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Abstract

This paper concerns linear first-order hyperbolic systems in one space dimension of
the type

∂tuj + aj(x, t)∂xuj +
n
∑

k=1

bjk(x, t)uk = fj(x, t), x ∈ (0, 1), j = 1, . . . , n,

with periodicity conditions in time and reflection boundary conditions in space.
We state a kind of dissipativity condition (depending on the coefficients aj and bjj
and the boundary reflection coefficients), which implies Fredholm solvability of the
problem, i.e., either there is a nontrivial solution to the homogeneous problem (in
this case the space of such solutions has finite dimension) or the nonhomogeneous
problem is uniquely solvable for any right-hand side (in this case the solution de-
pends continuously on the right-hand side). In particular, under those conditions no
small denominator effects occur. Our results work for many non-strictly hyperbolic
systems, but they are new even in the case of strict hyperbolicity.

Finally, in the case that all coefficients aj are t-independent, we show that the
solutions are C∞-smooth if the data are C∞-smooth.

Key words: first-order hyperbolic systems, time-periodic solutions, reflection boundary
conditions, no small denominators, Fredholm solvability.
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1 Introduction

1.1 Problem and main results

This paper concerns general linear first-order hyperbolic systems in one space dimension
of the type

∂tuj + aj(x, t)∂xuj +
n
∑

k=1

bjk(x, t)uk = fj(x, t), x ∈ (0, 1), j = 1, . . . , n (1.1)

with time-periodicity conditions

uj(x, t+ 2π) = uj(x, t), x ∈ [0, 1], j = 1, . . . , n (1.2)

and reflection boundary conditions

uj(0, t) =
n
∑

k=m+1

rjk(t)uk(0, t), j = 1, . . . ,m,

uj(1, t) =
m
∑

k=1

rjk(t)uk(1, t), j = m+ 1, . . . , n.

(1.3)

Here m < n are positive integers. Throughout the paper it is supposed that the functions
rjk : R → R and aj, bjk, fj : [0, 1]×R → R are 2π-periodic with respect to t, and that the
coefficients rjk, aj and bjk are C1-smooth. Additionally, we suppose that

aj(x, t) 6= 0 for all x ∈ [0, 1], t ∈ R and j = 1, . . . , n (1.4)

and that

for all 1 ≤ j 6= k ≤ n there exists b̃jk ∈ C1([0, 1]× R) such that

bjk(x, t) = b̃jk(x, t)(ak(x, t)− aj(x, t)) for all x ∈ [0, 1] and t ∈ R.
(1.5)

Roughly speaking, we will prove the following: If a certain dissipativity condition on
the data aj, bjj and rjk is satisfied (which is the case, for example, if the functions |rjk|
with 1 ≤ j ≤ m and m+1 ≤ k ≤ n or with 1 ≤ k ≤ m and m+1 ≤ j ≤ n are sufficiently
small (see (1.13)), then a Fredholm alternative is true for the system (1.1)–(1.3), i.e.,

• either the system (1.1)–(1.3) with f = (f1, . . . , fn) = 0 has a nontrivial solution
(then the vector space of those solutions has a finite dimension),

• or for any continuous right-hand side f the system (1.1)–(1.3) has a unique solution
u = (u1, . . . , un) (then the map f 7→ u is continuous with respect to the supremum
norm).

In order to formulate our results more precisely, let us introduce the characteristics
of the hyperbolic system (1.1). Given j = 1, . . . , n, x ∈ [0, 1], and t ∈ R, the j-th
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characteristic is defined as the solution ξ ∈ [0, 1] 7→ τj(ξ, x, t) ∈ R of the initial value
problem

∂ξτj(ξ, x, t) =
1

aj(ξ, τj(ξ, x, t))
, τj(x, x, t) = t. (1.6)

Moreover, we denote

cj(ξ, x, t) := exp

∫ ξ

x

bjj(η, τj(η, x, t))

aj(η, τj(η, x, t))
dη, (1.7)

dj(ξ, x, t) :=
cj(ξ, x, t)

aj(ξ, τj(ξ, x, t))
. (1.8)

Straightforward calculations (see Section 2) show that a C1-map u : [0, 1]× R → Rn is a
solution to the PDE problem (1.1)–(1.3) if and only if it satisfies the following system of
integral equations

uj(x, t) = cj(0, x, t)
n
∑

k=m+1

rjk(τj(0, x, t))uk(0, τj(0, x, t))

−

∫ x

0

dj(ξ, x, t)
n
∑

k=1

k 6=j

bjk(ξ, τj(ξ, x, t))uk(ξ, τj(ξ, x, t))dξ

+

∫ x

0

dj(ξ, x, t)fj(ξ, τj(ξ, x, t))dξ, j = 1, . . . ,m, (1.9)

uj(x, t) = cj(1, x, t)
m
∑

k=1

rjk(τj(1, x, t))uk(1, τj(1, x, t))

+

∫ 1

x

dj(ξ, x, t)
n
∑

k=1

k 6=j

bjk(ξ, τj(ξ, x, t))uk(ξ, τj(ξ, x, t))dξ

−

∫ 1

x

dj(ξ, x, t)fj(ξ, τj(ξ, x, t))dξ, j = m+ 1, . . . , n. (1.10)

This motivates the following definition:

Definition 1.1 (i) By Cn we denote the vector space of all continuous maps u : [0, 1] ×
R → Rn which satisfy (1.2), with the norm

‖u‖∞ := max
1≤j≤n

max
0≤x≤1

max
t∈R

|uj(x, t)|.

(ii) A function u ∈ Cn is called a continuous solution to (1.1)–(1.3) if it satisfies (1.9)
and (1.10).

(iii) A function u ∈ C1 ([0, 1]× R;Rn) is called a classical solution to (1.1)–(1.3) if it
satisfies (1.1)–(1.3) pointwise.
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Finally, we introduce R0, R1 ∈ Cn by

R0
j (x, t) :=























exp

(

−

∫ x

0

bjj(ξ, τj(ξ, x, t))

aj(ξ, τj(ξ, x, t))
dξ

) n
∑

k=m+1

|rjk(τj(0, x, t)| for j = 1, . . . ,m,

exp

∫ 1

x

bjj(ξ, τj(ξ, x, t))

aj(ξ, τj(ξ, x, t))
dξ

m
∑

k=1

|rjk(τj(1, x, t)| for j = m+ 1, . . . , n,

and

R1
j (x, t) :=















R0
j (x, t) exp

∫ x

0

∂taj(ξ, τj(ξ, x, t))

aj(ξ, τj(ξ, x, t))2
dξ for j = 1, . . . ,m,

R0
j (x, t) exp

(

−

∫ 1

x

∂taj(ξ, τj(ξ, x, t))

aj(ξ, τj(ξ, x, t))2
dξ

)

for j = m+ 1, . . . , n,

and write

S0 := max
1≤j≤m

max
0≤x≤1

max
t∈R

R0
j (x, t), T 0 := max

m+1≤j≤n
max
0≤x≤1

max
t∈R

R0
j (x, t), (1.11)

S1 := max
1≤j≤m

max
0≤x≤1

max
t∈R

R1
j (x, t), T 1 := max

m+1≤j≤n
max
0≤x≤1

max
t∈R

R1
j (x, t). (1.12)

Denote by K the vector space of all continuous solutions to (1.1)–(1.3) with f = 0.
Now we formulate our result:

Theorem 1.2 Suppose (1.4), (1.5) and

S0T 0 < 1. (1.13)

Then the following is true:
(i) dimK < ∞.
(ii) The vector space of all f ∈ Cn such that there exists a continuous solution to

(1.1)–(1.3) is a closed subspace of codimension dimK in Cn.
(iii) Either dimK > 0 or for any f ∈ Cn there exists exactly one continuous solution

u to (1.1)–(1.3). In the latter case the map f ∈ Cn 7→ u ∈ Cn is continuous.
(iv) Suppose that the functions fj are continuously differentiable with respect to t and

that
S1T 1 < 1. (1.14)

Then any continuous solution to (1.1)–(1.3) is a classical solution to (1.1)–(1.3).
(v) If all coefficients aj are t-independent and if all functions aj, bjk, fj and rjk are

C∞-smooth, then any continuous solution to (1.1)–(1.3) is C∞-smooth.

It is well-known that the Fredholm property of the linearization is a key for many local
investigations of time-periodic solutions to nonlinear ODEs and parabolic PDEs. This is
the case for Hopf bifurcation, for saddle node bifurcation or period doubling bifurcation of
periodic solutions as well as for small periodic forcing of stationary or periodic solutions
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(see, e.g. [4] for ODEs and [6] for parabolic PDEs). But almost nothing is known whether
similar results are true for nonlinear dissipative hyperbolic PDEs.

The first aim of the present paper is to open the door for those local investigations of
time-periodic solutions to nonlinear dissipative hyperbolic PDEs. In particular, in [9] we
apply our results to prove a Hopf bifurcation theorem for semilinear dissipative hyperbolic
PDEs.

The second aim is applications to semiconductor laser dynamics [11, 14, 15]. Phe-
nomena like Hopf bifurcation (describing the appearance of selfpulsations of lasers) and
periodic forcing of stationary solutions (describing the modulation of stationary laser
states by time periodic electric pumping) and periodic solutions (describing the synchro-
nization of selfpulsating laser states with small time periodic external optical signals,
cf. [2, 16, 17, 18]) are essential for many applications of semiconductor laser devices in
communication systems.

Remark that in [7] and [8] we proved similar results for the autonomous case, i.e., the
case, when the coefficients aj, bjk and rjk are t-independent. There the weak formulation
of the problem (1.1)–(1.3) was a system of variational equations, and we used the method
of Fourier series in anisotropic Sobolev spaces as in [19]. In the present paper the weak
formulation of the problem (1.1)–(1.3) is the system (1.9)–(1.10) of integral equations, and
we use the method of integration along characteristics in C-spaces. The corresponding
dissipativity condition to (1.13) in the present paper is (1.7) in [7] and (1.11) in [8].
They imply that there is a uniform positive lower bound for the absolute values of the
denominators in the Fourier coefficients of the solutions, i.e., that there are no small
denominators.

Our paper is organized as follows:
In Section 1.2 we comment about the assumptions (1.5) and (1.13). In Section 2

we show that any classical solution to (1.1)–(1.3) is a continuous solution in the sense of
Definition 1.1, and that any C1-smooth continuous solution is a classical one. In Section 3
we introduce an abstract representation of the system (1.9)–(1.10). Moreover, we show
that in the “diagonal” case, i.e., if bjk = 0 for all j 6= k, there exists exactly one continuous
solution to (1.1)–(1.3) for every f ∈ Cn. The Fredholm solvability stated in the assertions
(i)-(iii) of Theorem 1.2 is proved in Section 4, while the solution regularity given by the
assertions (iv) and (v) is proved in Section 5.

1.2 Some Remarks

Remark 1.3 about assumption (1.13) Here we show that, if (1.13) is not fulfilled, the
assertions of Theorem 1.2 are not true, in general. With this aim we consider the following
example of a problem of the type (1.1)–(1.3) satisfying all but (1.13) assumptions of
Theorem 1.2: Set m = 1, n = 2, a1(x, t) = −a2(x, t) = α = const, bjk(x, t) = 0, fj(x, t) =
0, and r12 = r21 = 1. In this case the system (1.9)–(1.10) reads as

u1(x, t) = u2(0, t− αx), (1.15)

u2(x, t) = u1(1, t+ α(x− 1)), (1.16)
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and S0 = T 0 = 1, i.e., (1.13) is not satisfied. Inserting (1.16) into (1.15) and putting
x = 1, we get

u1(1, t) = u1(1, t− 2α). (1.17)

If α/2π is irrational, then the functional equation (1.17) does not have nontrivial contin-
uous solutions. If

α

2π
=

p

q
with p ∈ Z and q ∈ N,

then any 2π/q-periodic function is a solution to (1.17). In other words,

dimK =

{

0 if α/2π 6∈ Q,
∞ if α/2π ∈ Q.

Hence, the Fredholm solvability conclusion of Theorem 1.2 is failed if α/2π ∈ Q. Moreover,
in the case α/2π ∈ Q there exist continuous solutions to (1.1)–(1.3) which are not classical
one’s.

Remark 1.4 about assumption (1.5) Roughly speaking, assumption (1.5) means that
a certain loss of strict hyperbolicity, caused by leading order coefficients aj and ak with
j 6= k, must be compensated by a certain vanishing behavior of the corresponding lower
order coefficients bjk.

Let us show that, if (1.5) is not fulfilled, the assertions of Theorem 1.2 are not true,
in general. With this aim we consider the following example of the problem (1.1)–(1.3)
satisfying all but (1.5) assumptions of Theorem 1.2: Setm = 1, n = 2, a1(x, t) = a2(x, t) =
1, b11(x, t) = b12(x, t) = b22(x, t) = 0, b21(x, t) = 3/2, f1(x, t) = f2(x, t) = 0, and r012 =
r121 = 1/2. In this case the system (1.9), (1.10) reads as

u1(x, t) =
1

2
u2(0, t− x),

u2(x, t) =
1

2
u1(1, t− x+ 1) +

3

2

∫ 1

x

u1(ξ, ξ − x+ t)dξ.

It is easy to verify that any continuous 2π-periodic map U : R → R creates a solution

u1(x, t) = U(t− x), u2(x, t) =

(

2−
3

2
x

)

U(t− x)

to this system. In particular, we have dimK = ∞, and there exist continuous solutions
to (1.1)–(1.3) which are not classical one’s.

Let us remark that, surprisingly, an assumption of the type (1.5) is used also in
quite another circumstances, for proving the spectrum-determined growth condition in
Lp-spaces [3, 12, 13] and in C-spaces [10] for semiflows generated by initial value problems
for hyperbolic systems of the type (1.1), (1.3).

Remark 1.5 about sufficient conditions for (1.13) The following sufficient condi-
tions for (1.13) are obvious: First, if the coefficients aj and bjj are given and fixed, then
(1.13) is fulfilled if

max
1≤j≤m

max
m+1≤k≤n

max
t∈R

|rjk(t)| is sufficiently small
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and/or if
max

m+1≤j≤n
max
1≤k≤m

max
t∈R

|rjk(t)| is sufficiently small.

Second, if the coefficients rjk are given and fixed, then (1.13) is fulfilled if

max
1≤j≤m

min
0≤x≤1

min
t∈R

bjj(x, t)

aj(x, t)
is sufficiently large

and/or if

max
m+1≤j≤n

max
0≤x≤1

max
t∈R

bjj(x, t)

aj(x, t)
is sufficiently small.

In particular, this is the case if for all x ∈ [0, 1] and t ∈ R we have

aj(x, t) < 0 for j = 1, . . . ,m and aj(x, t) > 0 for j = m+ 1, . . . , n (1.18)

and
max
1≤j≤n

max
0≤x≤1

max
t∈R

bjj(x, t) is negative and sufficiently small.

It is easy to verify (see (2.3)) that aj(x, t)∂xτj(ξ, x, t) < 0 for all j = 1, . . . , n, ξ, x ∈ [0, 1],
and t ∈ R. Therefore, the functions uj(0, τj(0; x, t)) with indices j such that aj(x, t) < 0
describe waves traveling to the left, and the functions uj(1, τj(1; x, t)) with indices j such
that aj(x, t) > 0 describe waves traveling to the right. Hence, it is natural to prescribe
reflection boundary conditions at the left interval end x = 0 for those indices j such that
aj(x, t) > 0 and at the right interval end x = 1 for those indices j such that aj(x, t) < 0.
Therefore, in most of the applications (1.18) is true.

2 Integration along characteristics

Let us show that a C1-function u : [0, 1] × R → Rn satisfies the system (1.1) of first-
order partial differential equations, the time-periodicity conditions (1.2) and the boundary
conditions (1.3) if and only if it satisfies the system (1.9)-(1.10) of integral equations. The
type of calculations is well-known, so we do this for the convenience of the reader.

Standard results about initial value problems for ordinary differential equations yield
that the functions τj : [0, 1] × [0, 1] × R → R are well-defined by (1.6), and they are
C1-smooth. Moreover, it holds

τj(ξ, x, t+ 2π) = τj(ξ, x, t) + 2π, (2.1)

τj(x, ξ, τj(ξ, x, t)) = t (2.2)

and

∂xτj(ξ, x, t) = −
1

aj(x, t)
exp

∫ x

ξ

∂taj(η, τj(η, x, t))

aj(η, τj(η, x, t))2
dη, (2.3)

∂tτj(ξ, x, t) = exp

∫ x

ξ

∂taj(η, τj(η, x, t))

aj(η, τj(η, x, t))2
dη (2.4)
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for all j = 1, . . . , n, ξ, x ∈ [0, 1], and t ∈ R. From (2.3) and (2.4) follows

(∂t + aj(x, t)∂x)ϕ(τj(ξ, x, t)) = 0 (2.5)

for all j = 1, . . . , n, x ∈ [0, 1], t ∈ R and any C1-function ϕ : R → R.
Now, let us show that any C1-solution to (1.9)-(1.10) is a solution to (1.1)-(1.3). Let

u be a C1-solution to (1.9)-(1.10). Then (2.5) yields

(∂t + aj(x, t)∂x) (rjk(τj(0, x, t))uk(0, τj(0, x, t)))

= (∂t + aj(x, t)∂x) (rjk(τj(1, x, t))uk(1, τj(1, x, t)))

= (∂t + aj(x, t)∂x) (bjk(ξ, τj(ξ, x, t))uk(ξ, τj(ξ, x, t)))

= (∂t + aj(x, t)∂x) fj(ξ, τj(ξ, x, t)) = 0,

and (1.7), (1.8), and (2.5) imply

(∂t + aj(x, t)∂x) cj(ξ, x, t) = −bjj(x, t)cj(ξ, x, t),
(∂t + aj(x, t)∂x) dj(ξ, x, t) = −bjj(x, t)dj(ξ, x, t).

Hence the partial differential equations (1.1) are satisfied. The time-periodicity conditions
(1.2) follow directly from (1.9), (1.10), and (2.1), while the boundary conditions (1.3)
follow from (1.9), (1.10), and (2.2).

Finally, let us show that any C1-solution to (1.1)-(1.3) is a solution to (1.9)-(1.10).
Let u be a C1-solution to (1.1)-(1.3). Then

d

dξ
uj(ξ, τj(ξ, x, t)) = ∂xuj(ξ, τj(ξ, x, t)) +

∂tuj(ξ, τj(ξ, x, t))

aj(ξ, τj(ξ, x, t))

=
1

aj(ξ, τj(ξ, x, t))

(

−

n
∑

k=1

bjk(ξ, τj(ξ, x, t))uk(ξ, τj(ξ, x, t)) + fj(ξ, τj(ξ, x, t))

)

.

This is a linear inhomogeneous ordinary differential equation for the function uj(·, τj(·, x, t)),
and the variation of constants formula (with initial condition at ξ = 0) gives

uj(x, t) = uj(xj, τj(xj, x, t)) exp

∫ x

0

(

−
bjj(ξ, τj(ξ, x, t))

aj(ξ, τj(ξ, x, t))

)

dξ

−

∫ x

0

exp

∫ x

ξ

(

−
bjj(η, τj(η, x, t))

aj(η, τj(η, x, t))

)

dη

×
∑

k 6=j

bjk(ξ, τj(ξ, x, t))uk(ξ, τj(ξ, x, t)) + fj(ξ, τj(ξ, x, t))

aj(ξ, τj(ξ, x, t))
dξ.

Here and in what follows we use the notation

xj :=

{

0 for j = 1, . . . ,m,
1 for j = m+ 1, . . . , n.

(2.6)

Inserting the boundary conditions (1.3) for j = 1, . . . ,m, we get (1.9) and inserting (1.3)
for j = 1, . . . ,m, we get (1.10).
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3 Abstract representation of (1.9)–(1.10)

The system (1.9)–(1.10) can be written as the operator equation

u = Cu+Du+ Ff, (3.1)

where the linear bounded operators C,D, F : Cn → Cn are defined as follows:
Denote by Cm the space of all continuous maps v : [0, 1]×R → Rm with v(x, t+2π) =

v(x, t) for all x ∈ [0, 1] and t ∈ R, with the norm

‖v‖∞ := max
1≤j≤m

max
0≤x≤1

max
t∈R

|vj(x, t)|.

Similarly we define the space Cn−m. The spaces Cn and Cm × Cn−m will be identified, i.e.,
elements u ∈ Cn will be written as u = (v, w) with v ∈ Cm and w ∈ Cn−m. Define linear
bounded operators K : Cn−m → Cm and L : Cm → Cn−m by

(Lv)j(x, t) := cj(1, x, t)
m
∑

k=1

rjk(τj(1, x, t))vk(1, τj(1, x, t)), j = m+ 1, . . . , n,

(Kw)j(x, t) := cj(0, x, t)
n
∑

k=m+1

rjk(τj(0, x, t))wk(0, τj(0, x, t)), j = 1, . . . ,m.

(3.2)

Then the operator C is defined as

Cu := (Kw,Lv) for u = (v, w). (3.3)

The operators D and F are given by

(Du)j(x, t) := −

∫ x

xj

dj(ξ, x, t)
n
∑

k=1

k 6=j

bjk(ξ, τj(ξ, x, t))uk(ξ, τj(ξ, x, t))dξ, (3.4)

(Ff)j(x, t) :=

∫ x

xj

dj(ξ, x, t)fj(ξ, τj(ξ, x, t))dξ. (3.5)

Lemma 3.1 Suppose (1.13). Then I − C is an isomorphism on Cn.

Proof. Let f = (g, h) ∈ Cn with g ∈ Cm and h ∈ Cn−m be arbitrary given. We have
u = Cu+ f if and only if v = Kw + g, w = Lv + h, i.e., if and only if

v = K(Lv + h) + g, w = Lv + h.

Hence, if
‖K‖L(Cn−m;Cm)‖L‖L(Cm;Cn−m) < 1, (3.6)

then I −C is an isomorphism from Cn onto Cn. In order to prove (3.6) we use (1.11) and
get the estimate

‖Kw‖∞ = max
1≤j≤m

max
0≤x≤1

max
t∈R

∣

∣

∣

∣

∣

cj(0, x, t)
n
∑

k=m+1

rjk(τj(0, x, t))wk(0, τj(0, x, t))

∣

∣

∣

∣

∣

≤ ‖w‖∞ max
1≤j≤m

max
0≤x≤1

max
t∈R

R0
j (x, t) = S0‖w‖∞ for all w ∈ Cn−m. (3.7)
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Similarly,

‖Lv‖∞ ≤ ‖v‖∞ max
m+1≤j≤n

max
0≤x≤1

max
t∈R

R0
j (x, t) = T 0‖v‖∞ for all v ∈ Cm. (3.8)

Hence, assumption (1.13) yields (3.6). �

4 Fredholm property

In this section we prove the assertions (i)–(iii) of Theorem 1.2. Hence, we suppose that
the assumptions (1.4), (1.5) and (1.13) are satisfied.

We have to show that the operator I−C−D is Fredholm of index zero from Cn to Cn.
Unfortunately, the operator D is not compact from Cn to Cn, in general, because it is a
partial integral operator (cf. [1]). But by Lemma 3.1, the operator I−C−D is Fredholm
of index zero from Cn to Cn if and only if

I − (I − C)−1D is Fredholm of index zero from Cn to Cn, (4.1)

and for proving (4.1) we use the following Fredholmness criterion (cf., e.g. [5, Theorem
XII.5.2]):

Lemma 4.1 Let W be a Banach space, I the identity in W , and A : W → W a linear
bounded operator with A2 being compact. Then I + A is a Fredholm operator of index
zero.

Now, for (4.1) it is sufficient to show that the operator (I − C)−1D(I − C)−1D is
compact from Cn to Cn, i.e., that

D(I − C)−1D is compact from Cn to Cn. (4.2)

Because of D(I − C)−1D = D2 + DC(I − C)−1D, the statement (4.2) will be proved if
we show that

D2 and DC are compact from Cn to Cn. (4.3)

Let us denote by C1
n the Banach space of all u ∈ Cn, which are C1-smooth, with the

norm ‖u‖∞+‖∂xu‖∞+‖∂tu‖∞. By the Arcela-Ascoli theorem, C1
n is compactly embedded

into Cn. Hence, for (4.3) it suffices to show that

D2 and DC map Cn continuously into C1
n. (4.4)

The definitions (3.2), (3.3) and (3.4) imply that for all u ∈ C1
n we have ∂xu, ∂tu ∈ C1

n

and
∂xCu = C11u+ C12∂tu, ∂tCu = C21u+ C22∂tu,
∂xDu = D11u+D12∂tu, ∂tDu = D21u+D22∂tu

(4.5)
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with linear bounded operators Cjk, Djk : Cn → Cn, which are defined by

(C11u)j(x, t) :=























n
∑

k=m+1

∂xcjk(x, t)uk(1, τj(1, x, t)) for j = 1, . . . ,m,

m
∑

k=1

∂xcjk(x, t)uk(0, τj(1, x, t)) for j = m+ 1, . . . , n,

(C12u)j(x, t) :=























n
∑

k=m+1

∂xτj(1, x, t)cjk(x, t)uk(1, τj(1, x, t)) for j = 1, . . . ,m,

m
∑

k=1

∂xτj(0, x, t)cjk(x, t)uk(0, τj(1, x, t)) for j = m+ 1, . . . , n,

(C21u)j(x, t) :=























n
∑

k=m+1

∂tcjk(x, t)uk(1, τj(1, x, t)) for j = 1, . . . ,m,

m
∑

k=1

∂tcjk(x, t)uk(0, τj(1, x, t)) for j = m+ 1, . . . , n,

(C22u)j(x, t) :=























n
∑

k=m+1

∂tτj(1, x, t)cjk(x, t)uk(1, τj(1, x, t)) for j = 1, . . . ,m,

m
∑

k=1

∂tτj(0, x, t)cjk(x, t)uk(0, τj(1, x, t)) for j = m+ 1, . . . , n

and

(D11u)j(x, t) :=
n
∑

k=1

k 6=j

∫ x

xj

∂xdjk(ξ, x, t)uk(ξ, τj(ξ, x, t))dξ,

(D12u)j(x, t) :=
n
∑

k=1

k 6=j

∫ x

xj

∂xτj(ξ, x, t)djk(ξ, x, t)uk(ξ, τj(ξ, x, t))dξ,

(D21u)j(x, t) :=
n
∑

k=1

k 6=j

∫ x

xj

∂tdjk(ξ, x, t)uk(ξ, τj(ξ, x, t))dξ,

(D22u)j(x, t) :=
n
∑

k=1

k 6=j

∫ x

xj

∂tτj(ξ, x, t)djk(ξ, x, t)uk(ξ, τj(ξ, x, t))dξ.

Here

cjk(x, t) :=

{

rjk(τj(1, x, t)cj(1, x, t) for j = 1, . . . ,m, k = m+ 1, . . . , n,
rjk(τj(0, x, t)cj(0, x, t) for j = m+ 1, . . . , n, k = 1, . . . ,m

and
djk(ξ, x, t) := −dj(ξ, x, t)bjk(ξ, τj(ξ, x, t)). (4.6)
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By (4.5) we get for all u ∈ C1
n

∂xD
2u = D11Du+D12(D11u+D12∂tu), ∂tD

2u = D21Du+D22(D21u+D22∂tu),
∂xDCu = D11Cu+D12(C11u+ C12∂tu), ∂tDCu = D21Cu+D22(C21u+ C22∂tu).

Now, taking into account the density of C1
n in Cn, in order to show (4.3) it suffices to prove

the following statement:

Lemma 4.2 There exists a positive constant such that for all u ∈ C1
n we have

‖D2
12∂tu‖∞ + ‖D2

22∂tu‖∞ + ‖D12C12∂tu‖∞ + ‖D22C22∂tu‖∞ ≤ const ‖u‖∞.

Proof. For any j = 1, . . . , n and u ∈ C1
n we have

(D2
12∂tu)j(x, t)

=
n
∑

k=1

k 6=j

n
∑

l=1

l 6=k

∫ x

xj

∫ ξ

xk

djkl(ξ, η, x, t)bjk(ξ, τj(ξ, x, t))∂tul(η, τk(η, ξ, τj(ξ, x, t)))dηdξ (4.7)

with

djkl(ξ, η, x, t) := ∂tτj(ξ, x, t)∂tτk(η, ξ, τj(ξ, x, t)))dj(ξ, x, t)dkl(η, ξ, τj(ξ, x, t)).

On the other hand, (1.6), (2.3) and (2.4) imply (for all ξ, η, x ∈ [0, 1] and t ∈ R with
∂tul(η, τk(η, ξ, τj(ξ, x, t))) 6= 0)

d
dξ
ul(η, τk(η, ξ, τj(ξ, x, t)))

∂tul(η, τk(η, ξ, τj(ξ, x, t)))

= ∂xτk(η, ξ, τj(ξ, x, t)) + ∂tτk(η, ξ, τj(ξ, x, t))∂ξτj(ξ, x, t)

= ∂tτk(η, ξ, τj(ξ, x, t))

(

1

aj(ξ, τj(ξ, x, t))
−

1

ak(ξ, τj(ξ, x, t))

)

. (4.8)

Hence, (1.5), (2.3) and (2.4) yield that for all ξ, η, x ∈ [0, 1] and t ∈ R it holds

djkl(ξ, x, t)bjk(ξ, τj(ξ, x, t))∂tul(η, τk(η, ξ, τj(ξ, x, t)))

= d̃jkl(ξ, η, x, t)b̃jk(ξ, τj(ξ, x, t))
d

dξ
ul(η, τk(η, ξ, τj(ξ, x, t))) (4.9)

with

d̃jkl(ξ, η, x, t) := aj(ξ, τj(ξ, x, t))ak(ξ, τj(ξ, x, t))∂tτj(ξ, x, t)dj(ξ, x, t)dkl(η, ξ, τj(ξ, x, t)).

Remark that the values b̃jk(x, t) are not uniquely defined for (x, t) with aj(x, t) = ak(x, t)
by the condition (1.5), but, anyway, the right-hand side (and, hence, the left-hand side)
of (4.9) does not depend on the choice of b̃jk because d

dξ
ul(η, τk(η, ξ, τj(ξ, x, t))) = 0 if

aj(x, t) = ak(x, t) (cf. (4.8)).
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Let us check if for all j 6= k and k 6= l the partial derivatives ∂ξd̃jkl exist and are
continuous: For the factor aj(ξ, τj(ξ, x, t)) this is the case because aj and τj are C1-
smooth, the same for the factor ak(ξ, τj(ξ, x, t)). For the factor ∂tτj(ξ, x, t) this is the case
because ∂xτj is C1-smooth (cf. (1.4) and (2.3)). Finally, for the factors dj(ξ, x, t) and
djk(η, ξ, τj(ξ, x, t)) this follows from (1.8) and (4.6).

Applying Fubini’s theorem and partial integration, we get, for example for the terms
in (4.7) with 1 ≤ j, k ≤ m,

∣

∣

∣

∣

∫ x

0

∫ ξ

0

djkl(ξ, η, x, t)bjk(ξ, τj(ξ, x, t))∂tul(η, τk(η, ξ, τj(ξ, x, t)))dηdξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0

∫ x

η

d̃jkl(ξ, η, x, t)b̃jk(ξ, τj(ξ, x, t))
d

dξ
ul(η, τk(η, ξ, τj(ξ, x, t)))dξdη

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ x

0

∫ x

η

d

dξ

(

d̃jkl(ξ, η, x, t)b̃jk(ξ, τj(ξ, x, t))
)

ul(η, τk(η, ξ, τj(ξ, x, t)))dξdη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ x

0

[

d̃jkl(ξ, η, x, t)b̃jk(ξ, τj(ξ, x, t))ul(η, τk(η, ξ, τj(ξ, x, t))
]ξ=x

ξ=η
dη

∣

∣

∣

∣

≤ const ‖u‖∞.

Similarly one can handle the other terms in (4.7) in order to get ‖D2
12∂tu‖∞ ≤ const ‖u‖∞.

The estimate ‖D2
22∂tu‖∞ ≤ const ‖u‖∞ can be proven in an analogous way.

It remains to show that

‖D12C12∂tu‖∞ + ‖D22C22∂tu‖∞ ≤ const ‖u‖∞ for all u ∈ C1
n.

Let us do this for the term D22C22∂tu (the calculations for D12C12∂tu are similar). For
any u ∈ C1

n we have (using notation (2.6))

(D22C22∂tu)j(x, t) =
n
∑

k=1

k 6=j

n
∑

l=1

∫ x

xj

ejkl(ξ, x, t)bjk(ξ, τj(ξ, x, t))∂tul(xj, τk(xj, ξ, τj(ξ, x, t)))dξ

with

ejkl(ξ, x, t)

:=

{

−∂tτj(ξ, x, t)∂tτk(1, ξ, τj(ξ, x, t))dj(ξ, x, t)ckl(ξ, τj(ξ, x, t)) for l = 1, . . . m,
−∂tτj(ξ, x, t)∂tτk(0, ξ, τj(ξ, x, t))dj(ξ, x, t)ckl(ξ, τj(ξ, x, t)) for l = m+ 1, . . . n.

Using (4.8), we get for l = 1, . . . ,m

ejkl(ξ, x, t)bjk(ξ, τj(ξ, x, t))∂tul(1, τk(1, ξ, τj(ξ, x, t)))

= ẽjkl(ξ, x, t)b̃jk(ξ, τj(ξ, x, t))
d

dξ
ul(1, τk(1, ξ, τj(ξ, x, t)))

with

ẽjkl(ξ, η, x, t) := −aj(ξ, τj(ξ, x, t))ak(ξ, τj(ξ, x, t))∂tτj(ξ, x, t)dj(ξ, x, t)ckl(η, ξ, τj(ξ, x, t)).
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Hence, we can integrate by parts in order to get

∣

∣

∣

∣

∣

∫ x

xj

ejkl(ξ, x, t)bjk(ξ, τj(ξ, x, t))∂tul(1, τk(1, ξ, τj(ξ, x, t)))dξ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ x

xj

ẽjkl(ξ, x, t)b̃jk(ξ, τj(ξ, x, t))
d

dξ
ul(1, τk(1, ξ, τj(ξ, x, t)))dξ

∣

∣

∣

∣

∣

≤ const ‖u‖∞.

Similarly one can proceed in the case l = m+ 1, . . . , n. �

Remark 4.3 about smoothness assumptions on the coefficients bjk In fact, for
our results we do not need to assume that the partial derivatives ∂xbjj exist. We need
that bjj is continuous and that the partial derivatives ∂tbjj exist and are continuous.

What concerns the coefficients bjk with j 6= k, in the proof of Lemma 4.2 we only used
that
∣

∣

∣

∣

∣

∫ x

xj

b̃jk(ξ, τj(ξ, x, t))
d

dξ
ul(1, τk(1, ξ, τj(ξ, x, t)))dξ

∣

∣

∣

∣

∣

≤ const ‖u‖∞ for all u ∈ C1
n. (4.10)

For that the assumption b̃jk ∈ C1
n (cf. (1.5)) is sufficient, but not necessary. For example,

if aj, ak and bjk and, hence, b̃jk are t-independent, then for (4.10) it is sufficient that
b̃jk ∈ BV (0, 1).

5 Solution regularity

In this section we prove the assertions (iv) and (v) of Theorem 1.2. Hence, we suppose
that the assumptions (1.4), (1.5), (1.13) and (1.14) are satisfied. Remark that (1.13)
implies (1.14) if all coefficients aj are t-independent.

To prove assertion (iv), assume that the functions fj are continuously differentiable
with respect to t. Let u be a continuous solution to to (1.1)–(1.3). We have to show that
the partial derivatives ∂xu and ∂tu exist and are continuous. For that it is sufficient to
show that ∂tu exists and is continuous, since then (1.9) and (1.10) imply that also ∂xu
exists and is continuous.

Because of (3.1) we have

(I − C)u = D(C +D)u+ (I +D)Ff. (5.1)

Denote by C̃1
n the subspace of all v ∈ Cn such that the partial derivative ∂tv exists and

is continuous. By assumption we have f ∈ C̃1
n. Moreover, from (3.4) and (3.5) it follows

that the operators D and F map C̃1
n into C̃1

n. Therefore, (4.4) implies that the right-hand
side of (5.1) belongs to C̃1

n. Hence, it remains to prove the following fact:

Lemma 5.1 If for ũ ∈ Cn and f̃ ∈ C̃1
n it holds ũ = Cũ+ f̃ , then ũ ∈ C̃1

n.
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Proof. We proceed as in the proof of Lemma 3.1. In particular, we use the Banach
spaces Cm and Cn−m and the linear bounded operators K : Cn−m → Cm and L : Cm →
Cn−m, which are introduced there. Further, by C̃1

m we denote the space of all v ∈ Cm
such that the partial derivatives ∂tv exist and are continuous. Similarly the space C̃1

n−m

is introduced. Then we have Cn = Cm × Cn−m and C̃1
n = C̃1

m × C̃1
n−m.

Now, suppose that there are given ũ ∈ Cn and f̃ ∈ C̃1
n such that

ũ = Cũ+ f̃ . (5.2)

Then ũ = (ṽ, w̃) with certain ṽ ∈ C̃m, w̃ ∈ C̃n−m and f̃ = (g̃, h̃) with certain g̃ ∈ C̃1
m,

h̃ ∈ C̃1
n−m. We have to show that ũ ∈ C̃1

n, i.e., that

ṽ ∈ C̃1
m, w̃ ∈ C̃1

n−m. (5.3)

Because of (3.3) and (5.2) we have ṽ = K(Lṽ+ h̃)+ g̃, w̃ = Lṽ+ h̃. Moreover, (3.2) yields
that K maps C̃1

n−m into C̃1
m and that L maps C̃1

m into C̃1
n−m. Hence, for proving (5.3) it

suffices to show that
(I −KL)−1g ∈ C̃1

m for any g ∈ C̃1
m. (5.4)

For any γ > 0 the spaces C̃1
m are Banach spaces with the norms

‖v‖C̃1
m
:= ‖v‖∞ + γ‖∂tv‖∞.

Hence, for proving (5.4) it suffices to show that there exists γ > 0 such that

‖KL‖L(C̃1
m) < 1

with the norm corresponding to γ. For that we have to show that there exists a constant
c < 1 such that

‖KLv‖∞ + γ‖∂tKLv‖∞ ≤ c (‖v‖∞ + γ‖∂tv‖∞) for all v ∈ C̃1
m.

Because of (3.7) and (3.8), this estimate will be proved if we show that

‖∂tKLv‖∞ ≤
c− S0T 0

γ
‖v‖∞ + c‖∂tv‖∞ for all v ∈ C̃1

m. (5.5)

For proving (5.5), let us calculate ∂tKLv. Similarly to (4.5) we have for all v ∈ C̃1
m

and w ∈ C̃1
n−m

∂tKw = K1w +K2∂tw, ∂tLv = L1v + L2∂tv

with linear bounded operators K1, K2 : Cn−m → Cm and L1, L2 : Cm → Cn−m defined as
follows (cf. (3.3) and (4.5)):

(K1w)j(x, t) :=
n
∑

k=m+1

∂tcjk(x, t)wk(1, τj(1, x, t)),
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(K2w)j(x, t) :=
n
∑

k=m+1

∂tτj(1, x, t)cjk(x, t)wk(1, τj(1, x, t)),

(L1v)j(x, t) :=
m
∑

k=1

∂tcjk(x, t)vk(0, τj(0, x, t)),

(L2v)j(x, t) :=
n
∑

k=m+1

∂tτj(0, x, t)cjk(x, t)vk(0, τj(0, x, t)).

Therefore, for v ∈ C̃1
m it holds

‖∂tKLv‖∞ = ‖K1Lv +K2(L1v + L2∂tv)‖∞

≤ ‖K1L+K2L1‖L(Cm)‖v‖∞ + ‖K2L2‖L(Cm)‖∂tv‖∞.

Now, (1.12) and (2.4) yield ‖K22‖L(Cn−m;Cm) ≤ S1 and ‖L22‖L(Cm;Cn−m) ≤ T 1. Hence, we
get

‖∂tKLv‖∞ ≤ ‖K1L+K2L1‖L(Cm)‖v‖∞ + S1T 1‖∂tv‖∞. (5.6)

By assumptions (1.13) and (1.14) we have S0T 0 < 1 and S1T 1 < 1. Fix c such that
max{S0T 0, S1T 1} < c < 1. Then choose γ so small that

‖K1L+K2L1‖L(Cm) ≤
c− S0T 0

γ
.

Finally, (5.6) implies (5.5). �

The proof of assertion (iv) is therewith complete.
To prove assertion (v) of Theorem 1.2, suppose that all coefficients aj are t-independent.

Then (2.4) yields that ∂tτj(ξ, x, t) = 1. Therefore in (4.5) we have

C22 = C and D22 = D. (5.7)

Let u be a continuous solution to (1.1)–(1.3), i.e., a solution to (1.9)–(1.10), and
suppose that all functions aj, bjk, fj and rjk are C∞-smooth.

First we show by induction that all partial derivatives ∂k
t u, k = 1, 2, . . . exist and are

continuous.
For k = 1 this follows from assertion (iv) of Theorem 1.2.
Now suppose that all partial derivatives ∂tu, . . . , ∂

k
t u exist and are continuous. Then

as in (4.5) one gets (cf. (5.7))

∂k
t Cu =

k−1
∑

j=0

Cj∂
j
tu+ C∂k

t u, ∂
k
t Du =

k−1
∑

j=0

Dj∂
j
tu+D∂k

t u

with linear bounded operators Cj, Dj : Cn → Cn such that Cjv,Djv ∈ C̃1
n for all v ∈ C̃1

n.
Now we proceed as in (5.1): From (I − C −D)u = Ff it follows

(I − C −D)∂k
t u = ∂k

t Ff −

k−1
∑

j=0

(

Cj∂
j
tu+Dj∂

j
tu
)

=: Rk ∈ C̃1
n
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and, hence,
(I − C)∂k

t u = D
(

(C +D)∂k
t u+Rk

)

+Rk ∈ C̃1
n.

By Lemma 5.1, ∂k
t u ∈ C̃1

n, i.e., ∂
k+1
t u exists and is continuous.

Finally we show that the partial derivative ∂k
x∂

l
tu exists and is continuous for all

k, l ∈ N. From (1.1) it follows

∂xuj(x, t) =
1

aj(x)

(

fj(x, t)− ∂tuj(x, t)−
n
∑

k=1

bjk(x, t)uk(x, t)

)

. (5.8)

All partial derivatives with respect to t of the right-hand side (and, hence, of the left-hand
side) of (5.8) exist and are continuous, i.e., ∂x∂

l
tuj exists and is continuous for all l ∈ N.

Therefore the partial derivative with respect to x of the right-hand side (and, hence, of
the left-hand side) of (5.8) exists and is continuous, i.e., ∂2

xuj exists and is continuous and

∂2
xuj =

1

a2j

(

aj∂x

(

fj − ∂tuj −

n
∑

k=1

bjkuk

)

− ∂xaj

(

fj − ∂tuj −

n
∑

k=1

bjkuk

))

. (5.9)

Again, all partial derivatives with respect to t of the right-hand side of (5.9) exist and are
continuous. Hence, ∂2

x∂
l
tuj exists and is continuous for all l ∈ N. Therefore the partial

derivative with respect to x of the right-hand side of (5.9) exists and is continuous, i.e.,
∂3
xuj exists and is continuous. By continuation of this procedure we get the claim.
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