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Abstract

We give an exposition of recent results on regularity and Fredholm properties for
first-order one-dimensional hyperbolic PDEs. We show that large classes of bound-
ary operators cause an effect that smoothness increases with time. This property is
the key in finding regularizers (parametrices) for hyperbolic problems. We construct
regularizers for periodic problems for dissipative first-order linear hyperbolic PDEs
and show that these problems are modeled by Fredholm operators of index zero.

1 Introduction

In contrast to ODEs and parabolic PDEs, the Fredholm property and regularity behavior
of hyperbolic problems are much less understood. In a recent series of papers [18, 20, 21],
the latter two written jointly with Lutz Recke, we undertook a detailed analysis of this
subject for first-order one-dimensional hyperbolic operators. The purpose of the present
survey paper is to present some of our results and their extensions with emphasize on
the smoothing phenomenon, construction of parametrices, and the Fredholmness of index
zero.

An important step in local investigations of nonlinear differential equations (many
ODEs and parabolic PDEs) is to establish the Fredholm solvability of their linearized
versions. In the hyperbolic case this step is much more involved. Since the singularities
of (semi-)linear hyperbolic equations propagate along characteristic curves, a solution
cannot be more regular in the entire time-space domain than it is on the boundary.
It can even be less regular which is known as the loss-of-smoothness effect. Therefore
the Fredholm analysis of hyperbolic problems requires establishing an optimal regularity
relation between the spaces of solutions and right-hand sides of the differential equations.

Proving a Fredholm solvability is typically based on the basic fact that any Fredholm
operator is exactly a compact perturbation of a bijective operator. In the hyperbolic case,
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using the compactness argument gets complicated because of the lack of regularity over
the whole time-space domain.

Our approach is based on the fact that for a range of boundary operators, solu-
tions improve smoothness dynamically, more precisely, they eventually become k-times
continuously differentiable for each particular k. We prove such kind of results in Sec-
tion 2. Note that in some interesting cases the smoothing phenomenon was shown earlier
in [10, 13, 23, 25].

This phenomenon allows us in Section 3 to work out a regularization procedure via
construction of a parametrix. We here present a quite general approach to proving the
Fredholmness for first-order dissipative hyperbolic PDEs and apply it to the periodic
problems. Our Fredholm results cover non-strictly hyperbolic systems with discontinu-
ous coefficients, but they are new even in the case of strict hyperbolicity and smooth
coefficients.

From a more general perspective, the smoothing effect and Fredholmness properties
play an important role in the study of the Hopf bifurcation and periodic synchronizations
in nonlinear hyperbolic PDEs [2, 22] via the Implicit Function Theorem and Lyapunov-
Schmidt procedure [7, 15] and averaging procedure [6, 32].

From the practical point of view, our techniques cover the so-called traveling-wave
models from laser dynamics [24, 30] (describing the appearance of self-pulsations of lasers
and modulation of stationary laser states by time periodic electric pumping), population
dynamics [9, 14, 36], and chemical kinetics [3, 4, 5, 38] (describing mass transition in
terms of convective diffusion and chemical reaction and analysis of chemical processes in
counterflow chemical reactors).

2 Smoothing effect

Here we describe classes of (initial-)boundary problems for first-order one-dimensional
hyperbolic PDEs whose solutions improve their regularity in time.

Set
ΠT = {(x, t) : 0 < x < 1, T < t < ∞}.

We address the problem

(∂t + a(x, t)∂x + b(x, t))u = f(x, t), (2.1)

u(x, 0) = ϕ(x), (2.2)

uj(0, t) = (Ru)j(t), 1 ≤ j ≤ m

uj(1, t) = (Ru)j(t), m < j ≤ n
(2.3)

in the semi-strip Π0 and the problem (2.1), (2.3) in the strip Π−∞. Here u = (u1, . . . , un),
f = (f1, . . . , fn), and ϕ = (ϕ1, . . . , ϕn) are vectors of real-valued functions, b = {bjk}

n
j,k=1

and a = diag(a1, . . . , an) are matrices of real-valued functions, and 0 ≤ m ≤ n are fixed
integers. Furthermore, R is an operator mapping C

(

Π0

)n
into C ([0,∞))n, and similarly
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for R in Π−∞. In Sections 2.1–2.3 we give examples of R as representatives of some classes
of boundary operators ensuring smoothing solutions.

In the domain under consideration we assume that

aj > 0 for all j ≤ m and aj < 0 for all j > m, (2.4)

inf
x,t

|aj| > 0 for all j ≤ n, (2.5)

and

for all 1 ≤ j 6= k ≤ n there exists pjk ∈ C1([0, 1]× R)such that bjk = pjk(ak − aj).
(2.6)

Note that all these conditions are not restrictive neither from the practical nor from the
theoretical points of view. In particular, condition (2.4) is true in traveling-wave models
of laser and population dynamics as well as chemical kinetics, where the functions uj for
j ≤ m (respectively, m + 1 ≤ j ≤ n) describe “species” traveling to the right (respec-
tively, to the left). Condition (2.5) means that all characteristics of the system (2.1) are
bounded and the system (2.1) is, hence, non-degenerate. Finally, the condition (2.6) is
a kind of Levy condition usually appearing to compensate non-strict hyperbolicity where
the coefficients aj and ak for some j 6= k coincide at least at one point, say, (x0, t0). In this
case the lower-order terms with the coefficients bjk and bkj contribute to the system at
(x0, t0) longitudinally to characteristic directions (keeping responsibility for the propaga-
tion of singularities), while in the strictly hyperbolic case we have a qualitatively different
transverse contribution at that point. The purpose of (2.6) is to suppress propagation of
singularities through the non-diagonal lower-order terms of (2.1).

We will impose the following smoothness assumptions on the initial data: The entries
of a, b, and f are C∞-smooth in all their arguments in the respective domains, while the
entries of ϕ are assumed to be continuous functions only.

Let us introduce the system resulting from (2.1)–(2.3) (resp., from (2.1), (2.3)) via
integration along characteristic curves. For given j ≤ n, x ∈ [0, 1], and t ∈ R, the
j-th characteristic of (2.1) passing through the point (x, t) is defined as the solution
ξ ∈ [0, 1] 7→ ωj(ξ; x, t) ∈ R of the initial value problem

∂ξωj(ξ; x, t) =
1

aj(ξ, ωj(ξ; x, t))
, ωj(x; x, t) = t. (2.7)

Define

cj(ξ, x, t) = exp

∫ ξ

x

(

bjj

aj

)

(η, ωj(η; x, t)) dη, dj(ξ, x, t) =
cj(ξ, x, t)

aj(ξ, ωj(ξ; x, t))
.

Due to (2.5), the characteristic curve τ = ωj(ξ; x, t) reaches the boundary of ΠT in two
points with distinct ordinates. Let xj(x, t) denote the abscissa of that point whose ordinate
is smaller. Straightforward calculations show that a C1-map u : [0, 1]× [0,∞) → R

n is a
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solution to (2.1)–(2.3) if and only if it satisfies the following system of integral equations

uj(x, t) = (BSu)j(x, t)

−

∫ x

xj(x,t)

dj(ξ, x, t)
n
∑

k=1

k 6=j

bjk(ξ, ωj(ξ; x, t))uk(ξ, ωj(ξ; x, t))dξ

+

∫ x

xj(x,t)

dj(ξ, x, t)fj(ξ, ωj(ξ; x, t))dξ, j ≤ n, (2.8)

where

(Bu)j(x, t) = cj(xj(x, t), x, t)uj (xj(x, t), ωj(xj(x, t); x, t)) , (2.9)

(Su)j(x, t) =

{

(Ru)j(t) if t > 0,

ϕj(x) if t = 0.
(2.10)

Here B is a shifting operator from ∂Π0 along characteristic curves of (2.1), while the
operator S is used to denote the boundary operator on the whole ∂Π0. Similarly, a C1-
map u : [0, 1] × R → R

n is a solution to (2.1), (2.3) if and only if it satisfies the system
(2.8), where the definition of S is changed to S = R.

This motivates the following definition:

Definition 2.1 (1) A continuous function u is called a continuous solution to (2.1)–(2.3)
in Π0 if it satisfies (2.8) with S defined by (2.10).

(2) A continuous function u is called a continuous solution to (2.1), (2.3) in Π−∞ if it
satisfies (2.8) with S = R.

Existence results for (continuous) solutions to the problems under consideration are
obtained in [1, 16, 17, 19].

Definition 2.2 A solution u to the problem (2.1)–(2.3) or (2.1), (2.3) is called smoothing
if, for every k ∈ N, there exists T > 0 such that uj ∈ Ck

(

ΠT

)

for all j ≤ n.

For the initial-boundary value problem (2.1)–(2.3) Definition 2.2 reflects a dynamic
nature of the smoothing property stating that the regularity of solutions increases in time.
The fact that the regularity cannot be uniform in the entire domain is a straightforward
consequence of the propagation of singularities along characteristic curves. Moreover,
switching from Ck to Ck+1-regularity is jump-like; this phenomenon is usually observed
in the situations when solutions of hyperbolic PDEs change their regularity (see e.g., [25,
27, 29, 31]).

Note that, if the problem (2.1), (2.3) is subjected to periodic conditions in t, then
Definition 2.2 implies that the smoothing solutions immediately meet the C∞-regularity
in the entire domain.

Definition 2.2 captures the general nature of the smoothing phenomenon for hyperbolic
PDEs. A more precise information can be extracted from the proof of Theorems 2.3, 2.4,
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and 2.5 below: Reaching the Ck-regularity for solutions needs only a Ck-regularity for
a, b, and f . More exact regularity conditions for the boundary data, which also depend
on k, can be derived from these proofs as well. These refinements are useful in some
applications.

Definition 2.2 can be strengthened by admitting worse regularities for the initial data.
One extension of this kind, when the initial data are strongly singular distributions con-
centrated at a finite number of points, can be found in [18]. In [18] we used a delta-wave
solution concept. Another result in this direction [20, 21] concerns periodic problems and
uses a variational setting of the problem (see also Theorem 3.2 (ii)). In [20, 21] we get an
improvement of the solution regularity from being functionals to being functions.

In what follows we demonstrate the smoothing effect on generic examples of large
classes of boundary operators and show which kinds of problems can be covered by our
techniques. Our approach to establishing smoothing results is based on the consideration
of the integral representation of the problems and the observation that the boundary and
the integral parts of this representation have different influence on the regularity of solu-
tions. Our main idea is to show that the integral part has a “self-improvement” property,
while in many interesting cases the boundary part is not responsible for propagation of
singularities. The latter contrasts to the case of the Cauchy problem where the solutions
cannot be smoothing as the boundary term all the time ”remembers” the regularity of
the initial data. It is worthy to note that in the case of the problem (2.1)–(2.3) in Π0 the
domain of influence of the initial conditions is determined by both parts of the integral
system and is in general infinite. This makes the smoothing effect non-obvious.

2.1 Classical boundary conditions

Here we specify conditions (2.3) to

uj(0, t) = hj(t), 1 ≤ j ≤ m,

uj(1, t) = hj(t), m < j ≤ n.
(2.11)

and consider the problem (2.1), (2.2), (2.11).

Theorem 2.3 Assume that the data aj, bjk, fj, and hj are smooth in all their argu-
ments and ϕj are continuous functions. Assume also (2.4), (2.5), and (2.6). Then any
continuous solution to the problem (2.1), (2.2), (2.11) is smoothing.

Note that in the case of smooth classical boundary conditions (2.11), the domain of
influence of the initial data ϕ(x) on ui for every i ≤ n in general is unbounded (due to
the lower-order terms in (2.1)). In spite of this, the influence of the initial data on the
regularity of u becomes weaker and weaker in time causing the smoothing effect.

Proof. Suppose that u is a continuous solution to the problem (2.1)–(2.3) and show
that the operator of the problem improves the regularity of u in time. The idea of the
proof is similar to [18].
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We start with an operator representation of u. To this end, introduce linear bounded
operators D,F : C

(

Π0

)n
→ C

(

Π0

)n
by

(Du)j (x, t) = −

∫ x

xj(x,t)

dj(ξ, x, t)
n
∑

k=1

k 6=j

(bjkuk) (ξ, ωj(ξ; x, t))dξ,

(Ff)j (x, t) =

∫ x

xj(x,t)

dj(ξ, x, t)fj(ξ, ωj(ξ; x, t))dξ.

Note that Ff is a smooth function in x, t. In this notation the integral system (2.8) can
be written as

u = BSu+Du+ Ff. (2.12)

It follows that
u = BSu+ (DBS +D2)u+ (I +D)Ff. (2.13)

In the first step we prove that the right hand side of (2.13) restricted to ΠT1
for some

T1 > 0 is continuously differentiable in t. The C1
(

ΠT1

)n
-regularity of u will then follow

from the fact that u given by (2.8) satisfies (2.1) in the distributional sense. By the
assumption (2.5), we can fix a large enough T1 > 0 such that the operator S in the right-
hand side of (2.13) restricted to ΠT1

does not depend on ϕ and, hence, Su = Ru = h,
where h = (h1, . . . , hn). We therefore arrive at the equality

u|ΠT1
= Bh+DBh+D2u+ (I +D)Ff, (2.14)

where u|ΠT1
denotes the restriction of u to ΠT1

. By the regularity assumption on a, b, f ,

and h, the function Bh+DBh+ (I +D)Ff is smooth. We have reduced the problem to
show that the operator D2 is smoothing, more specifically, that D2u is C1-smooth in t on
ΠT1

.
Notice that for t ≥ T1 the function xj(x, t) is a constant depending only on j. Below

we therefore will drop the dependence of xj on x and t. Fix a sequence ul ∈ C1
(

Π0

)n

such that
ul → u in C

(

Π0

)n
as l → ∞. (2.15)

By convergence in C (Ω)n here and below we mean the uniform convergence on any com-
pact subset of Ω. Then D2ul → D2u in C

(

Π0

)n
as well. It suffices to prove that ∂t

[

D2ul
]

converges in C
(

ΠT1

)n
as l → ∞. Given j ≤ n, consider the following expression for

(

D2ul
)

j
(x, t), obtained by change of the order of integration:

(

D2ul
)

j
(x, t) (2.16)

=
n
∑

k=1

k 6=j

n
∑

i=1

i 6=k

∫ x

xj

∫ x

η

djki(ξ, η, x, t)bjk(ξ, ωj(ξ; x, t))u
l
i(η, ωk(η; ξ, ωj(ξ; x, t)))dξdη

with

djki(ξ, η, x, t) = dj(ξ, x, t)dk(η, ξ, ωj(ξ; x, t))bki(η, ωk(η; ξ, ωj(ξ; x, t))).
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It follows that

∂t

[

(

D2ul
)

j
(x, t)

]

=
n
∑

k=1

k 6=j

n
∑

i=1

i 6=k

∫ x

xj

∫ x

η

∂t
[

djki(ξ, η, x, t)bjk(ξ, ωj(ξ; x, t))
]

ul
i(η, ωk(η; ξ, ωj(ξ; x, t)))dξdη

+
n
∑

k=1

k 6=j

n
∑

i=1

i 6=k

∫ x

xj

∫ x

η

djki(ξ, η, x, t)bjk(ξ, ωj(ξ; x, t))

× ∂3ωk(η; ξ, ωj(ξ; x, t))∂tωj(ξ; x, t)∂2u
l
i(η, ωk(η; ξ, ωj(ξ; x, t)))dξdη, (2.17)

where ∂rg here and below denotes the derivative of g with respect to the r-th argument.
The first summand in the right-hand side converges in C

(

ΠT1

)

. Our task is therefore
reduced to show the uniform convergence of all integrals in the second summand, whenever
(x, t) varies on a compact subset of ΠT1

. For this purpose we will transform the integrals
as follows. Using (2.6) and the formulas

∂xωj(ξ; x, t) = −
1

aj(x, t)
exp

∫ x

ξ

(

∂taj

a2j

)

(η, ωj(η; x, t))dη, (2.18)

∂tωj(ξ; x, t) = exp

∫ x

ξ

(

∂taj

a2j

)

(η, ωj(η; x, t))dη, (2.19)

we get
∫ x

xj

∫ x

η

djki(ξ, η, x, t)bjk(ξ, ωj(ξ; x, t))

× ∂3ωk(η; ξ, ωj(ξ; x, t))∂tωj(ξ; x, t)∂2u
l
i(η, ωk(η; ξ, ωj(ξ; x, t)))dξdη

=

∫ x

xj

∫ x

η

djki(ξ, η, x, t)∂3ωk(η; ξ, ωj(ξ; x, t))∂tωj(ξ; x, t)

× bjk(ξ, ωj(ξ; x, t))
[

(

∂ξωk

)

(η; ξ, ωj(ξ; x, t))
]−1
(

∂ξu
l
i

)

(η, ωk(η; ξ, ωj(ξ; x, t)))dξdη

=

∫ x

xj

∫ x

η

djki(ξ, η, x, t)∂tωj(ξ; x, t)
(

akajpjk
)

(ξ, ωj(ξ; x, t))

×
(

∂ξu
l
i

)

(η, ωk(η; ξ, ωj(ξ; x, t)))dξdη

=

∫ x

xj

∫ x

η

d̃jki(ξ, η, x, t)
(

∂ξu
l
i

)

(η, ωk(η; ξ, ωj(ξ; x, t)))dξdη

= −

∫ x

xj

∫ x

η

∂ξd̃jki(ξ, η, x, t)u
l
i (η, ωk(η; ξ, ωj(ξ; x, t))) dξdη

+

∫ x

xj

[

d̃jki(ξ, η, x, t)u
l
i (η, ωk(η; ξ, ωj(ξ; x, t)))

]ξ=x

ξ=η
dη.

Here
d̃jki(ξ, η, x, t) = djki(ξ, η, x, t)∂tωj(ξ; x, t) (akajpjk) (ξ, ωj(ξ; x, t)).
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Now, the desired convergence follows from (2.15).
In the second step we prove that there exists T2 > T1 such that ∂tu restricted to ΠT2

is C1-smooth in t on ΠT2
. Once this is done, we differentiate (2.1) with respect to t and

get ∂2
xtu ∈ C

(

ΠT2

)n
; differentiating (2.1) with respect to x, we get ∂2

xu ∈ C
(

ΠT2

)n
. We

will be able to conclude that u ∈ C2
(

ΠT2

)n
, as desired. To prove the existence of T2, let

v = ∂tu. Differentiation of (2.1) formally in t leads to

(∂t + aj∂x)vj +
n
∑

k=1

bjkvk +
n
∑

k=1

∂tbjkuk + ∂taj∂xuj = ∂tfj.

Combining this with (2.1), we obtain

(∂t + aj∂x)vj +
n
∑

k=1

bjkvk −
∂taj

aj
vj

= ∂tfj −
n
∑

k=1

∂tbjkuk +
∂taj

aj

(

n
∑

k=1

bjkuk − fj

)

= Gj(fj, ∂tfj, u). (2.20)

Here, for each j ≤ n, Gj is a certain linear function with smooth coefficients. Set

c̃j(ξ, x, t) = exp

∫ ξ

x

(

bjj

aj
−

∂taj

a2j

)

(η, ωj(η; x, t)) dη, d̃j(ξ, x, t) =
c̃j(ξ, x, t)

aj(ξ, ωj(ξ; x, t))

and introduce three linear operators B̃, D̃, F̃ : C
(

Π0

)n
→ C

(

Π0

)n
by

(

B̃u
)

j
(x, t) = c̃j(xj, x, t)uj (xj, ωj(xj; x, t)) , (2.21)

(

D̃u
)

j
(x, t) = −

∫ x

xj

d̃j(ξ, x, t)
n
∑

k=1

k 6=j

(bjkuk) (ξ, ωj(ξ; x, t))dξ, (2.22)

(

F̃ f
)

j
(x, t) =

∫ x

xj

d̃j(ξ, x, t)fj(ξ, ωj(ξ; x, t))dξ. (2.23)

Similarly to the above, our starting point is that for any T2 ≥ T1 the function v satisfies
the following operator equation resulting from (2.20):

v|ΠT2
= B̃h′ + D̃v + F̃G(f, ∂tf, u),

and, hence, the equation

v|ΠT2
= B̃h′ + D̃B̃h′ + D̃2v + (I + D̃)F̃G(f, ∂tf, u), (2.24)

where G = (G1, . . . , Gn) and h′ = (h′
1, . . . , h

′
n). Again, due to the assumption (2.5), we

can fix T2 > T1 such that the right-hand side of (2.24) does not depend on u and v in
Π \ ΠT1

. Due to Step 1, the function (I + D̃)F̃G(f, ∂tf, u) then meets the C1
t -regularity.

Moreover, B̃h′+D̃B̃h′ ∈ C∞. We are thus left to show that the operator D̃2 is smoothing
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in the above sense. As D̃ is exactly the operator D with cj and dj replaced by the smooth
functions c̃j and d̃j, the desired smoothing property of D̃2 follows from the proof of the
smoothness of D2 and the fact that D̃2v in (2.24) does not depend on v in Π \ ΠT1

.
Proceeding further by induction, assume that, given r ≥ 2, there is Tr > 0 such

that u ∈ Cr
(

ΠTr

)n
and prove that u meets the Cr+1-regularity in t on ΠTr+1

for some
Tr+1 > Tr. Set w = ∂r

t u. Differentiating (2.1) and (2.3) r-times in t, we come to our
starting operator equation for w, namely

w|ΠTr+1

= B̃h(r) + D̃B̃h(r) + D̃2w + (I + D̃)F̃ G̃(f, ∂tf, . . . , ∂
r
t f, u, ∂tu, . . . , ∂

r−1
t u),

(2.25)
where G̃ is a vector of certain linear functions with smooth coefficients and the oper-
ators B̃, D̃, and F̃ are modified by c̃j(ξ, x, t) in (2.21)–(2.23) changing to c̃j(ξ, x, t) =

exp
∫ ξ

x

(

bjj
aj

− r
∂taj
a2j

)

(η, ωj(η; x, t)) dη. Similarly to the above, fix Tr+1 > Tr such that the

right-hand side of (2.25) does not depend on u, ∂tu, . . . , ∂
r−1
t u, and w in Π \ ΠTr

. This
ensures that the last two summands in (2.25) are C1

t -functions. The first two summands
are C1

t -smooth by the regularity assumptions on the data. Finally, the Cr+1
(

ΠTr+1

)

-
regularity of u follows from the previous steps of the proof and suitable differentiations of
the system (2.1). �

Theorem 2.3 can be extended over the boundary operators of the following kind (both
linear and nonlinear). Given T > 0, in the domain ΠT let us consider the problem
(2.1)–(2.3) with bjk ≡ 0 for all j 6= k (i.e., the system (2.1) is decoupled) and with (2.2)
replaced by u(x, T ) = ϕ(x) (the initial values are given at t = T ). This entails that the
domain of influence of ϕ now depends only on the boundary conditions. For the latter it
is supposed that, for every T > 0 and ϕ(x), the function ϕ(x) has a bounded domain of
influence on u. In other words, for any decoupled system (2.1), if ϕ(x) has a singularity at
some point x ∈ [0, 1], then this singularity expands along a finite number of characteristic
curves (we have a finite number of ”reflections” from the boundary), and this number is
bounded from above uniformly in x ∈ [0, 1]. This class of boundary operators is in detail
described in [18], where the necessary and sufficient conditions for smoothing solutions
are given. The results of [18] generalize the smoothing results obtained in [10, 13, 23, 25]
for the system (2.1) with time-independent coefficients and (a kind of) Dirichlet boundary
conditions.

2.2 Integral boundary conditions in age structured population
models

Here we address another class of boundary operators admitting smoothing solutions.
Though it covers a range of (partial) integral operators, we illustrate our smoothing
result with an example from population dynamics.

Integral boundary conditions are usually used in continuous age structured population
models to describe a fertility of populations. Let u(x, t) denote the density of a population
of age x at time t. Then the dynamics of u can be described by the following model (see,
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e.g. [11, 26, 36] and references therein):

(∂t + ∂x + µ)u = 0, (x, t) ∈ Π0, (2.26)

u(x, 0) = ϕ(x), x ∈ [0, 1], (2.27)

u(0, t) = h

(
∫ 1

0

γ(x)u(x, t) dx

)

, t ∈ R, (2.28)

where µ > 0 is the mortality rate of the population and the functions h and γ describe
the fertility of the population. Without losing potential applicability to the topic of
population dynamics, h and γ are supposed to be C∞-smooth functions. The integral in
(2.28) is a kind of the so-called “partial” integral, since u depends not only on the variable
of integration x, but also on the free variable t. Therefore the right-hand side of (2.28)
is not smoothing. Nevertheless, it turns out that it is regular enough to contribute into
smoothing solutions.

Theorem 2.4 Assume that h and γ are C∞-smooth functions and ϕ is a continuous
function. Then any continuous solution to the problem (2.26)–(2.28) is smoothing.

Proof. It suffices to show the smoothing property starting from large enough t.
Therefore, we can use the notation:

(Ru)(t) = h

(
∫ 1

0

γ(x)u(x, t) dx

)

ω(ξ; x, t) = t+ ξ − x

c(ξ, x, t) = c̃(ξ, x, t) = eµ(ξ−x)

(Bu)(x, t) = (B̃u)(x, t) = e−µxu(0, t− x),

the latter two being introduced for all large enough t. Integration along the character-
istic curves implies that any continuous solution to (2.26)–(2.28) satisfies the operator
equations u = BRu and u = Bu and, hence,

u = BRBu (2.29)

whenever t > T1, where T1 is chosen to be so large that the operator BRB moves away
from the initial boundary (the right-hand side of (2.29) does not depend on ϕ). Since

(BRBu)(t) = e−µxh

(
∫ 1

0

γ(ξ)e−µξu(0, t− x− ξ) dξ

)

= e−µxh

(
∫ t−x

t−x−1

γ(t− x− τ)eµ(x−t+τ)u(0, τ) dτ

)

,

we obtain the C1
t -smoothness of BRBu and, hence, of u on ΠT1

. The C1-smoothness of
u on ΠT1

now follows from (2.26).
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Proceeding similarly to the proof of Theorem 2.3, in the second step we consider the
following operator equation with respect to v = ∂tu, obtained after differentiation of (2.26)
and (2.28) with respect to t and integration along characteristic curves:

v|ΠT2
= B∂tRBv, (2.30)

where

(∂tRv)(t) = h′

(
∫ 1

0

γ(x)u(x, t) dx

)
∫ 1

0

γ(x)v(x, t) dx

and T2 > T1 is fixed to satisfy the property that the right-hand side of (2.30) does not
depend on u and v in Π0 \ ΠT1

. It follows that

v|ΠT2
= e−µxh′

(
∫ 1

0

γ(ξ)u(ξ, t− x) dξ

)
∫ 1

0

γ(ξ)e−µξv(0, t− x− ξ) dξ

= e−µxh′

(
∫ 1

0

γ(ξ)u(ξ, t− x) dξ

)
∫ t−x

t−x−1

γ(t− x− τ)eµ(x−t+τ)v(0, τ) dτ.

To conclude that v ∈ C1
t

(

ΠT2

)n
, it remains to note that u under the first integral in the

right-hand side meets the C1
t -regularity, while the second integral gives us the desired

smoothing property.
In general, given Tr for r ≥ 2, we choose Tr+1 > Tr by the argument as above and for

w = ∂r
t u have the equation

w|ΠTr+1

= B∂r
tRBw, (2.31)

where

(∂r
tRw)(t) = h′

(
∫ 1

0

γ(x)u(x, t) dx

)
∫ 1

0

γ(x)w(x, t) dx

+
dr−1

dtr−1

[

h′

(
∫ 1

0

γ(x)u(x, t) dx

)]
∫ 1

0

γ(x)∂tu(x, t) dx

+
dr−2

dtr−2

[

h′

(
∫ 1

0

γ(x)u(x, t) dx

)
∫ 1

0

γ(x)∂tu(x, t) dx

]

.

Substituting the latter into (2.31) and changing variables under the integral of w similarly
to the first two steps, we get the desired smoothing property for w. This completes the
proof. �

2.3 Dissipative boundary conditions and periodic problems

Now we switch to boundary conditions having dissipative nature and fitting the smoothing
property. A large class of dissipative boundary conditions for hyperbolic PDEs is described
in [8].
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To give an idea of the smoothing effect in this case, consider the following specification
of (2.1):

uj(0, t) = hj(z(t)), 1 ≤ j ≤ m,

uj(1, t) = hj(z(t)), m < j ≤ n,
(2.32)

with
z(t) = (u1(1, t), . . . , um(1, t), um+1(0, t), . . . , un(0, t)) .

In the domain Π−∞ we address the problem (2.1), (2.32) subjected to periodic boundary
conditions

u(x, t+ 2π) = u(x, t). (2.33)

The problems of this kind appear in laser dynamics and chemical kinetics (in Section 3
we investigate a traveling-wave model of kind (2.1), (2.32), (2.33) from laser dynamics).
Within this section, using the standard notation for the (sub)spaces of continuous func-
tions, we assume that the functions have additional property of 2π-periodicity in t. Write

h′

j(z) = ∇zhj(z), h′(z) =
{

∂khj(z)
}n

j,k=1
.

Theorem 2.5 Assume that aj, bjk, fj, and hj are CN -smooth functions in all their ar-
guments and the conditions (2.4)–(2.6) a re fulfilled. Moreover, the functions aj, bjk, fj
are supposed to be 2π-periodic in t. If

exp

{
∫ xj

x

(

bjj

aj
− r

∂taj

a2j

)

(η, ωj(η; x, t)) dη

} n
∑

k=1

|∂khj(z)| < 1 (2.34)

for all j ≤ n, x ∈ [0, 1], t ∈ R, z ∈ R
n, and r = 0, 1, . . . , N , then any continuous solution

to the problem (2.1), (2.32), (2.33) belongs to CN(Π−∞).

Proof. Any continuous solution to the problem (2.1), (2.32), (2.33) in Π−∞ fulfills
(2.12) with S = R and also satisfies the equation

u = Bu+Du+ Ff (2.35)

where the boundary conditions are not specified. Substituting (2.35) into (2.12), we obtain

u = BRu+ (DB +D2)u+ (I +D)Ff. (2.36)

We first show the bijectivity of I − BR ∈ L
(

C1
t

(

Π−∞

)n)

. On the account of (2.19) and
the definition of B given by (2.9), we have

(BRu)j(x, t) = cj(xj, x, t)hj (z(ωj(xj; x, t))) = cj(xj, x, t)hj(0)

+ exp

{
∫ xj

x

(

bjj

aj

)

(η, ωj(η; x, t)) dη

}
∫ 1

0

h′

j (αz(ωj(xj; x, t))) dα · z(ωj(xj; x, t))

and

∂t [(BRu)j(x, t)] = ∂tcj(xj, x, t)hj (z(ωj(xj; x, t)))

+h′

j (z(ωj(xj; x, t))) · z
′(ωj(xj; x, t)) exp

{
∫ xj

x

(

bjj

aj
−

∂taj

a2j

)

(η, ωj(η; x, t)) dη

}

,
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where · denotes the scalar product in R
n. Taking into account (2.33), the bijectivity

of I − BR ∈ L
(

C1
t

(

Π−∞

)n)

now follows from the contractibility condition (2.34) with
r = 0, 1 and from the proof of the Ck-regularity result for solutions of first-order hyperbolic
PDEs given in [31].

Now we claim that the operators DB and D2 in (2.36) are smoothing. The latter is
smoothing by the proof in Theorem 2.3. Similar argument works also for DB. Indeed,
by the definition of the operators D and B we have
(

DBul
)

j
(x, t) (2.37)

=
n
∑

k=1

k 6=j

∫ xj

x

dj(ξ, x, t)bjk(ξ, ωj(ξ; x, t))ck(xk, ξ, ωj(ξ; x, t))u
l
k(xk, ωk(xk; ξ, ωj(ξ; x, t)))dξ,

where the sequence ul is fixed to satisfy (2.15) with Π0 replaced by Π−∞. To show that
∂t
[

DBul
]

converges uniformly on Π−∞, we transform the integrals in (2.37) like to the
case of D2, that is, we differentiate (2.37) in t, use (2.6), and integrate by parts. In this
way we get the smoothing property for DB. Turning back to the formula (2.36) and using
in addition the fact that (I+D)Ff is C∞-smooth, we can rewrite (2.36) in the equivalent
form

u = (I −BR)−1
[

(DB +D2)u+ (I +D)Ff
]

,

thereby reaching the C1
t -regularity for u. Afterwards, the C1-regularity of u is a straight-

forward consequence of the system (2.1).
Proceeding similarly to the proof of Theorem 2.3, we come to the formula for v = ∂tu:

v = (I − B̃R′

z)
−1
[

(D̃B̃ + D̃2)v + (I + D̃)F̃G(f, ∂tf, u)
]

,

where R′
zy = h′(z)y. The property that v ∈ C1

t

(

Π−∞

)n
follows from the bijectivity of

I − BR′
z ∈ L

(

C1
t

(

Π−∞

)n)

, which we have by condition (2.34) with r = 1, 2 and the

C1
t -regularity of D̃B + D̃2 and (I + D̃)F̃G(f, ∂tf, u). This entails u ∈ C2

t

(

Π−∞

)n
. It

follows by (2.1) that u ∈ C2
(

Π−∞

)n
.

To complete the proof, we proceed by induction on the order of regularity of u. Assume
that u ∈ Cr

(

Π−∞

)n
for some r ≥ 2 and prove that u ∈ Cr+1

(

Π−∞

)n
. Our starting

formula for w = ∂r
t u is as follows:

w = (I − B̃R′

z)
−1
[

(D̃B̃ + D̃2)w

+ (I + D̃)F̃ G̃(f, ∂tf, . . . , ∂
r
t f, u, ∂tu, . . . , ∂

r−1
t u)

+ B̃∂r−1
t R′

zz
′ + B̃∂r−2

t (R′

zz
′)
]

,

where ∂r−1
t R′

z =
{

∂r−1
t (∂khj(z))

}n

j,k=1
and B̃, D̃, and F̃ are modified by c̃j(ξ, x, t) in (2.21)–

(2.23) changing to c̃j(ξ, x, t) = exp
∫ ξ

x

(

bjj
aj

− r
∂taj
a2j

)

(η, ωj(η; x, t)) dη. By the regularity

assumptions on the data and the induction assumption, the last three summands in the
square brackets are C1

t -functions. Using in addition our smoothing argument for D̃B̃+D̃2

and the regularity properties of (I − B̃R′
z)

−1, we arrive at the desired conclusion. �
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3 Fredholm solvability of periodic problems

In [20, 21] we suggest an approach to establish the Fredholm property for first-order hy-
perbolic operators. This is done by construction an equivalent regularization in the form
of a parametrix. The construction is, implicitly but essentially, based on the smooth-
ing effect investigated in Section 2. Consider the first-order one-dimensional hyperbolic
system

(∂t + a(x)∂x + b(x))u = f(x, t), x ∈ (0, 1), (3.38)

subjected to periodic conditions (2.33) and reflection boundary conditions

uj(0, t) =
n
∑

k=m+1

r0jkuk(0, t), 1 ≤ j ≤ m,

uj(1, t) =
m
∑

k=1

r1jkuk(1, t), m < j ≤ n.

(3.39)

Here r0jk and r1jk are real numbers and the right-hand sides fj : [0, 1]×R → R are supposed
to be 2π-periodic with respect to t.

The main result of this section states that the system (3.38), (2.33), (3.39) is solvable
if and only if the right hand side is orthogonal to all solutions to the corresponding
homogeneous adjoint system

−∂tu− ∂x (a(x)u) + bT (x)u = 0, x ∈ (0, 1),

subjected to periodic conditions (2.33) and adjoint boundary conditions

aj(0)uj(0, t) = −

m
∑

k=1

r0kjak(0)uk(0, t), m < j ≤ n,

aj(1)uj(1, t) = −
n
∑

k=m+1

r1kjak(1)uk(1, t), 1 ≤ j ≤ m.

(3.40)

We will present our result in three steps. First we introduce appropriate function
spaces for solutions. Then we decompose the operator of the problem into two parts, only
one being responsible for propagation of singularities. Finally, based on this decomposition
and the smoothing property, we construct a parametrix thereby establishing the Fredholm
solvability.

When choosing the function spaces, note that the problem (3.38), (2.33), (3.39) de-
scribes the so-called traveling-wave models from laser dynamics [24, 30]. From the physical
point of view, it is desirable to allow discontinuities in the coefficients and the right hand
side of (3.38). This entails that the spaces of solutions should not be too small. On the
other hand, they should not be too large, in order to admit embeddings into an algebra
of functions with pointwise multiplication of its elements. The last property is important
for potential applicability of our results to nonlinear problems, like describing such dy-
namic phenomena as Hopf bifurcation and periodic synchronizations. Finally, the solution
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spaces capable to capture the Fredholm solvability need to have optimal regularity with
respect to the function spaces of the right-hand side.

We now describe the scale of spaces V γ (for the solutions) and W γ (for the right-hand
side) meeting all these properties. For γ ≥ 0, let W γ denote the vector space of all locally
integrable functions f : [0, 1] × R → R

n such that f(x, t) = f (x, t+ 2π) for almost all
x ∈ (0, 1) and t ∈ R and that

‖f‖2W γ =
∑

s∈Z

(1 + s2)γ
1
∫

0

∥

∥

∥

∥

∥

∥

2π
∫

0

f(x, t)e−ist dt

∥

∥

∥

∥

∥

∥

2

dx < ∞. (3.41)

Here and in what follows ‖ · ‖ is the Hermitian norm in C
n. It is well known that W γ is

a Banach space with the norm (3.41); see, e.g. [12], [33, Chapter 5.10], and [35, Chapter
2.4].

Furthermore, for γ ≥ 1 and a ∈ L∞ ((0, 1);Mn), where Mn denotes the space of real
n× n matrices, with ess inf |aj| > 0 for all j ≤ n we will work with the function spaces

Uγ =
{

u ∈ W γ : ∂xu ∈ W 0, ∂tu+ a∂xu ∈ W γ
}

endowed with the norms

‖u‖2Uγ = ‖u‖2W γ + ‖∂tu+ a∂xu‖
2
W γ .

Remark that the space Uγ depends on a and is larger than the space of all u ∈ W γ such
that ∂tu ∈ W γ and ∂xu ∈ W γ (which does not depend on a). For u ∈ Uγ there exist
traces u(0, ·), u(1, ·) ∈ L2

loc(R;R
n) (see [21]), and, hence, it makes sense to consider the

closed subspaces in Uγ

V γ = {u ∈ Uγ : (3.39) is fulfilled},

Ṽ γ = {u ∈ Uγ : (3.40) is fulfilled}.

Our next task is to decompose the operator of our problem into two parts in order
to single out the part, denoted below by A, which is bijective and at the same time is
responsible for the propagation of singularities. If this decomposition is optimal, then
after a regularization procedure the other part becomes smoothing and therefore meets
the compactness property. Let

b0 = diag(b11, b22, . . . , bnn) and b1 = b− b0

denote the diagonal and the off-diagonal parts of the coefficient matrix b, respectively.
Let us introduce operators A ∈ L(V γ ;W γ), Ã ∈ L(Ṽ γ ;W γ), and B, B̃ ∈ L(W γ) by

Au = ∂tu+ a∂xu+ b0u,

Ãu = −∂tu− ∂x(au) + b0u,

Bu = b1u,

B̃u = (b1)Tu.
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Remark that the operators A, B, and B̃ are well-defined for aj, bjk ∈ L∞(0, 1), while Ã is
well-defined under additional regularity assumptions with respect to the coefficients aj,
for example, for aj ∈ C0,1([0, 1]). Note that the operator equation

Au+ Bu = f

is an abstract representation of the problem (3.38), (2.33), (3.39).
Finally, for s ∈ Z we introduce the complex (n−m)× (n−m) matrices

Rs =

[

m
∑

l=1

eis(αj(1)−αl(1))+βj(1)−βl(1)r1jlr
0
lk

]n

j,k=m+1

,

where

αj(x) =

∫ x

0

1

aj(y)
dy, βj(x) =

∫ x

0

bjj(y)

aj(y)
dy.

The following theorem states, first, that the pair of spaces (V γ,W γ) gives an optimal
regularity trade-off between the spaces of solutions and right-hand sides and, second,
that A meets the bijectivity property. The second desirable property for A of being an
optimal operator responsible for propagation of singularities will be a consequence of our
Fredholmness result.

Theorem 3.1 [21] For every c > 0 there exists C > 0 such that the following is true: If

aj, bjj ∈ L∞(0, 1) and ess inf |aj| ≥ c for all j = 1, . . . , n, (3.42)

n
∑

j=1

‖bjj‖∞ +
m
∑

j=1

n
∑

k=m+1

|r0jk|+
n
∑

j=m+1

m
∑

k=1

|r1jk| ≤
1

c
,

and
| det(I −Rs)| ≥ c for all s ∈ Z, (3.43)

then for all γ ≥ 1 the operator A is an isomorphism from V γ onto W γ and

‖A−1‖L(W γ ;V γ) ≤ C.

Let

〈f, u〉L2 =
1

2π

∫ 2π

0

∫ 1

0

〈f(x, t), u(x, t)〉 dxdt

denote the scalar product in the Hilbert space L2 ((0, 1)× (0, 2π);Rn) and 〈·, ·〉 denote
the Euclidean scalar product in R

n. As usual, by BV (0, 1) we denote the Banach space
of all functions h : (0, 1) → R with bounded variation, i.e. of all h ∈ L∞(0, 1) such that
there exists C > 0 with

∣

∣

∣

∣

∫ 1

0

h(x)ϕ′(x)dx

∣

∣

∣

∣

≤ C‖ϕ‖L∞(0,1) for all ϕ ∈ C∞

0 (0, 1). (3.44)

The norm of h in BV (0, 1) is the sum of the norm of h in L∞(0, 1) and of the smallest
possible constant C in (3.44). We are prepared to formulate the main result of this section.
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Theorem 3.2 [21] Suppose that conditions (3.42) and (3.43) are fulfilled for some c > 0.
Suppose also that

for all j 6= k there is pjk ∈ BV (0, 1) such that
ak(x)bjk(x) = pjk(x)(aj(x)− ak(x)) for a.a. x ∈ [0, 1].

(3.45)

Then the following is true:
(i) The operator A + B is a Fredholm operator with index zero from V γ into W γ for

all γ ≥ 1, and ker(A+ B) = {u ∈ V γ : (A+ B) u = 0} does not depend on γ.
(ii) (smoothing effect) If a ∈ C0,1 ([0, 1];Mn), then ker(A+ B)∗ = ker(Ã+ B̃) and

{(A+ B)u : u ∈ V γ} =
{

f ∈ W γ : 〈f, u〉L2 = 0 for all u ∈ ker(Ã+ B̃)
}

,

where ker(Ã+ B̃) = {u ∈ Ṽ γ : (Ã+ B̃)u = 0} does not depend on γ.

Theorem 3.2 (ii) states that the kernel of the adjoint operator is actually defined
on the classical function spaces. In other words, the kernel has much better regularity
than ensured just by the formal definition of the adjoint operator. Here we encounter a
smoothing effect for the solutions (of the adjoint hyperbolic problem), that are originally
functionals. The proof of this effect in [20, 21] uses completely different techniques, based
on a functional-analytic approach.

Finally, we outline the proof of Theorem 3.2 (i). As mentioned above, we construct a
parametrix to the operator of the problem. By Theorem 3.1, the zero-order Fredholmness
of the operator A + B ∈ L(V γ ;W γ) is equivalent to the zero-order Fredholmness of the
operator I + BA−1 ∈ L(W γ). Furthermore, we use the following Fredholmness criterion
(see [34, Theorem 5.5] or [37, Proposition 5.7.1]).

Lemma 3.3 Let I denote the identity in a Banach space W . Suppose that D ∈ L(W )
and D2 is compact. Then I +D is Fredholm.

Setting D = BA−1 ∈ L(W γ), we prove that D2 ∈ L(W γ) is compact (while D alone
can hardly be compact, being a type of a partial integral operator). This actually means
that D2 has smoothing property. In fact, D2 is basically the same as the operator D2,
that we used in the proof of Theorem 2.3.

Since I −D2 = (I −D)(I +D) = (I +D)(I −D), the operator I −D is a parametrix
of I + D. It follows that the operator A + B admits an equivalent regularization in the
form of the right parametrix A−1(I − BA−1).
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