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Abstract

In this work, we introduce a degenerating PDE system with a time-depending domain for
complete damage processes under time-varying Dirichlet boundary conditions. The evolution
of the system is described by a doubly nonlinear differential inclusion for the damage process
and a degenerating quasi-static balance equation for the displacement field which are strongly
nonlinearly coupled.

In our proposed model, the material may completely disintegrate which is indispensable for
a realistic modeling of damage processes in elastic materials. Complete damage theories lead to
several mathematical problems since, for instance, coercivity properties of the free energy are
lost and, therefore, several difficulties arise.

For the introduced complete damage model, we propose a classical formulation and a corre-
sponding suitable weak formulation in an SBV-framework. The main aim is to prove existence
of weak solutions for the introduced degenerating model. In addition, we show that the classical
differential inclusion can be regained from the notion of weak solutions under certain regularity
assumptions which is a novelty in the theory of complete damage models of this type.

For the existence results, we had to handle the following problem: During the damage pro-
cess it might occur that not completely damaged material regions are isolated from the Dirich-
let boundary. In this case, the deformation field cannot be controlled in the transition from
incomplete to complete damage. To tackle this problem, we consider the evolution process on a
time-depending domain. In this context, two major challenges arise: Firstly, the time-dependent
domain approach leads to jumps in the energy which have to be accounted for in the energy
inequality of the notion of weak solutions. To handle this problem, several energy estimates are
established by I'-convergence techniques. Secondly, the time-depending domain might have bad
smoothness properties such that Korn’s inequality cannot be applied. To this end, a covering
result for such sets with smooth compactly embedded domains has been shown.

1 Motivation

From a microscopic point of view, damage behavior originates from breaking atomic links in the
material whereas a macroscopic theory may specify the damage by a scalar variable related to
the quantity of damage. According to the latter perspective, phase-field models are quite common
to model smooth transitions between damaged and undamaged material states. Such phase-field
models have been mainly investigated for incomplete damage. However, for a realistic modeling of
damage processes in elastic materials, complete damage theories have to be considered, where the
material can completely disintegrate.

Mathematical works of complete models covering global-in-time existence are rare and are mainly
focused on purely rate-independent systems [MR06, BMR09, MRZ10, Miell] by using I'-convergence
techniques to recover energetic properties in the limit. Existence results for rate-dependent complete
damage systems in thermoviscoelastic materials are recently published in [RR12]. In contrast, much
mathematical efforts have been made in understanding incomplete damage processes. Existence



and uniqueness results for damage models of viscoelastic materials are proven in [BSS05] in the one
dimensional case. Higher dimensional damage models are analytically investigated in [BS04, MT10,
KRZ11| and, there, existence, uniqueness and regularity properties are shown. A coupled system
describing incomplete damage, linear elasticity and phase separation appeared in [HK11, HK10]. All
these works are based on the gradient-of-damage model proposed by Frémond and Nedjar [FN96]
(see also [Fré02]) which describes damage as a result from microscopic movements in the solid. The
distinction between a balance law for the microscopic forces and constitutive relations of the material
yield a satisfactory derivation of an evolution law for the damage propagation from the physical
point of view. In particular, the gradient of the damage variable enters the resulting equations and
serves as a regularization term for the mathematical analysis. When the evolution of the damage is
assumed to be uni-directional, i.e. the damage is irreversible, the microforce balance law becomes a
differential inclusion.

For a non-gradient approach of damage models for brittle materials we refer to [FG06, GL09, Bab11].
There, the damage variable z takes on two distinct values, i.e. {0, 1}, in contrast to our work, where
z € [0,1]. In addition, the mechanical properties are described in [FG06, GL09, Bab11] differently.
They choose a z-mixture of a linearly elastic strong and weak material with two different elasticity
tensors.

Damage modeling is an active field in the engineering community since the 1970s. For some recent
works we refer to [Car86, DP094, Mie95, MK00, MS11, Fré02, JL05, GUET07, VSL11]|. A variational
approach to fracture and crack propagation models can be found for instance in [BFMO08, CFMO09,
CFM10, Negl0, LT11].

The reason why incomplete damage models are more feasible for mathematical investigations is that
a coercivity assumption on the free energy prevents the material from a complete degeneration and
dropping this assumption may lead to serious troubles. However, in the case of viscoelastic materials,
the inertia terms circumvent this kind of problem in the sense that the deformation field still exists
on the whole domain accompanied with a loss of spatial regularity (cf. [RR12]). Unfortunately,
this result cannot be expected in the case of quasi-static mechanical equilibrium (see for instance
[BMRO09]).

The main aim of this work is to introduce and analyze a complete damage model for linear elastic
materials which are assumed to be in quasi-static equilibrium. For the analytical discussion, we
start with an incomplete damage model which is regularized in the equation of balance of forces as
in [MR06, MRZ10, BMR09, RR12| such that already known existence results from the incomplete
damage regime can be applied. The basis for a weak formulation of the regularized system is a
notion introduced in [HK11]. This notion seems well adapted for the transition to complete damage
(see also [RR12]). The advantage is that we can deal with low regularity solutions and we are able
to use weakly semi-continuity arguments for the passage to the limit. In our weak formulation,
the evolution law for the damage variable which is classically described by a differential inclusion
becomes some kind of variational inequality combined with a total energy inequality. Nevertheless,
we are faced with several mathematical challenges since the system highly degenerates during the
passage.

The major challenge is to establish a meaningful deformation field on regions where the damage is
not complete in the limit system. For instance, it might happen that in the limit path-connected
components of the not completely damaged material are isolated from the Dirichlet boundary. In
this case, the deformation variable cannot be controlled in the transition to complete damage with
Korn’s inequality. We will overcome this particular issue by formulating the problem in terms of



a time-depending domain. The domain contains all the not completely damaged path-connected
components of the material which still possess a part of the Dirichlet boundary. Inside the domain,
the damage evolution is still driven by a differential inclusion. The remaining area of the original
domain consists of completely damaged material and of material parts which are not completely
damaged and isolated from the Dirichlet boundary. Two further complicacies arise in this connection.

The first issue concerns the energy inequality. The time-depending domain approach leads to jumps
in the energy which must be accounted for in the energy inequality of the notion of weak solutions
as well. This issue is tackled with I'-convergence techniques in order to keep track of the energy at
jump points.

Secondly, the time-depending domain might have very bad smoothness properties which again might
lead to a failure of Korn’s inequality. This problem is approached by proving some covering results
for these sets with smooth domains where Korn’s inequality can be applied. In this context, we
introduce some special kind of local Sobolev spaces where we look for solutions in the limit system.

This paper is structurized as follows. The next section provides an overview of the notation we are
going to use while Section 3 develops our model first in a classical setting with enough smoothness
properties and then in a rigorous mathematical setting by presenting a weak formulation with SBV -
functions for the damage and local Sobolev functions for the deformation. It is shown in Theorem
3.7 that the weak notion reduces to the classical formulation when enough regularity is assumed.
The main results, i.e. Theorem 3.10 and Theorem 3.11, are stated in Section 3.3 while the proofs
are carried out in the subsequent Section 4. We first solve a simplified problem in Section 4.2. By
Zorn’s lemma, existence of solutions to the main problems will be proven in Section 4.3.

Complete damage models are required for a realistic description of the whole damage process. To
the best of our knowledge, there are no global-in-time existence results of complete damage models
of such degeneracy in the mathematical literature where the classical differential inclusion can be
regained under some additional regularity assumptions.

2 Notation

Let © C R” denote a bounded Lipschitz domain, D C 99 a part of the boundary with H"~1(D) > 0
and T > 0. The following table provides an overview of some elementary notation used in this paper:

Lr, H" n-dimensional Lebesgue and Hausdorff measure

CL(A;RN) I-times continuously differentiable function on open A C R™ 1 with respect
to the spatial variable x

aJ subdifferential of a convex function J : X — RU{oco}, X Banach space

B.(A) e-neighborhood of A C R"

T4, Ia characteristic function and indicator function X — R U {co} with respect
to a subset A C X

A,int(A), 04 closure, interior and boundary of A C R"

QT, Dr Q x (O,T) and D x (O,T)

{v="0}, {v>0} level and super-level set given by {x € Q|v(x) = 0} and {x € Q|v(x) > 0}
for functions v € WHP(Q), p > n, by employing the embedding W1P(£) —
c)

supp(v) support of a function v



Let (X, - ||) be a Banach space, I C R be an open interval and p be a positive measure. The
space LP(I,u; X), 1 < p < 0o, denotes the p-Bochner p-integrable functions with values in X (p-
essentially bounded for p = oo, respectively). We write LP(I; X) for LP(I,L'; X). The subspace
HY(I;X) C L*(I;X), q € N, indicates L?-functions which are g-times weakly differentiable with
weak derivatives in L2. Moreover, the subspace BV (I; X) C L'(I; X) consists of functions f €
LY(I; X) with

essvary(f) := inf {var;(g) |g = f L'-a.e. in I} < +o0,

and
k—1
V&I‘[(f) = sup { Z Hf(ti—&-l) — f(tz)H ’tl <t < ... <1 with t1,to,... 1k € I for k > 2}.
=1

To every f € BV (I; X), we can choose a representant (also denoted by f) with var;(f) < +o0. Then
the values f(t*) := lim,_,+ f(s) exist for all ¢ € I (and are independent of the representant) by
adapting the convention f((inf I)™) := f((inf I)*) and f((supI)*) := f((supI)~). The functions
fr(t) .= f(t*) and f~(t) := f(¢t7) are thus uniquely defined for every ¢ € I and do not coincide
for at most countably many points, i.e. in the jump discontinuity set Jy. Furthermore, a regular
measure d f with finite variation, i.e. |df|(I) < oo, and with values in X (called differential measure)
can be assigned such that df((a,b]) = f*(b) — f(a) for all a,b € T with a <b, cf. [Din66]. If X is

a finite dimensional vector space we refer to [AFP00| for a comprehensive introduction.

If X exhibits the Radon-Nikodym property (e.g. if X is reflexive) the differential measure decom-
poses into df = f;ﬂ for a (non uniquely) positive Radon measure p and a function fli € LYI, 5 X)
[MV87]|. The subspace SBV (I; X) C BV (I; X) of special functions of bounded variation is defined
as the space of functions f € BV (I; X') where the decomposition

df = f'et+ (FF = ORIy
for an f’ € L'(I; X) exists. This function f’ is called the absolutely continuous part of the differential
measure and we also write 0f f. If, additionally, 92 f € LP(I; X), p > 1, we write f € SBVP(I; X).

For the analysis of the system given in the next chapter, it is convenient to introduce local Sobolev
functions on shrinking sets. Let G C Qr be a subset. The intersection of G at time ¢ € [0, 7], i.e.
GN(Qx{t}), is denoted by G(t) := {x € Q| (x,t) € G}. We call G shrinking if G is relatively open
in Q7 and G(s) C G(t) for arbitrary 0 <t < s < T.

In the sequel, G C Q7 denotes a shrinking set. We define the following time-dependent local Sobolev
space:

LIH! . (GRY) = {v G — RN | vt € (0,T], VU cC G(t) open : v|yx (o) € L2(0, t; Hq(U;RN))}.
(1)
Here, L?HS’IOC(G; RY) coincides with L2 (G;RY) (see Section 4.1.1). L2 (G;RY) denotes the clas-

sical local L2-Lebesgue space on G given by
L%OC(G;RN) = {v G —RY ‘ VYV CC G open : v|y € L2(V;RN)}.

(Note that we do not demand that G should be open.) As usual, we set L2H?,  (G) := L?H?

x,loc z,loc(G; R)
At fixed time points ¢t € (0,7, we find v(t) € H (G(t);RY). If ¢ > 1 we write Vv for the weak

4



derivative with respect to the spatial variable as well as €(v) := 3(Vov + (Vo)T) for its symmetric
part. The precise definition and characterization of Vv can be found in Proposition 4.4.

Givenv € L7H? | (G;RY) with ¢ > 1, we say that v = bon DyNG with D C 9Q and H" (D) > 0
if for every ¢t € (0,7") and every open set U CC G(t) with Lipschitz boundary
v(s) = b(s) on OU N D in the sense of traces for a.e. s € (0, 1), (2)

is fulfilled with ¥ := v|yx (o) € L*(0,t; HY(U;RY)).

3 Modeling and main results

3.1 Classical formulation

In the sequel, let the bounded Lipschitz domain £ C R™ be the reference configuration of the
regarded body which is also clamped at the Dirichlet boundary D C 99 with H*~(D) > 0. Even
though more general forms are conceivable, we confine ourselves in this work to the following free
energy density ¢ and dissipation potential density g based on the gradient-of-damage theory:

1
ple, 2, Vz) = 5|Vz\p +Wi(e 2), 0(2) = —az+ B+ L_oog(2), (3)

where e denotes the linearized strain tensor, z the damage phase-field variable, « > 0 and g > 0.
The function W represents the elastic energy density. More general free energies incorporating ap-
propriate convex potentials for the damage function can be employed with the obvious modifications
but we confine the analysis to the case (3) in order not to overburden the presentation. The gradient
exponent p satisfies p > n. The damage variable z specifies the degree of damage at each reference
position z € € in the material, i.e. z(z) = 1 stands for an undamaged and z(x) = 0 for a completely
damage material point whereas intermediate values represent partial damage. Furthermore, the ir-
reversibility of the damage process (the solid can not heal itself) is ensured by the indicator function
in p. We assume that no volume forces are acting. The flow rule yields the pointwise inclusion

0 € —div(pv:(e, 2, Vz2)) + ¢.(e,2,Vz) + 0ljg o0\ (2) + 0:0(02). (4)

Note that the subdifferential of the indicator function Iy ) appears on the right hand side of the
inclusion to account for the constraint z > 0.

This paper will cover elastic energy densities of the form
1
Wi(e,z)= 59(2)@6 te (5)

with a symmetric and positive definite stiffness tensor C € £(R2X") and a function g € C([0, 1];R*)

sym

with the properties

n<g(2), g0)=0 (6)
for all z € [0,1] and some constant 1 > 0.

We use the small strain assumption, i.e. the strain calculates as

e = e(u) = %(w + (V)T (1)

5



where the right hand side denotes the symmetric gradient of the deformation field wu.

By neglecting inertia effects, the momentum balance equation is a quasi-static mechanical equilib-
rium and reads as

0 =div(We(e, 2)). (8)

Note that complete damage is possible if and only if g(0) = 0. The case g(0) > 0 would describe
incomplete damage which is already covered in the mathematical literature (see Section 1). As
mentioned in the introduction, a regularization scheme is adapted, where a regularized elastic energy
density W¢, € > 0, is used instead of W in the first instance. More precisely, W¢ is given by

We(e, 2) = é(g(z) +e)Ce e (9)

In the complete damage regime € = 0, the deformation variable becomes meaningless on material
fragment with maximal damage because the free energy density vanishes regardless of the values of
u. Therefore, the balance laws (4) and (8) make obviously only sense pointwise in {z > 0}. Beyond
that, as already mentioned in the introduction, a phenomenon (in the following called material
exclusion) might cause severe troubles.

Suppose that at a specific time point ¢, a path-connected component P (relatively open in ) from
{x € Q| z(z,t) > 0} is isolated from the Dirichlet boundary, i.e. H* (P N D) = 0. In this case,
Korn’s inequality fails on P and, consequently, the deformation field u. for the regularized system
cannot be controlled on P in the transition ¢ — 0. To overcome this problem, path-connected
components P of the not completely damaged area {z(t) > 0} isolated from the Dirichlet boundary,
i.e. H" Y (PN D) = 0, will be excluded from our considerations in our proposed model. On the
one hand, this make our model accessible for a rigorous analysis and, on the other hand, for some
applications, the detached parts might be of little interest anyway. This approach is illustrated in
Figure 1 and motivates the definition of maximal admissible subsets.

Definition 3.1 (Admissible subsets of Q)

(i) Let F C Q be a relatively open subset and
Pp(z) := {y € F|z and y are connected by a path in F }

for x € F. We say that F' is admissible with respect to the Dirichlet boundary D if for every
x € F the condition

H" Y (Pp(z) N D) >0

is fulfilled. Furthermore, Ap(F) denotes the maximal admissible subset of F with respect to
D, i.e.

Ap(F) = U {G C F|G is admissible with respect to D} .

(ii) For a relatively open subset F C Qr, the set Ap(F) is given by (Ap(F))(t) := Ap(F(t)).



Complete damage model (illustration)

Example 1: Material exclusion

t=t, t=t, : exclusion of an undamaged part t=t, : after exclusion

Example 2: Decomposition of aF(t) | Caption
[ ] shrinking set F(t) Il boundary oF(t)

[/ /] Dirichlet boundary D [ | Neumann boundary aQ\D
[ excluded parts (with no Dirichlet boundary)

[ completely damaged parts

M- not completely damaged Dirichlet boundary I;(t)

(i not completely damaged Neumann boundary L(t)

ww A ”””””” completely damaged boundary |—3(t)

Figure 1: The first example in the illustration above shows the exclusion of an undamaged material
part during the evolutionary process in 2D. The dark blue curve encircles the maximal admissible
subset F'(t) = Ap({z(t) > 0}) of the not completely damaged area {z(t) > 0}. The second example
below pictures the different parts of the boundary of F(t). There, the Dirichlet boundary D consists
of two components.

In a nutshell, the evolutionary problem (4) and (8) is considered on a time-depending domain (a
shrinking set) which is, for any time, admissible with respect to D. The whole evolution problem
with its initial-boundary conditions can be summarized within a classical notion in the following
way.

Definition 3.2 (Classical solution) A pair of functions (u, z) defined on an admissible shrinking
set F' C Qp with

F(t) =2Ap( () F(s)) (10)

s<t

is called a classical solution to the initial-boundary data (2°,b) if the following properties are satisfied:

(i) Regularity:
u € C2(F;R"™), z € C3(F;R)



(ii) Evolution laws in F':
0 = div(We(e(u), 2)),
0 € —div(|Vz[P72Vz) + W (e(u), 2) — a4 B0z + I (_o0(8;2)
0<z

(1ii) Initial-boundary conditions:

2(t =0) = 2Y, on F(0),

u(t) = b(t) onT1(t) :=F(t)ND,
We(e(u(t)),2(t) - v=0 on Ty(t) := F(t) N (0Q\ D),
z2(t)=0 on I'3(t) == OF(t) \ F(t)
Vz(t) - v=0 on I'1(t) UTy(¢)

Remark 3.3 The time-depending boundary OF (t) disjointly decomposes into I'1(t) UT'y(t) UT'3(¢),
where T'1(t) indicates the not completely damaged Dirichlet boundary, T'a(t) the not completely dam-
aged Neumann boundary and I's(t) the completely damaged boundary (see Figure 1). We have the
following types of boundary conditions:

Iy (t) — Dirichlet boundary condition for u
Neumann boundary condition for z
Ty(t) — Neumann boundary condition for u
Neumann boundary condition for z

Is(t) — degenerated boundary condition

On the degenerated boundary, z vanishes (homogeneous Dirichlet boundary condition for z) and,
therefore, if we assume that e(u) can be continuously extended to I's the stress W (e(u), z) vanishes
too.

The goal of the next section is to state a weak formulation such that existence can be proven. Due
to the high degree of degeneracy and the non-smoothness of F', u can only be expected to be in
some local Sobolev space on the shrinking set F' introduced in (1).

3.2 Weak formulation and justification

For a weak formulation of the system presented in Section 3.1, we will take advantage of the
free energy £ whose density has already be given in (3). In contrast to [KRZ11]| for incomplete
damage models and related works, we will not use a purely energetic approach but rather a mixed
variational /energetic formulation as presented in [HK11].

Definition 3.4 (Free energy) Let e € L*(Q;R2X™) and z € WHP(Q) be given. The associated

Ssym

free energy of the system in Definition 3.2 is given by

1
E(e, z) ::/Qp|V,2'|p+VV(e7 z) dx,



whereas its e-reqularization with € > 0 (for later use) is defined as (see (9))
1
E(e, 2) ::/ —|Vz|P + W¢(e, z) dx.
Qb

If e is only defined on a measurable subset H C €, i.e. e € LQ(H;RQergL), we use the convention
Ele,z) :=E(€,z), wheree:=e in H and e :=0in Q\ H.

We are now able to give a weak formulation of the system in an SBV-setting (with respect to the
damage variable). In accordance to Definition 3.2, z is extended on whole Q7 and when viewed as
an SBV?(0,T; L?())-function has a jump at ¢ if and only if a material exclusion occurs at ¢.

Definition 3.5 (Weak solution) A pair (u,z) is called a weak solution of the system given in
Definition 3.2 with the initial-boundary data (2°,b) if

(i) Regularity:

z € L0, T;WHP(Q)) N SBV2(0,T; L*(Q)), w € LIH}  .(F;R")

JJoc

with e(u) =: e € L2(F;R2X") where F := Ap({z~ > 0}) C Qg is a shrinking set.

sym

(i) Quasi-static mechanical equilibrium:

0= [ Wele®).2(0): elc)da (11)
F(t)

for a.e. t € (0,T) and for all ¢ € H5(;R™). Furthermore, w="b on Dy N F.

(#1i) Damage variational inequality:

/ \V2(t) P2V 2(t) - VC + W (e(t), 2(t)) ¢ do > / (v — BOf=(t))¢ dw (12)
F() 0

0 < z(t) in Q,
0> 0jz(t) in Q

for a.e. t € (0,T) and for all { € WHP(Q) with ¢ < 0. The initial value is given by z+(0) = 2°
with 0 < 29 <1 in Q.

(iv) Damage jump condition:
2H(t) =27 () py in Q (13)
for all t € [0,T].

(v) Energy inequality:

E(e(t),z(t))+/0/F()a|83z\+ﬁ|8?z|2d(x,s)+ YT

s€J.N(0,t]

t
+ e, z): €(0 x,s
Seo+/0/F(s)W,e<,> (@4b) d(x, ) (14)

9



for a.e. t € (0,T), where the jump part Js satisfies 0 < Ty and is given by
Js := lim essinf £(e(V), 2(9)) — ef (15)

r—s— 9€(T,s) s
and the values ¢ € Ry satisfy the upper energy estimate
ey < E(e(b(s) +¢), 27 (s)) (16)
forall ¢ € HL ({z%(s) > 0};R™) with ¢ =0 on D N {z"(s) > 0}.

Remark 3.6 (i) Lemma C.1 ensures that for all times t we have z~ ()1 € WHP(Q) (see jump
condition (13)).

(11) Jump condition (13) and the definition of F imply {z(t) > 0} = F(t) for all t € [0,T]. By
the convention introduced in Definition 3.4,

E(e(t), =(t)) = /F ) CIVHO + W (e(t) (0)) da.

which equals f{z(t)>0} %|Vz(t)|p + Wi(e(t), 2(t)) dx for a.e. t € (0,T).

(1ii) The jump term Js equals the energy of the excluded material parts at time point s, i.e. Js =
E(s7)—=E(sT) (for smooth solutions on F ), where t — E(e(t), z(t)) denotes the energy function
along the trajectory. However, for less regular weak solutions as in Definition 3.5, the one-
sided limits E(s™) and E(s) possibly do not exist. But, in any case, lim_, - essinfyc ;5 E(V)
clearly exists and coincides with E(s™) for smooth solutions. The value E(sT), on the other
hand, can be avoided in a rather indirect way by using upper energy estimates. More precisely,
it turns out that E(st) can be substituted by values (denoted by ef ) merely satisfying (16).
Together with equations (11)-(14), ef is forced to coincide with E(sT) for smooth solutions.
This is particularly shown in the proof of the following theorem.

Theorem 3.7 Let (u,z) be a weak solution according to Definition 3.5. We assume the regularity
properties u € C2(Qr;R™) with w = b on Dy and z|z € C3(F;R). Then, (ulp,z|F) is a classical
solution according to Definition 3.2.

Proof. The first equation and the last inequality in (ii) from Definition 3.2 as well as property (iii)
follow immediately by classical integral calculus from the weak notion.

By the monotonicity of z with respect to ¢ (coming from 0 > 9#z and the jump condition (13)) and
by Remark 3.6 (ii),

F(t) = Ap({==(t) > 0}) = Ap( (=¥ (s) > 0}) = Ap () F(s)).
s<t s<t

Therefore, condition (10) from Definition 3.2 is shown.
Finally, we need to prove the differential inclusion in (ii) from Definition 3.2. The jump condition
(13) and the regularity assumption yields for a.e. (z,t) € Qp

9) t) if (z,t) € F.

8?2(%,15): t2($a ) 1 (Jf, ) € r,
0 if (z,t) € Qp \ F,

10



where 0yz(x,t) is the classical time-derivative of z at (x,t). In the following, we will make use of
this property. First, observe that by the regularity assumptions ¢ := (e, z) € SBV(0,T; X) with
X = L2(Q; R™M) x Whe(Q).

Applying the chain rule (see Corollary B.2) for the continuously Fréchet-differentiable energy func-
tional £ and the X-valued SBV-function g shows that £ o ¢ is an SBV-function and

E@q(t™)) — €(q(07)) = d(€ 0 q)((0,1])
= /0 (de€(q(s)), Ore(s)) + (d=€(q(s)), 0 z(s)) ds
+ Y (Ela(sh) —ElalsT))) -

s€J,N(0,t]

The two terms in the integral on the right hand side can be treated as follows.

e Taking into account z = 0 in Q7 \ F' and testing (11) with ¢ = Oyu(s) — 0:b(s), yields
(£ (g(5)). Bre(s / W 2(5)) : e(Dyu(s)) da
— [ Weletulo).(9)  clOrus)) da
F(s)
= [ Weletuo).2(5) e(@ib(s)) .
F(s)

e Using the property 9z =0 in Qp \ F,
(d:€(q(s)), 07 2(s))
B /Q [V2(5) P2V 2(s) - VO 2(s) + Wz (e(u(s)), 2(s))0} 2(s) dz

- /F( : IVz(8)[P2V2(s) - VOz(s) + W (e(u(s)), 2(s))02(s) dx.

Putting the pieces together, we end up with

E(t )+ D (ElalsT)) —Ela(sh)))

s€J.N(0,t]

q(0+))+/ We(e(u), z) : €(0:b) d(z, s)
0 JF(s)
t P2y z e(u), 2)0czd(x, s).
-/ /F(S)\w V2 VO + Wa(e(u), 2)0i2 d(, ) (17)

Note that we have £(g(0%)) = e. Indeed, passing t — 0% in (14) yields £(q(0F)) < ¢f. The
“>"-inequality follows from (16) tested with ¢ = u(0) — b(0).

Therefore, (14) particularly implies

q(th)) // a|Oz| 4 B|0sz|? d(x, 5) Z Ts
F(s)

s€J.N(0,t]
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<o+ [ [ | Waler2) s e0) A ) (18)

Integrating (12) on [0, ¢] with respect to time, testing it with ( = 0z < 0, applying it to (17) and
comparing the result with the energy inequality (18) shows

g+ Y (ElalsT)) — Ela(sH)) + / /F o0 B0 A

s€J.N(0,t]

> et )+ [ [ | Walew),2) ) e

+ ! _ 2
>E(qtT)+ > $+/0 /F() adz + B|6,z? d(z, 5). (19)

s€JN(0,t]

Taking also (15) into account and using £(q(s™)) = lim,_, - essinfyc(, ) E(q(V)), estimate (19)
yields

Yo Elalsh) <Y el (20)

SGJZ SEJZ

On the other hand, by (16), we find el < £(g(s™)) for all s € J,. Combining this with (20) shows
E(q(sT)) =¢f forall s € J,.

Therefore, Js = E(q(s7)) — E(¢(sh)) and (19) becomes an equality. Taking also (17) into account
gives

0= /Ot /F( | (V2[P72V2 - V2 + W (e(u), 2)0sz — adyz + [10s2* d(z, 5).
Together with the variational inequality (12) and the regularity assumptions, we obtain
0< /F( )( — div(|Vz(s) P72V 2(s)) + W .(e(u(s)), 2(s)) —a+ ﬁ@m(s)) (¢ — 0z(s)) dz
for all s € (0,7) and for all ¢ € L'(F(s)) with ¢ < 0. This leads to
0 < (= div(IV2P~2V2) + Wa(e(w), 2) — o+ 5012) (C — 0i2)

for a.e. (x,t) € F. By the regularity assumptions, this inequality holds pointwise in F'. Therefore,
the differential inclusion in Definition 3.2 (ii) is shown. O
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One main goal of this work is to prove ex-

istence of weak solutions according to Defi-

nition 3.5. Due to the application of Zorn’s

lemma used in the global existence proof, F(t)

analytical problems arises when infinitely

many exclusions of material parts occur in

arbitrary short time intervals in the “future",

i.e. cluster points from the right of the jump

set J,« (denoted by C.« in the following) 0)© Goo..
where 2* € SBV(0,T;L?*(Q)) is given by

25(t) == 2(t) Lo, ({-(1)>0})- In this case, we

are only able to prove that the shrinking set

F is approximately given by Ap({z~ > 0}) Figure 2: An example of a shrinking set where in-
whereas the strain e can still be represented  finitely many exclusions during an “infinitesimal®
as the symmetric gradient of u in Ap(F). time-interval have occurred.

To be precise, we introduce the following notion.

Definition 3.8 (Approximate weak solution) A triple (e,u, z) and a shrinking set F C Qr is
called an approximate weak solution with fineness n > 0 of the system according to Definition 3.2
to the initial-boundary data (2°,b) if

(i) Regularity:
z € L=(0, T; WHP(Q)) N SBV?(0,T; L*()), u € L7H, . (Ap(F); R™),
e € L*(F; RN
with e = e(u) in Ap(F).
(i) Shrinking set properties:
F(t) 2 Ap({z~(t) > 0}) for all t € [0,T),

F(t)=Ap({z"(t) > 0}) for allt € [0, T\ ] [t,t +n),
teC,»

LYF)\Ap({z~(t) > 0})) <n forallt € U [t,t+n).

teC »

(1ii) Evolutionary equations:

Properties (ii)-(v) of Definition 3.5 are satisfied.

Remark 3.9 If an approzimate weak solution (e,u,z) on F according to Definition 3.8 satisfies
Cy« =0 then (u,2) is a weak solution according to Definition 3.5.

3.3 Main results

Theorem 3.10 (Global-in-time existence of approximate weak solutions)
Let b € WHL(0, T; WH2(Q;R™)) and 2° € WLP(Q) with 0 < 2 <1 in Q and {z° > 0}, admissible

13



with respect to D, be initial-boundary data. Furthermore, let n > 0 and W be given by (5) satisfy-
ing (6). Then there exists an approzimate weak solution (e,u,z) with fineness n > 0 according to
Definition 3.8.

Theorem 3.11 (Local-in-time existence of weak solutions)

Let b € WHH0, T; WE(Q; R™)) and 2° € WP(Q) with 0 < k < 20 < 1 in Q be initial-boundary
data. Furthermore, let W be given by (5) satisfying (6). Then there exist a maximal value T > 0 with
T < T and functions u and z defined on the time interval [0,T] such that (u, z) is a weak solution
according to Definition 3.5. Therefore, if T < T, (u,z) cannot be extended to a weak solution on
[0, T + €.

4 Proof of the main result

4.1 Preliminaries
4.1.1 Covering properties

The aim in this subsection is to prove covering results for shrinking sets.

Definition 4.1 (Fine representation) Let H C Q be a relatively open subset. We call a countable
family {Ux} of open sets Uy, CC H a fine representation for H if for every x € H there exist an
open set U C R™ with x € U and an k € N such that UNQ C Uy.

Remark 4.2 Note that H NI is not covered by {Uy}. See Figure 3 for an example.

Lemma 4.3 Let G C Qp be a relatively open subset and the sequence {t,,} containing T be dense
in [0,T]. Furthermore, let {U"}ren be a fine representation for G(t,) for every m € N. Then,
for every compact set K C G there exist a finite set I C N and values my, € N, k € I, such that
KNQp CUper U % (0,tm,)-

Proof. To every element p = (z,t) € K, we will construct a neighborhood ©, C Qr of p in the
subspace topology of Qr such that there exists k,m € N with ©, N Qp C U x (0,t,). Then the
claim follows by the Heine-Borel theorem.

Indeed, to every p = (x,t) € K there exists a ¢ > 0 such that B.(p) N Q7 C G since G C Qr is
relatively open. Therefore, if t < T, (x,t,,) € G for all m € N such that ¢ < t,,, < t+¢. This implies
(,tm) € GN(Q X {tm}) = G(tm) X {tm}. Then, we find p € G(t,,) x J with J = [0,%,,). In the
case t =T, it holds p € G(T') x J with J = [0, 7. Since {U;" }ren is a fine representation of G(t,,),
let 6 > 0 such that Bs(xz) N C U™ for some k € N. Finally, ©, := (Bs(x) N ) x J is the required
neighborhood of p. O

14



Y

Figure 3: The left illustration shows a fine representation for the relatively open subset H = (0,1) x
(0,1] of Q2 =[0,1] x [0, 1] whereas the right picture does not show a fine representation for H.

A simple consequence of Lemma 4.3 is L? H? 2 loc(Gi RN) = LIQOC(G RYN), provided that G C Qg is

shrinking. Moreover, we can characterize the function space L7 H} 1OC(G RY) as follows.

Proposition 4.4 Let G C Qp be a shrinking subset and let {t,,} and {U™} be as in Lemma 4.5.
Furthermore, let v: G — RY be a function.

(a) The following statements are equivalent:
(i) v e LY, (G5 RY)
(it) vlumx(0,tm) € L2(0, t; HY(UM™ RN)) for all kym € N
(iii) v € L} (G;RY) and there exists a function g € L} _(G;RN*") such that

[ o aiv@ o=~ [ g:¢dtwo) 21)
G G

for all ¢ € C(int(G); RN ™)
If one of these conditions is satisfied we write Vv := g and €(v) := %(VU + Vol).

(b) Assume that each U] has a Lipschitz boundary. Then the following statements are equivalent:
(i) v =">b on the boundary Dr NG
1) for every k,m € N, condition (2) is satisfied for U = andt =t
f k N d fied for U = U and

Proof.

(a) (i)==(ii) and (iii))=>(i) are trivial.

(ii)==(iii): Let the function g : G — R¥*" be £""1-a.e. defined as follows. For each k,m € N,

we set glym = gy* where gi* € LAU™ x (0,tm); RVX™) is the weak derivative of Ol s (0,tm)-
The function g is well-defined on G N Q7 since

Gnr= |J UM x(0,tm)
k,meN
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and gt = g2 on U™ X (0,t1,) N U2 % (0,,) for all ki, k2,m1,m2 € Nin an L ae.
sense. Let t € (0,7] and U CC G(t) be open. By Lemma 4.3, U x (0,t) can be covered
by finitely many sets U™ x (0,t,,). In particular, glyxos € L*(0,t; L*(U; RN>*7)). Thus
g€ L3 (G;RN*m)),

Let ¢ € C(int(G); RN*™). Applying Lemma 4.3 again, there exists a finite set / C N such
that supp(¢) € Uge; U™ % (0,tm, ) =: U. By a partition of unity argument over U, (21) holds
forg=39.

(b) (ii))=(i): Let t € (0,T) and U CC G(t) be an arbitrary open subset. By Lemma 4.3, we find
a finite set I C N such that U C Uke] U,Z”’“ and t,,, >t. The claim follows. O

If a relatively open set H C ) is admissible with respect to D we can construct a fine representation
for H with Lipschitz domains in the following sense.

Lemma 4.5 (Lipschitz cover of admissible sets) Let H C Q be relatively open and admissible
with respect to D. Then there exists a fine representation {Up,} for H such that

(i) Up, is a Lipschitz domain for allm € N,
(ii) H*1(0U,, N D) > 0 for all m € N.

Proof. We will sketch a possible construction for reader’s convenience.

We assume w.l.o.g. that H is path-connected because H can only have at most countably many
path-connected components and for each component we can apply the construction below.

Let us choose a reference point xg € D N H with the property
H ! (9(B.(20) Q) N D) >0 for all & > 0, (22)

which is possible since H"~1(D N H) > 0. The relatively open subset D,, C € for m € N is defined
as
Dy, := H\ By, (Q\ H).

If m is large enough we have zg € D,, since H C Q is relatively open. We define
D), :={x € Dy, | x is path-connected to zo in D,,}.

Hence, we obtain an & > 0 such that B.(z9) N Q C D!, since D!, is relatively open in Q. In combi-
nation with (22), this yields H"~*(0D!, N D) > 0. Because of D!, CC H, there exists a Lipschitz
domain U, C Q with D! C U,, C H (e.g. the part of the boundary dU,, \ 9Q of U,, can be
constructed by polygons such that U, fulfills the Lipschitz boundary condition). The family {U,,}

satisfies all the desired properties. O

Corollary 4.6 Let G C Qr be a shrinking set where G(t) is admissible with respect to D for all
t € [0,T]. Furthermore, let {t,,} C [0,T] be a dense sequence containing T'.

Then, there exists a countable family {U;"}ren of Lipschitz domains U}* CC G(t,,) for each m € N
such that
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(i) H"~1(0U™ N D) > 0 for all m € N,
(11) {U"}ken is a fine representation for G(ty,) for allm € N,

(iii)) G = ps_1 G(tm) x [0, tm].

4.1.2 TI'-limit of the regularized energy

The construction of the values ¢/ in (14) satisfying the lower energy bound (16) is based on T'-
convergence techniques which will be introduced below. We refer to [BMRO09| for the utilization of
I'-convergence in the context with rate-independent complete damage models.

Definition 4.7 (I'-limit of the e-regularized reduced energy)
Let €. : HY(Q;R") x Wv%,’p(Q) — Ry be for e > 0 the (regularized) reduced free energy defined by

00 else.

66(6) Z) — {infCEHB(Q;R”) 85(6(§ + C)vz) Zfo <z< 17

Then, we denote by & the T-limit of €. as ¢ — 07 with respect to the topology in H'(Q;R"™) x
WaP(Q). Here, WP () denotes the space WP (Q) with, its weak topology.

Remark 4.8 The existence of the I'-limit above is ensured because {€.} is non-negative and mono-

tonically decreasing as € — 0. Furthermore, & is the lower semi-continuous envelope of &g in the
HY(Q:R™) x WP () topology (see [Bra02)).

To prove properties of the I'-limit € which are needed in Section 4.3, we will establish explicit
recovery sequences. The proof relies on a substitution which is introduced in the following.

Assume that v € H'(Q; R") minimizes F.(e(+), z) with Dirichlet data ¢ on D. Then, by expressing
the elastic energy density W¢ in terms of its derivative W7¢, i.e. W¢ = IWE e, and by testing the
Euler-Lagrange equation with ( = v — u for a function w € H LQ;R™) Wlth u = & on D, the elastic
energy term in & can be rewritten as

/ W (e(u), 2) da = /Q %(g(z)—f-a)@e(u):e(ﬂ) dz. (23)

Lemma 4.9 For every & € HY(Q) and = € WIP(Q) there exists a sequence §. — 07 such that

(&,(z = 02)T) — (&, 2) is a recovery sequence for Fe L & as e — 0F where § is the D-limit of
3o HY(Q;R™) x WaP(Q) — Roo given by

min ~ F(e(€+(),2) if0<z<1,

Be(¢,7) 1= { CeHbORY
00 else.

Fe(e, 2) ::/ng(e,z)dx

in the H*(;R™) x WaP(Q) topology.

with
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Proof. The I'-limit § exists by the same argument as in Definition 4.7. Let (&, 2.) — (£, 2) be a
recovery sequence. Since z. — z in C%*(Q) due to the compact embedding WP(Q) — C%*(Q)
for some 0 < aa < 1 — %, we can choose a sequence d: — 07 such that (z — §:)T < z.. Note that

(z — 8.)F € WHP(Q). Consider the arrangement

%E(E’ (Z - 55)+) - 36(567 Zs) = 3’8(57 (Z - 65)+) - 8’5(63 ZE) +8’s(£7 Zs) - %’s(ésa Zs) .

Ac Be

We observe that A. < 0 because of (note that (z — d:)" < 2¢)
Fe(e(€ +€), (2 = 02) ") < Fele(€ +¢), %)
for all ¢ € H},(Q;R™). Let ue,v: € H5(;R™) be given by

ue = argmin F.(e(§ + (), z:),
CeHE(R™)

ve = argmin Fo(e(& + (), 2ze).
CEHL (R™)

Applying the substitution equation (23) for u. with @ = v, and for v. with @ = u., we obtain a
calculation as follows:

B, = fs(E(f + Us)7 Zs) - fe(f(’SE + Ue)a Zs)
= [ 50l + (€ +1e) : ef€ ) = o) + ECelte + ) s el + ) da
1
< [ 500+ 2 (Ce©): elg) = Celse) - o)) da
1
+ H§(Q(Zs) +&)Ce(ue + ve)ll 2 lle(€ — &)l 2@
Using & — & in HY(Q), 2. — z in WHP(Q) and the boundedness of F.(e(¢ 4 u.), z.) and F.(e(&- +

ve), ze) with respect to €, we end up with limsup,_, 5+ B: < 0. Consequently, taking also into account
that (&, 2:) — (€, 2) is a recovery sequence, we obtain

limsup Fe (&, (2 — 5€)+) < limsup §e (&, z2) + limsup A. + limsup B: < §(&, 2).

e—0t e—0t e—0t e—0t

Corollary 4.10 (i) For every £ € HY(Q;R") and z € W1P(Q)

¢t ) :/Q;\Vz|pdx+3(§,z).

(ii) The recovery sequence (&,(z — 6:)1) — (&,2) for 3. L § constructed in Lemma 4.9 1s a

r
recovery sequence for €. — € as well.

(iii) Let ¢ € HY (L R™), 2 € WHP(Q) and F C Q be open such that 1pz € WIP(Q). Then
E(& 1pz) < E(E,2).
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Proof.

(i) Let (&,2:) — (&, 2) be a recovery sequence for &, Le Hence, & — ¢ in H'(;R") and
z. — z in WHP(Q). Applying "liminf,_,5+* on each side of the identity

€6y 2) = /Q ;strp Az + Fe(€er 22) (24)

yields for a subsequence

¢(e,2) > /Q;\Vz\pdx—l—g(f,z).

The ”<*“ - part can be shown by considering a recovery sequence (£, (z —¢e)™) — (£, 2) for

5.5 according to Lemma 4.9 and applying "lim inf,__ ¢+ in (24) with (&, 2.) = (&, (z—¢)™)
on both sides.

(ii) This follows from (i).

(iii) Without loss of generality, we assume 0 < z < 1 on Q. Let (¢, (2—3.)") — (&, 2) be a recovery

sequence for €. 5 € as in (ii). By assumption, 1p(z—d.)t € W'P(Q) and 1p(z—d.)t — 1pz
in Whr(Q) as e — 0.

Since E(e(€ +¢), 1p(z — 8:)T) < E(e(€ +C), (2 — 8:)T) for all ¢ € HE(Q;R™), we obtain

inf E(e(6+ (), 1p(z— (55)"') < inf E(e(§+C), (2 — 5E)+).
CGHlD(Q;R") CEHlD(Q;R")

Therefore,

€ (& 1p(z — 5€)+) <& (& (2 - 56)+>-

Passing to ¢ — 07 yields the claim. O

Lemma 4.11 Let £ € HY(Q;R") and z € WHP(Q) with 0 < z < 1. Furthermore, let u € H\ _({z >
0};R™) and for every Lipschitz domain U CC {z > 0}, u = £ on D N AU in the sense of traces.
Then

E(&, 2) < E(e(u), 2).

Proof. Consider an arbitrary € > 0 and define 2. := (2 — ¢)™. Since z € C(Q), it holds the compact
inclusion {z: > 0} CC {z > 0}. There exists an open set U with Lipschitz boundary such that
{2. > 0} CU C {2 > 0} (eg. construction of U \ 9Q by polygons such that OU fulfills the
Lipschitz boundary condition).

Now, we have u|y € H'(U;R") as well as u = £ on OUND. There exists an extension u. € H'(Q;R")
with u. |y = u|y and u. = £ on D. The monotonicity of {€.} with respect to ¢ implies that € is the
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lower semi-continuous envelope of (&, z) := infosq (¢, 2). in the H(Q;R™) x W (Q)-topology
(cf. [Bra02]). By switching the infima, it holds

~ inf 1orn) € ’ if0<z2<1,
€&, 2) = {m cent@rn) E((€+C),2) i .

00 else.
Since u = u. on {z: > 0}, we get

€(&.2) = £ inlrfl{fl(Q;Rn) ne—z iilnlfVlvP(Q) liminf €&, n.)

< liminf &(¢,2) < limiélf E(e(ue), 2:)
e—

e—0

lign_)iglf E(e(u), ze) = E(e(u), 2).

N

4.2 Simplified problem

In the first step of the proof of Theorem 3.10, an existence result of a simplified problem, where no
exclusion of material parts are considered, will be shown. The statement we are going to prove in
this subsection is given as follows.

Proposition 4.12 (Degenerate limit) Let b € W10, T; W (Q; R™)) and 2° € WLP(Q) with
0 < 2% <1 and {z° > 0} admissible with respect to D be initial-boundary data and let W be given
by (5) satisfying (6). Then there exist functions

2 € L0, T;WHP(Q)) N H'Y(0,T; L), w € LiHy jo0(2p({z > 0});R™),
e € L*({z > 0}; R

sym

with e = €(u) in Ap({z > 0}) such that the properties (ii)-(v) of Definition 3.5 are fulfilled for
F := {z > 0}. Moreover, ¢l (see energy inequality (14)) can be chosen to be €(b°,2°) which
satisfies (16) by Lemma 4.11.

Remark 4.13 Let us consider the functions e, u and z obtained above in the degenerate limit. We
do not know that F = {z > 0} equals Ap({z > 0}) and, if F'\ Ap({z > 0}) # 0, it is not clear
whether u can be extended such that e = e(u) also holds in F'. On the other hand, we would like to
stress that (u, z*) with the truncated function z* := 2Lg, ({2>0)) also do not necessarily form a weak
solution in the sense of Definition 3.5. Because z* viewed as an SBV?(0,T; L%(Q))-function may
have jumps which needs to be accounted for in the energy inequality (14). The construction of weak
solutions will be performed in Section 4.3.

Let (b%,20) — (8°,20) with 20 := (2 — d.)* and &° := b(0) be a recovery sequence of €. Le
according to Lemma 4.10 (ii). A modification of the proof of Theorem 4.6 in [HK11]| yields the
following result.

Theorem 4.14 (e-regularized problem - incomplete damage) Lete > 0. For the given initial-

boundary data 20 € WHP(Q) and b € WHL(0, T; WL°(Q; R™)) there exists a pair q- = (ue, z¢) such
that
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(i) Trajectory spaces:
ze € L0, T; WHP(Q)) N HY(0,T; L*(Q)), wu. € L>(0,T; H'(Q;R™)).

(i) Quasi-static mechanical equilibrium:
[ W eCwe0),20) 0 d =0 (25)
Q

for a.e. t € (0,T) and for all ¢ € H})(Q;R"). Furthermore, u. = b on the boundary Dr.

(11i) Damage variational inequality:

/Q V2 (t)|P2V2(t) - V¢ + W (e(ue(t)), z(t))( dw > /(a — B0z (t) — re(t))dz,  (26)

Q
ze(t)

0,
Opze(t)

>
<0

for a.e. t € (0, T) and for all { € WIP(Q) with ¢ <0 where r. € L'(Qr) satisfies

/ re(t)(§ — z:(t))dx <0
Q

for a.e. t € (0,T) and for all ¢ € WHP(Q) with € > 0. The initial value is given by z.(t =
0) =22 in Q.

(iv) Energy inequality:

E(e(ue(t)), ze(t)) —i—/ |0z | + B|0sz|* d(z, 5)

Q

< E(e(?), 20) + /Q W (e(ue), 22) : €(4b) d(z 5) (27)

holds for a.e. t € (0,T) where u? minimizes E.(e(+),22) in H'(Q;R™) with Dirichlet data b°
on D.

Moreover, 1. in (iv) can be chosen to be

re = —XeW o (€(ue), 2) (28)
with x. € L>(Q) fulfilling x: =0 on {ze >0} and 0 < x. <1 on {z = 0}.
We consider a sequence {€}aren C (0,1) with ey — 07 as M — oo and for every M € N a weak
solution (ue,,, 2¢,,) of the incomplete damage problem according to Theorem 4.14. The index M is
omitted in the following. We agree that e. := €(u.) denotes the strain of the regularized system.

Our further analysis makes also use of the truncated strain e, (the strain on the not completely
damaged parts of Q) given by

ee = el ~o)-

We proceed by deriving suitable a-priori estimates for the incomplete damage problem with respect
to e.
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Lemma 4.15 (A-priori estimates) There exists a C > 0 independent of € such that

(i) llecll 2 (@prnxny < C, (iti) 1|0vze || 2(0p) < C,
(ZZ) SuptE[O,T] HZE(t)HWLP(Q) < C: (ZU) HWE(BE’Za)HLOC(O,T;Ll(Q)) < C.

Proof. Applying Gronwall’s lemma to the energy estimate (27) and noticing the boundedness of
E(e(u?), 20) with respect to € € (0, 1) show (iii) and

E-(ec(t),ze(t)) < C (29)
for a.e. t € (0,7) and all ¢ € (0,1) (cf. [HK11]) and in particular (iv). Taking the restriction
0 < 2. < 1 into account, property (29) gives rise to ||ze[|zoo 0, r;w1r(q)) < C. Together with the

control of the time-derivative (iii), we obtain boundedness of ||z ()| () < C for every ¢ € [0, T]
and € € (0,1). Hence, (ii) is proven.

It remains to show (i). To proceed, we test inequality (26) with ( = —1 and integrate from ¢ = 0 to
t="1T:
Weeerz) +red(@t) < [ o porzd(a.o) (30)
QT QT

Applying (6), (28) and (30), yield
~ 12 . 2
/ nfe-? d(z, 1) = / nlec|?d(z,1)
Qr {ze>0}

< / %g'(zE)Ces cecd(x,t)
{z:>0}

= [ Welee ) d(t) - / W (e 22) d(z, )

Qr {ze=0}
< WEZ(CE,ZE) d(x,t) - / XEWEZ<657ZE> d(%,t)
Qr Qr ’

= stz(ee, ze) + re(t) d(z,t)
Qr

g/ a — B 0pze d(z,t).
Qr

This and the boundedness of fQT a — [0z d(x, t) with respect to € shows (i). O

Lemma 4.16 (Converging subsequences) There ezists functions
€€ LA(Qpr;R™™), 2z e L0, T; WhP(Q)) N HY (0, T; L*()),

where z is monotonically decreasing with respect to t, i.e. dyz < 0, and a subsequence (we omit the
index) such that for e — 0"

(i) ze = z in HY(0,T; L*(2)), (ii) €. — € in L*(Qp; R™"),
ze — z in LP(0,T; W1P(Q)), WE (€, 2e) = We(€, 2) in L*({z > 0}; R"™"),
ze(t) = z(t) in WP(Q), WE (e, ze) — 0 in L*({z = 0}; R™™™).

ze — z in Qp,
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Proof. The a-priori estimates from Lemma 4.15 and classical compactness theorems as well as
compactness theorems from J.-L. Lions and T. Aubin yield [Sim86]

ze = zin L®(0,T; WHP(Q)), e. — ¢in L*(Qp; R™™),
ze = z in HY(0,T; L*(Q)), W2 (ec, 2e) — we in L2(Qp; RV,

ze — z in LP(Qr)

as € — 0T for a subsequence and appropriate functions w,, € and z.

Proving the strong convergence of Vz. in LP(Qp;R™) does not substantially differ from the proof
presented in [HK11]. It is essentially based on the elementary inequality

Cuclz —ylP < ((JaP%2 — |yP~%y), 2 — ),

where (-, -) denotes the standard Euclidean scalar product and on an approximation scheme {(.} C
Lr(0,T; WhP(Q)) with ¢, > 0 and

(. — zin LP(0,T;W'P(Q)) as e — 07, (31a)
0<( <z ae inQpforall e e (0,1). (31b)

Using the above properties, we obtain the estimate:
Cuc/ |Vz: — Vz|Pd(z,t) < / (|Vze[P2V 2. — |V2|P72V2) - V(2. — 2) d(z, 1)
QT QT

= / V2 |P~2V 2. - V(2 — ¢) d(z, t)
Qr

-~

Ae

+ / V2P 2V 2. - V(¢ — 2) — |V2P72V2 - V(2 — 2) d(z, 1) .
Qrp

/

Be

The weak convergence property of {Vz.} in LP(Q7) and (31a) show B. — 0 as ¢ — 0T. Property
(26) tested with ((t) = (-(t) — 2z(t) and integration from ¢t = 0 to t = T yields

A < W2 (€(ue), 22) (G — 2ze) d(z,1) +/ (= + B(02e())) (G — 2e) d(w, 1) -
Qr Qp

<0 by (6) and (31b) —0 as e—071 by (31a)

Here, we have used r.¢ = 0 on Qr (see (28)). Therefore, (i) is also shown.

To prove (ii), we define N; to be {z: > 0} N {z > 0}. Consequently, we get

Wi(é\g,zg)ﬂNE = W/fe(eg,za)]lNa (32)
and the convergence
]lNE — ]l{z>0} in Qp (33)
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for ¢ — 0% by using z. — z in Q. Calculating the weak L!(Qp; R™")-limits in (32) for ¢ — 07T
on both sides by using the already proven convergence properties, we obtain W (e, z) = we. The
remaining convergence property in (ii) follow from Lemma 4.15 (iv). O

We now introduce the shrinking set F' C Q7 by defining
F(t) :={z(t) > 0}

for all ¢t € [0,T]. This is a well-defined object since F' C Qr is relatively open by Theorem A.2 as
well as F(s) C F(t) for all 0 <t < s <T by the monotone decrease of z(x, ).

Corollary 4.17 Let t € [0,T] and U CC F(t) be an open subset. Then U C {z.(s) > 0} for all
s € [0,t] provided that € > 0 is sufficiently small. More precisely, there exist 0 < e9,m < 1 such that

ze(s) >ninU

for all s € [0,t] and for all 0 < € < &y.

Proof. By assumption, we obtain the property dist(U, {z(t) = 0}) > 0. Therefore, and by z(t) €
C(Q), we find an n > 0 such that z(¢) > 27 in U. By exploiting the convergence z.(t) — 2(¢) in
C(Q2) as e — 0T by Lemma 4.16 (b) and the compact embedding WP (2) < C(£), there exists an
g0 > 0 such that z.(t) > n on U for all 0 < € < g¢. Finally, the claim follows from the fact that z.
is monotonically decreasing with respect to ¢. O

Lemma 4.18 There exists a function u € L%H;JOC(Q[D(F);R") such that

(i) €(u) =€ a.e. in Ap(F),

(i) uw=b on the boundary Dy NAp(F).

Proof. Let {U]"} and {t,,} be sequences satisfying the properties of Corollary 4.6 applied to 2p(F").
We get for each fixed k,m € N

Ui" x [0,tm] C {ze > 0} (34)
for all 0 < e < 1 due to Corollary 4.17. Inclusion (34) implies
e(us) = & (35)

a.e. in U™ x (0,t,,). Korn’s inequality applied on the Lipschitz domain U} yields (note that
H"1 (U™ N D) > 0)

tm
HUaHQH(O,tm;Hl(U;n;Rn)) < 2/0 lue(t) — b(t)HJ%Il(U,T;R") + Hb(t)H%Hl(U,;n;Rn) dt

tm
<0 (14 [ Bt pnen )
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tm
<c (14 [ 10O ragnen ).

with a constant C' = C(U}™,b) > 0. Together with the boundedness of € in L*(Q7; R™ "), we can
find a subsequence ¢ — 07 and a function u*™ € L2(0,t,,; H(U™;R™)) such that

ue — u®™ in L2(0, t,,; HH(UT; R™)). (36)

Thus e(u®™)) = &in U™ x (0, t,,) because of (35) and the weak convergence property of €.. For each
k,m € N, we can apply the argumentation above. Therefore, by successively choosing subsequences
and by applying a diagonalization argument, we obtain a subsequence e — 07 such that (36) holds
for all k,m € N.

Since u(k1m1) = y(k2m2) 5 e on Uit % (0,tm, ) NU? % (0, tmy,) for all ki, k2, ma, mg € N, we obtain
an u : Ap(F) — R™ such that ulym (o, € L2(0,t; HY (U™ R™)) for all m € N. Proposition 4.4
(a) yields u € L2H}

s loc(F3R™) and the symmetric gradient e(u) coincides with €. Therefore, (i) is
shown.

Furthermore, for every k,m € N, we have u(t) = b(t) on OU]* N D in the sense of traces for a.e.
t € [0,t,,]. By Proposition 4.4 (b), (ii) follows. O

We are now able to prove Proposition 4.12.

Proof of Proposition 4.12. Lemma 4.16 and Lemma 4.18 give the desired regularity properties
of the functions (e, u,z) in Proposition 4.12. Here, we set e := €|p € L?(F;R™ ™). The property
e = €(u) in Ap(F) follows from Lemma 4.18.

In the following, we are going to prove that properties (ii)-(v) of Definition 3.5 are satisfied.
(i) Lemma 4.16 (ii) allows us to pass to ¢ — 0% in (25) integrated from ¢t = 0 to t = T.
Therefore, equation (11) holds for a.e. t € (0,7) and all ¢ € H}(€Q;R™). Moreover, the

boundary condition u = b on Dy N ™Ap(F') is satisfied. Definition 3.1 immediately implies
DTﬂF:DTﬂQlD(F).

(iii) We first show (12). Let ¢ € L®(0,T; WP(Q)) with ¢ < 0. The variational inequality (26)
and the representation for r. (28) imply

0< / Ve [P2Ve, - VC + (—a + By2)C d(e, ) + / We(erze)Cd(z,t).  (37)
Qp {

2:>0}

In addition,

/ W (ee, 22)C d(2,1) < / W (e, 2)C d(z )
{ze>0}

Fn{z:>0}
= / g (22)Ce; : e-Cd(x,t)
F

Lemma 4.16, a lower semi-continuity argument and 1. ~oyn{.—0) — Li.—0} a.e. in Qr (see
proof of Lemma 4.16) yield

e—0t

fmsup [ Wilee z)Cdnt) < [ Wile,2)0d(w.0)
{ze>0} F
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Therefore, applying "lim sup,_,o+“ on both sides of (37), using the above estimate and Lemma
4.16 yield

/ |V2[P72Vz - V(¢ + W, (e, 2)¢ da > /(a — [0¢z)C dx. (38)
F Q
The properties 0;z < 0 and z > 0 a.e. in Qp follow from Lemma 4.16 by taking 0;z. < 0 and

ze > 0 a.e. in Qp into account.

The jump condition (13) in (iv) of Definition 3.5 holds trivially since we have the regularity
z € L0, T; WhP(Q)) N HY(0,T; L*(Q)).

To complete the proof, we need to show the energy estimates (14). Since {b°, 2} is a recovery

sequence, we get E-(e(ul), 20) — &(b°, 2°) as ¢ — 0. Now, applying "lim sup,_,+“ on both

sides in (27) and using the convergence properties in Lemma 4.16 as well as lower semi-
continuity arguments yield

t
e(b?, 2Y) —i—/ We(e, z) : e(0b)d(z, s)
0 JF(s)

e—0t

> lim sup (a;(eE(t), 20)+ [ aldizd + g0 G, s>)
Q4

i © ! z x
thsup/QW (ea(t),zg(t))dx+/§2p|v (t)|Pd

e—0t

+/ a|8tz|+ﬁ|8tz|2d(m,s). (39)

Qy

Indeed, for an arbitrary ¢ € (0,7"), we derive by Fatou’s lemma and Lemma 4.16

/ <hmsup/ We(e:(s), ze(s ))dx) ds > limsup [ W¢(ee,z:)d(z,s)

e—0t+ e—0t JQ

e—0t

> lim inf / (9(2) + £)C2. : 6. d(, 5)
/ Wi(e,z)d(z,s). (40)

We have used the weak convergence property

Vg(z) + e e. = +/g(z) ein L*(Qp; R™™)

as € — 0T. To the end, (40) implies
lim sup / We(ea(t), 2.(1)) da > / W (e(t), 2(t)) de
e—0t Q F(t

for a.e. t € (0,7T"). Combining it with (39), estimate (14) is shown. O
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4.3 Existence of weak solutions

By using the achievements in the previous section and Zorn’s lemma, we will prove the main results,
Theorem 3.10 and Theorem 3.11. To proceed, let n > 0 be fixed and P be the set

P .= {(f7 e, u,z, F)|0 < T < T and (e,u, z, F) is an approximate weak solution on
[0, T | with fineness 1 according to Definition 3.8 }

We introduce a partial ordering < on P by
(Tl,el,ul,zl,Fl) < (TQ,€2,U2,ZQ,F2) = T1 < Tg, €2|[0,f1] =e1, UQ‘[quﬂ = U,
Z2’[O,T\1] = 21, FQ’[O,fl] = FI'

The next two lemma prove the assumptions for Zorn’s lemma.
Lemma 4.19 P # ().

Proof. Let (e, u,z) be the tuple from Proposition 4.12 to the initial-boundary data (2°,b). If there
exists an € > 0 such that J.« N [0,¢] = 0 with 2*(t) := 2(t) L, ({-~¢)>0}) then (g,e,u,2, F) € P.
Otherwise, we find 0 € C,+. We claim

£ ({2° > 03\ Ap({(t) > 0})) > 0ast—07. (41)

We consider the non-trivial case 20 # 0. Let x € {z° > 0} N Q. Since {z" > 0} C Q7 is relatively
open and admissible with respect to D, there exists a Lipschitz domain U cC {2° > 0} with z € U
such that H*~1(OUN D) > 0 by Lemma 4.5. Because of Theorem A.2, z € C(Qr) and, consequently,
there exists a ¢ > 0 such that U cC {z(s) > 0} for all 0 < s < ¢. In particular, z € Ap({z(s) > 0})
for all 0 < s < t. This proves (41). Finally, choose € > 0 so small such that ¢ < n and (note the
monotonicity of z with respect to t)

L™ ({=(t) > 03\ Ap({z(t) > 0})) < L ({" > 0} \ Ap({=(t) > 0})) <n

for all 0 < t < . We have proved that (e,u,z) on F := {z > 0} is an approximate weak solution
with fineness 7 on the time interval [0,¢], i.e. (¢,e,u,2, F) € P. O

Lemma 4.20 Every totally ordered subset of P has an upper bound.

Proof. Let R C P be a totally ordered subset. We denote with [0, Tg] the corresponding time interval
of an element R € R. Let us select a sequence {Tg,€9,U9,Zg,F9}0€(0 1 C R, with Tp, < Tp, for

~

0y < 01 and limg_,g+ Ty = supger T =T
Let t € (0,7). There exists a 6 € (0,1) with Tp > ¢ and we define
(e(t), u(t), (), F'(t)) := (eq(t), ua(t), zo(t), Fy(t))-

By construction, the functions (e, u, z) satisfy the properties (ii)-(v) of Definition 3.5 on [0,7]. It
remains to show that (e(t),u(t), z(¢)) are in the trajectory spaces as in Definition 3.8 (i) and that
F satisfies Definition 3.8 (ii).
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The energy estimate for (eg, ug, zg) implies

t
+ [ ajpl+ plora e,
0 JF(s)
t
<ef —i—/o o )We(e, z) : €(0b) d(z, s) (42)

for a.e. t € (O,j). Gronwall’s lemma yields boundedness of the left hand side of (42) with respect
toa.e. t € (0,7).

We immediately get
z € L0, T; W'P(Q)) N SBV?(0,T; L*(Q)), (43)

Variational inequality (12) tested with ( = —1 shows

g&ﬂ@ »m</am—/ B8R+ (

for a.e. t € (0,7). This implies
e € L*(F;R™™). (44)

We know that uly o) € L*(0,t; H' (U;R™)) for all t € (0, T)) and all open subsets U CC Ap(F(t)).
Let {Ux} be a Lipschitz cover of the admissible set

F(T) :=2Ap({z"(T) > 0})

according to Lemma 4.5 (in particular, Definition 3.8 (ii) is fulfilled). For each k € N, we apply
Korn’s inequality and get for all ¢ € (0,7)

Ju — bHL2(0,t;H1(Uk;R”)) < CH6<U)HLQ(O,t;LQ(Uk;R"))a

where C' > 0 depends on the domain Uj, but not on the time ¢. Thus u|ka 07 € L0, T; HY(Uy; R™)).
In conclusion,

u€ LIH! (F;R"). (45)

JJoc

Therefore, property (i) of Definition 3.8 follows by (43)-(45). We end up with
{T,e,u,z, F} € P satisfying {Ty, eg, ug, 29, Fo} < {T,e,u,z, F} for all § € (0,1). O

Weak solutions exhibit the following concatenation property.

Lemma 4.21 Let t; < to < t3 be real numbers. Suppose that

.= (¢,1, %, F) is an approzimate weak solution on [y, ts],

=@

QY

ﬁ) is an approximate weak solution on [ta,ts]

with &, = &(b(t), T (t2)) (the value ¢;, for q in Definition 3.5).

)
:>

Furthermore, suppose the compatibility condition Z* (t2) = 2~ (t2) ey, (13- (12)>0}) and the Dirichlet
boundary data b € Whi(ty, t3; Whe(Q;R™)). Then, we obtain that q := (e,u,z,F) defined as
ity t0) 2= G and q|jg, 1,) := G is an approzimate weak solution on [t1,t3].
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Proof. Applying “limsﬂt; essinf c(sy,)” on both sides of the energy estimate (14) for (e, u,Z, ﬁ)
yields

to
lim essinf E(e(7), z(7)) + / / a|d2z| + B102z|? d(x, s) + lim inf Z JIr
t1 F(S)

Sﬂt; TE(S,tQ) S*)t; TeJ ﬁ(tl 5}
1)
< e; +/ / Wel(e, z) : €(0) d(z, s).
t1 F(S)
This estimate can be rewritten as

to
&(b(ta), 27 (t2)) +/ / al02z| 4+ B0 z|? d(x, s)
t1 F(S)

+liminf Y Jr+ lim essinf E(e(r), 2(7)) — €(b(ta), 27 (t2))
s—ty reJN(t2,8] s—ty TE(s,t2)

to
<ef —i—/t /F( )er(e,z) : €(Ob) d(z, s). (46)

In the following, we show that we may choose the value &(b(t2), 2™ (t2)) for ¢ . By the property (i)
of Definition 3.5, we get 27 (s) — 27 (t2) in WHP(Q) and b(s) — b(tz) in WhH>®(Q;R") as s — ¢, .
In particular, by using Lemma C.1 and the monotone decrease of 2~ with respect to t,

2 () oy (e (9)>0p) = 2 ()0 L, atp (= (n)>0h) = X

in WlP(Q) as s — t; . By the definition of y, the inclusion

Ap({z"(t) >0} C ) Ap({z"(r) >0})
Te(tl,tz)
and the compatibility condition, we find z*(t2) = XLat, (2 (t2)>0})-

Thus, applying Lemma 4.11, lower semi-continuity of the I'-limit & and Corollary 4.10 (iii), we
obtain

lim essinf E(e(7), 2(7)) = lim essinf E(e(7), 27 (1))
s—ty TE(s,t2) s—ty TE(s,t2)

> lim essinf E(e(u(T)), 27(7-)]19([)({3*(7')>0}))
S*)t2 TG(S,tQ)

> lim essinf QE(b(T),Z_(T)]lmD({z—(T)>O}))

s—ty TE(st2)
> €(b(t2), x)
> QE(b(tQ),z+(t2)).
This leads to
0< Y J.< lim essinf E(e(r), 2(7)) — €(b(t), 2" (t2))
s—to TE(s,t2)
SGJzﬂ(tl,tQ} 2

+ lim inf Z /A
sty TeJN(t1,s]
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where the second <’ becomes an '=’ if t5 € J,. Consequently, (46) becomes

to
&(b(ta), 21 (t2)) +/ / )a|8?z| + B|192 2> d(x, ) + Z VA
t1 F(s

s€JN(t1,t2]
t
<ef +/ ( )We(e, z) : €(Ob) d(z, s). (47)
t1 F(s

~

The energy inequality (14) for (¢,%,%, F) (taking &, = Qf(/b\(tQ),ng(tg)) into account) can be ex-
pressed as

t
+ / / al8z] + Bl0R2 d(z, ) + 7
ta JF(s) s€J.N(ta,]
t
< €(b(ta), 2+ (1)) + / We(e,2) : e(ib) d(z, s) (48)
to F(S)

for a.e. t € (t2,t3). Adding (47) and (48) shows that the energy estimate for (e, u, z, F') also holds
for a.e. t € (t2,t3). It is now easy to verify that (e, u, z, F') is a approximate weak solution on the
time interval [¢1, t3] according to Definition 3.5. O

Proof of Theorem 3.10. By Zorn’s lemma, we deduce the existence of a maximal element R =
(T e,u,z F) in P. In particular, a maximal element satisfies the properties in Theorem 3.10 on the
interval [0, T]. We deduce T = T. Otherwise, we get another approximate weak solution (e, u, F)
on [T,T +¢] for an £ > 0 with initial datum 2~ (7)1 QKD(Z (T)>0) (which is an element of Wl’p(Q)

by Lemma C.1) as in the proof of Lemma 4.19 with eT = ¢(b(T), 2(T)) if T € J,. By Lemma 4.21,

(e,u,z, F ) and (€, u, z, F ) can be concatenate to an approximate weak solution on [0, T + e] which
is a contradiction. O

Proof of Theorem 8.11. Here, let us consider the set P given by

P = {(f,u, 2)]0 < T < T and (u,z) is a weak solution on
[0, T according to Definition 3.5}

with an ordering < as above (except the conditions €2|[0 7 = €l and F2|[O F] = F; which are

not needed here). Proposition 4.12 shows P # () by noticing z € C(Qr) (see Theorem A.2) and
0 < n < 29 The property that every totally ordered subset of P has an upper bound can be shown
as in Lemma 4.20. A maximal element satisfies the claim. O

A Embedding Theorem

The embedding theorem A.2 in this appendix is a special version of a more general compactness
result in [Sim86, Corollary 5]. However, we would like to present a different (short) proof which
requires the following generalized version of Poincaré’s inequality.
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Theorem A.1 (Generalized Poincaré inequality [Alt99, Section 6.15]) Let Q@ C R”™ be a
bounded Lipschitz domain and M C W1P(Q;R™) non-empty, convex and closed with 1 < p < oo.
Furthermore, M satisfies the property

ueM a>0 = auec M.

Then the following statements are equivalent:

(i) There exists a ug € M and a constant Cy > 0 such that for all £ € R™

u+€eM = ‘f’SC()

(ii) There exists a constant C > 0 such that for all w € M

HUHLP(Q;Rm) < CHVUHLP(Q;Ran).

Theorem A.2 Let Q2 CR"™ be a bounded Lipschitz domain and p > n. Then
L0, W (Q)) 1 H' (0,3 L2(2) € C(%).
Proof. Let z € L*(0,T;WHP(Q)) N H'(0,T; L?(2)). We can choose a representant such that z €

C([0,T); L3()) and 2(t) € WLP(Q) for all ¢ € [0, T]. By employing the embedding W!P(Q) C C(2)
(note that p > n), we obtain a function z : Q7 — R such that

2 € C([0,T]; L*(R2)) and z(t) € C(Q) for all t € [0, T]. (49)
Let (Tm,tm) € Qr be arbitrary with (z,,, ) — (z,t) in Q7 as m — oo. We have

|2(z,t) — 2(Xm, tm)| < |2(x, 1) —Vz(:):,tm)| +|z(x, tm) — 2(Tm, tm)| -

Am Bm

Assume that A, /4 0 as m — oco. Then there exists a subsequence of {4,,} (also denoted by {A,})
such that lim,, .. A, > 0. Using this subsequence, it holds z(-, t,,) — 2(-,t) in L?(Q) due to (49).
We obtain again a subsequence (we omit the additional subscript) such that z(y,t,,) — z(y,t) as
m — oo for a.e. y € Q. Therefore, we can choose y,, — x in Q such that |2(ym,t) — 2(Ym, tm)| — 0
as m — o0. It follows

’Z(mﬂf) - Z($7tm)| < ‘Z(‘T’t) - Z(ymvt)‘ —I—\‘Z(ym, t) - Z(ymatm” + ‘Z(yn"w tm) - Z(JC, 75m)|
AL, A2

m

~~
3
A,

The continuity of z(-,) due to (49) implies AL, — 0 as m — oo. A2, converges to 0 by the
construction of {y,,}. To treat the term A2, we apply the Poincaré inequality in Theorem A.1 to
M := {u € W"?(By(qo)) | u(q) = 0} and obtain

”gHLp(Bl(QO)) < CHVg”LP(Bl(‘IO)) (50)

for all g € W1P(B1(qo)) with g(qo) = 0, where gy € R™ and C > 0 is independent of g and qo. Note
that, due to g € WHP(B1(q0)) € C(Bi1(qo)), g is pointwise defined. By utilizing (50) and using a
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scaling argument, we gain a C' > 0 such that for all ¢ > 0 and all g € WP(B.(qo)) with g(qo) = 0
follows

u
19lle By = 19EMe@my < ClaE)lwrr s qw) < ClleVa(e) e sy = Ce 7 IIVllLr(s.(a0))-

By setting gim(+) == 2(Ym,tm) — 2(, tm) and e, = 2|ysm — 2|, we can estimate A3, in the following
way (note that gn,(ym) = 0):

p—n
A S N gmlle@—gmy) < Cem 7 V9mll Lo(b..., ()

Since z € L>(0,T; WhP(2)) N HY(0,T; L*(2)), IVgml e (B.,, (ym)) 13 Pounded with respect to m.
In conclusion, A3, — 0 as m — oo. Hence, we end up with a contradiction. Therefore, A4,, — 0 as
m — 00.

The convergence B, — 0 as m — 0o can be shown as for A3 — 0. |

B Chain-rule for vector-valued functions of bounded variation

Theorem B.1 (BV-chain rule [MV87]) Let I C R be an interval, X be a real reflexive Ba-

nach space, f € BVi(I; X) with df = ;Lu for a mon-negative Radon measure p on I and
f}’t € Llloc([,,u;X). Moreover, let E : X — R be continuously Fréchet-differentiable. Then E o f €

BVioe(I;R) and d(E o f) admits as density relative to p the function t +— (0(t), f,(t)), where
0:1— X* is defined as

o(t) ::/0 AE((1 =) f(t) +rf(tH)) dr.

Corollary B.2 Suppose f € SBV(0,T;X) and E : X — R is continuously Fréchet-differentiable.
Then Eo f € SBV(0,T) and for all0 <a <b<T:

b
d(EOf)((a,b])Z/<dE(f(S))7f’(8)>dS+ Yo (BUGT) - E(f(s7).

se€JyN(a,b]

Proof. We apply Theorem B.1. By assumption, we obtain the decomposition df = fl“u with g =
LY+ HO[Jy and f)(t) = f'(t) + f(tT) — f(t7) for all t € (0,T). Applying Theorem B.1 yields

d(E o f)((a,b]) =/ (0(s), £u.(s)) du(s)

(a,b]

:/( b}<0(8)7f/(8)>d£1(8)+ ST (66s), f(sT) = f(57))

teJsN(a,b]

Since f(s*) = f(s7) = f(s) for L'—a.e. s € (a,b], the first term on the right hand side becomes

/<a,b]<9(s)’ £ dei(s) = /(mb] ( /O AE((1 = 1) f(s7) +rf(st)) dr, /(s) ) AL (s)
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_ / (dE(f(s), f'(s)) ds,
(a,b]

where ds := d£!(s). Furthermore, by the classical chain rule,

> eI - f = Y / AB((1 =) [(s7) +rf(s) dr f(s") — (7))

s€JrN(a,b] s€JrN(a,b]

- 5

\

B = n)1(7) + 6T A — £ Y

seJsn(ab] 0
1
= ¥ %E((l—r)f(s_)-i-?”f(SJr))dr
s€JrN(a,b] 0
= Y (BUGT) - BUG)).
seJ¢N(a,b]

C Truncation property for Sobolev functions

Lemma C.1 Let D, C R" be open sets and p > n. Furthermore, assume that a function f €
WLP(Q) fulfills f = 0 on D\ (f is here considered as a continuous function due to the embedding
WhP(Q) — C(Q)). Then flp € WP(Q).

Proof. We can reduce the problem to one space dimension by using the following slicing result from
[AFP00, Proposition 3.105] for functions u € LP(€2):

weWhP(Q) «— WweS"liule WP(QY) for L' ae z€Q,
and / / |VuZ P dtdy < oo, (51)
Q, Jay
where ,, is the orthogonal projection of Q to the hyperplane orthogonal to v and QY := {t €

R|z +tv € Q} as well as u”(t) := u(x + tv).

Applying this result to f, we obtain f% € WHP(QY) for £L* !-a.e. z € Q, and all v € S*~!. Moreover,
slices for the function g := flp are given by the equation

= folpy.

The function fY is absolutely continuous. We claim that this is also the case for ¢g%. To proceed, let
€ > 0 be an arbitrary real. Then, we get some constant § > 0 such that

(ag,b), k € I, with ay < by, are finitely many disjoint intervals of 22 with Z lag, — bg| <6
kel

= > |flar) - fL (k)| < e (52)

kel
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The property (52) is also satisfied for g. Indeed, let (ay,bx), k € I, with a; < by be finitely many
disjoint intervals of € with >, ;|ax — bx| < 0. We define the values aj and by, in the following
way:

(ak,bk) if ay, by, € D; or ag, by € Dg,
(ag,br) := ¢ (2,bx) for an arbitrary fixed z € [ag, bx] NODY if a & DY and by, € DY,
(ak, z) for an arbitrary fixed z € [ag,bx] NODY if ai, € DY and by, & DY.

We conclude ), . [ax — by < > ker lar —bi| < 6 and therefore ), ;| f¥ (ax) — fg’c’(gk)] < e by (52).
Taking
D lgi(ar) — gr () = Y lgs(@r) — gr o)l < > 1f¥ (@) — £2 (b))

kel kel kel
into account, shows that g is absolutely continuous and we find g% € WP (QY).

Moreover, [o [, [VgulPdtdy = [, [, [Vf7[Pdtdy < co. Applying (51) yields g € W'P(Q). O
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