a β-augmentation that gains at least the
weight of e.

In the other case, using the fact that the algorithm finds a β-augmentation that does
not share an arm with the best possible β-augmentation, one can show that β − 1 must



be sufficiently small such that 4

β−1
is big enough to scale the gain found by the algorithm.

For β < 3

2
the latter is larger. ut

Lemma 5. The algorithm improve matching improves the matching M by at least

∑

e∈M∗
≥β

(β − 1)2

8β
·

(

1

β
· w(Se) − w(inc(Se))

)

.

Proof. Define δ := β−1

4
. The algorithm visits every e ∈ M and hence every e ∈ M ∗

≥β. If
it finds any β-augmenting set for e it also finds and augments a β-augmenting set aug(e)
which yields at least δ of the gain of the currently best β-augmenting set at e. Even though
the algorithm cannot distinguish between the edges of M≥β and M<β or know the pre-
viously defined β-augmenting sets Se we show by means of amortization that for each of
these sets Se it finds a constant proportion of 1

β
·w(Se)−w(inc(Se)). The idea is that for

each e ∈ M ∗
≥β the algorithm can either find an augmenting set as good as Se in M or the

matching M ′ has increased by enough weight to already assign a constant proportion of
this gained weight to e.

The idea of the amortized analysis is that when the algorithm augments at e ∈ M ∗
≥β

then M ′ either gains a constant proportion of 1

β
·w(Se)−w(inc(Se)) right away or M ′ can

additionally make a withdrawal of weight that has been added to M ′’s savings in the past
in a way that brings a total win of some constant proportion of 1

β
· w(Se) − w(inc(Se))

to M ′. One builds up M ′’s savings as follows. For each e ∈ M ∗
<β the matching M ′ gets

charged all of the augmentation that the algorithm finds at e and this amount gets put
in savings. This is not a problem because there are no sets Se associated with these edges
anyway. If e ∈ M ∗

≥β then M ′ keeps 1

2
of the augmentation that the algorithm finds at e

and M ′ gets charged the other half to savings. If this is done for all e ∈ M then M ′ can
later make withdrawals from savings when necessary. This is necessary when for instance
one needs to augment at e ∈ M ∗

≥β but the edges incident to Se all have greater weight in
M ′ than they had in M . Let E ⊂ (M ′ \M) denote the set of new edges incident with the
nodes of Se for some such e ∈ M ∗

≥β. Then a withdrawal from M ′’s savings of 1

2
· β−1

β
·w(E)

can be made for the augmentation at e. The factor β−1

β
comes from the fact that the edges

in the set E were added to M ′ during β-augmentations that occured in the past and so
there must have been at least this much put in savings in the past. The factor 1

2
comes

from the fact that each edge in E has two endnodes and therefore each e in E can be
involved in at most two withdrawals since each of the Se are node disjoint.

More concretely, when the algorithm visits e ∈ M ∗
≥β there are three possibilities for

the set Se: The first is that Se is still β-augmenting in M ′ with w(inc′(Se)) ≤ w(inc(Se)),
the second is that Se is still β-augmenting in M ′ with w(inc′(Se)) > w(inc(Se)), and the



third is that Se is no longer β-augmenting in M ′.

For the first possibility for e ∈ M ∗
≥β we have Se is still β-augmenting with w(inc′(Se)) ≤

w(inc(Se)) when the algorithm visits it. Since the algorithm always finds a β-augmentation
aug(e) of at least δ the gain of the largest β-augmentation at e in M ′ it follows that after
M ′ has been charged 1

2
of the augmentation found at e the amount of weight that M ′

increases by is

1

2
(w(aug(e)) − w(inc′(aug(e)))) ≥

δ

2
(w(Se) − w(inc′(Se)))

≥
δ

2
(w(Se) − w(inc(Se)))

≥
δ

2
(
1

β
· w(Se) − w(inc(Se))).

For the second possibility for e ∈ M ∗
≥β we have that Se is still β-augmenting with

w(inc′(Se)) > w(inc(Se)) when the algorithm visits it. Let A denote the set inc′(Se) \
inc(Se). The set A contains only new edges, i.e., edges that were in augmentations, there-
fore M ′’s has increased in the past by at least β−1

β
· w(A) of which at least half can be

withdrawn by M ′. This together with the augmentation that the algorithm will find at e,
one half of which M ′ gets to keep, means that M ′’s total win at e is at least

1

2
(w(aug(e)) − w(inc′(aug(e)))) +

1

2

β − 1

β
· w(A)

≥
δ

2
(w(Se) − w(inc′(Se))) +

1

2

β − 1

β
(w(inc′(Se)) − w(inc(Se)))

≥
δ

2

β − 1

β
(w(Se) − w(inc′(Se)) + w(inc′(Se)) − w(inc(Se)))

≥
δ

2

β − 1

β
(
1

β
w(Se) − w(inc(Se))).

For the third and final possibility for e ∈ M ∗
≥β we have that Se is no longer β-

augmenting when the algorithm visits it, i.e., w(inc′(Se)) > 1

β
· w(Se). Therefore, the

set of edges A = inc′(Se) \ inc(Se) has weight w(A) > 1

β
· w(Se) − w(inc(Se)). Then M ′’s

savings must have increased by at least β−1

β
· w(A) of which at least 1

2
can be withdrawn

by M ′. So independently of wether the algorithm finds a β-augmenting set at e in M ′, M ′

gets a total win in this step of at least

1

2

β − 1

β
w(A) ≥

1

2

β − 1

β
(
1

β
w(Se) − w(inc(Se))).



The minimum weight that M ′ increases by at each e ∈ M ∗
≥β over all three cases is

δ
2

β−1

β
( 1

β
w(Se) − w(inc(Se))) which proves the lemma since we defined δ as β−1

4
.

ut

Theorem 1. If M is any matching with w(M) ≥ α · w(Mopt) then after applying the
algorithm improve matching one obtains a matching M ′ with weight at least

w(M ′) ≥

(

α +
(β − 1)2

8β

(

2

3β
− α

))

· w(Mopt)

Proof. This is an immediate consequence of Lemma 3 and Lemma 5. ut

We are now able to prove the main theorem.

Main Theorem. For each ε > 0 there exists a linear time approximation algorithm for
the weighted matching problem with a performance ratio of 2

3
− ε.

Proof. Theorem 1 shows that by repeating algorithm improve matching one gets a match-
ing with weight arbitrarily close to 2

3β
·w(Mopt). Now by choosing β > 1 small enough one

gets a matching with weight arbitrarily close to 2

3
·w(Mopt). Note that β and the number

of repeats of algorithm improve matching are constants depending on ε. As the algorithm
improve matching has linear running time the total running time stays linear. ut
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