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Abstract

Motivation: Flux variability analysis (FVA) is an important tool to further analyze
the results obtained by flux balance analysis (FBA) on genome-scale metabolic networks.
Standard FVA may predict unbounded fluxes through some reactions in the network even
if the nutrient uptake rate is bounded. These fluxes violate the second law of thermody-
namics. They may be eliminated by extending flux variability analysis with thermodynamic
constraints.

Results: We present a new algorithm for efficient flux variability (and flux balance)
analysis with thermodynamic constraints, suitable for analyzing genome-scale metabolic
networks. We first show that flux balance analysis with thermodynamic constraints is NP-
hard. Then we derive a theoretical tractability result, which can be applied to metabolic
networks in practice. We use this result to develop a new constraint programming algo-
rithm Fast-tFVA for fast flux variability analysis with thermodynamic constraints (tFVA).
Computational comparisons with previous methods demonstrate the efficiency of the new
method. For tFVA, a speed-up of factor 30-300 is achieved. In an analysis of genome-scale
metabolic networks in the BioModels database, we found that in 485 out of 716 networks
additional irreversible or fixed reactions could be detected.

Availability and Implementation: Fast-tFVA is written in C++ and published un-
der GPL. It uses the open source software SCIP and libSBML. There also exists a Mat-
lab interface for easy integration into Matlab. Fast-tFVA is available from page.mi.fu-
berlin.de/arnem/fast-tfva.html.

Contact: arne.mueller@fu-berlin.de, Alexander.Bockmayr@fu-berlin.de

1 Introduction

Flux Balance Analysis (FBA) is a widely used method to analyze the capabilities of a metabolic
network (Varma and Palsson, 1994; Mahadevan and Schilling, 2003; Price et al., 2004; Terzer
et al., 2009; Durot et al., 2009; Schuster et al., 2007; Teusink et al., 2009; Orth et al., 2010). The
strength of FBA is that it allows predicting growth rates of cells very accurately (Edwards et al.,
2001). Flux Balance Analysis is based on the steady-state assumption, i.e., every metabolite
that is produced, must also be consumed at the same rate. Flux through the network is enabled
by exchange reactions, such as uptake of nutrients and production of biomass. Usually, next
to bounds on the fluxes, stoichiometric constraints are the only constraints given, and optimal
production of biomass can be computed by solving a linear program (LP).

Frequently, there is not only one optimal flux distribution that achieves optimal biomass
production. FBA, however, computes only one such solution. Elementary flux modes (Schuster
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and Hilgetag, 1994; Schuster et al., 2000) or extreme pathways (Schilling et al., 2000) are
commonly used tools to analyze the whole flux space. But, in practice, the number of elementary
flux modes grows exponentially with the number of reactions in the network. Hence enumeration
of elementary flux modes becomes infeasible for genome-scale networks. In addition, we are
usually not interested in the raw data of all elementary flux modes (resp. extreme pathways),
but only in specific properties (Schwartz and Kanehisa, 2006; Haus et al., 2008; Driouch et al.,
2012; Orman et al., 2012). Therefore, sampling methods (Schellenberger and Palsson, 2009),
elementary flux patterns (Kaleta et al., 2009) and flux variability analysis (Mahadevan and
Schilling, 2003; Burgard et al., 2001) have been developed.

Flux Variability Analysis (FVA) determines the maximum and minimum values of all the
fluxes that will satisfy the constraints and allow for the same optimal objective value. For
example, it is known that FBA is very unreliable in predicting the flux value of by-products
(Khannapho et al., 2008). In such cases, FVA can be applied to predict the range of possible
by-product production rates under maximal biomass production, which can be linked to gene
expression data (Bilu et al., 2006). Variations of FVA can also be used to determine blocked or
unessential reactions (Burgard et al., 2004).

In FVA, however, the following problem arises: It can happen that the network contains
internal cycles, i.e., there exist non-zero steady-state fluxes involving only internal reactions.
In most metabolic models, only bounds on the flux value of exchange reactions are given (in
addition to the zero bounds for the irreversible reactions). This leads to unbounded fluxes
through reactions contained in such internal cycles, which is of course not realistic. To remove
this issue, thermodynamic constraints can be added to the model (Beard et al., 2002; Qian and
Beard, 2005). It has been shown that the flux values computed with thermodynamic constraints
are more consistent, for example, with respect to gene expression data (Schellenberger et al.,
2011a; Feist et al., 2007; Fleming et al., 2009; Price et al., 2006; Jol et al., 2012). In recent years
there has been increasing interest in thermodynamic constraints, since they can also be used
to link metabolite concentrations to flux modes (Kümmel et al., 2006a,b; Hoppe et al., 2007;
Henry et al., 2006; Singh et al., 2011).

In this paper, we present a new method for efficient thermodynamically constrained flux
balance and flux variability analysis. We will work with the relaxed form of thermodynamic
constraints, as it was introduced by Beard et al. (2004). There, thermodynamic constraints are
formulated as follows:

SJ = 0 steady-state assumption (1)

` ≤ J ≤ u flux bounds, e.g. irrev. (2)

∆µiJi < 0 ∨ Ji = 0 ∀i ∈ I thermodynamic constraint (3)

∆µT = µTSI potential differences (4)

J ∈ RR, µ ∈ RM, ∆µ ∈ RI .

Here S denotes the stoichiometric matrix, J the flux vector,M the set of metabolites, R the set
of all reactions, E the set of exchange reactions, I = R\E the set of internal reactions, and µ the
chemical potential of each metabolite (Gibbs free energy of formation). The operator ·T denotes
transposition. If the concentrations and equilibrium constants are known (Mavrovouniotis, 1990;
Jankowski et al., 2008; Noor et al., 2012a), it is possible to further constrain µ. However, since
this information is often not available, we will work here without additional constraints on µ.

In a thermodynamically constrained flux balance problem, we maximize a linear objective
function cTJ , where c ∈ RR, with respect to the constraints (1)–(4). In thermodynamically
constrained flux variability analysis (tFVA), we analyse the flux variability within the feasible
(respectively optimal) solutions of a thermodynamically constrained flux balance problem, i.e.,
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for all i ∈ R, we solve the optimization problems max{±Ji | (1) – (4)} (respectively max{±Ji |
(1) – (4), cTJ = opt}).

To simplify notation we do not only use reactions as indices (e.g. Ji to denote flux through
reaction i), but also sets of reactions to index sub-vectors. For example, JI denotes the flux
vector on the internal reactions only and SI contains only the columns corresponding to internal
reactions.

Definition 1 (Thermodynamically Feasible Flux) A flux vector J is called thermodynam-
ically feasible if there exists a vector µ such that (1), (3), and (4) are satisfied. If additionally
(2) holds, J will be called a thermodynamically feasible flux that satisfies bounds ` and u. 2

By multiplying µT from the left side with SI , the potential differences for internal reactions
are obtained. This is equivalent to the often found formulation K∆µ = 0, where K is the null-
space matrix of SI . The motivation behind Eq. 3 is that normally a chemical reaction carries
flux if and only if it reduces Gibbs free energy (Beard et al., 2002; Alberty, 2003; Qian and Beard,
2005). Since many reactions are catalyzed by enzymes, however, it can happen that an enzyme
is not present, for example because of regulatory control; and hence, the corresponding reaction
is not possible and does not carry flux, even if there is a negative potential difference. Thus,
zero flux in Eq. 3 is always allowed as well. Note that other formulations of thermodynamic
constraints, for example the one used by Fleming et al. (2012), do not have this property. Hence,
the different results have to be applied with care.

Using Boolean variables a ∈ {0, 1}I , a sufficiently large constant M > 0, and a small
constant ε > 0, this formulation can be translated into a mixed integer linear program (MILP),
where ai = 0 indicates that a forward flux Ji > 0 on reaction i is not allowed, and ai = 1 forbids
a backward flux Ji < 0. This is done by replacing (3) with the inequalities (5) and (6):

SJ = 0

`i ≤ Ji ≤ ui ∀i ∈ R
`i(1− ai) ≤ Ji ≤ uiai ∀i ∈ I (5)

−Mai + ε ≤ ∆µi ≤M(1− ai)− ε ∀i ∈ I (6)

∆µT = µTSI

J ∈ RR, µ ∈ RM, ∆µ ∈ RI , a ∈ {0, 1}I .

This formulation is used in a similar form by Schellenberger et al. (2011a) for the COBRA
toolbox and many others (Beard et al., 2004; Cogne et al., 2011; Hoppe et al., 2007; Henry et al.,
2007). It can be shown that if S does not contain any zero-columns, this MILP formulation is
equivalent to the original one (Müller, 2012). Although solving MILPs is NP-hard in general,
practical tests have shown that current MILP solvers are able to optimize flux with respect to
the above formulation also on genome-scale networks like the iAF1260 reconstruction of E. coli
(Schellenberger et al., 2011a).

Beard et al. (2004) observed that a steady-state flux vector J (i.e., which satisfies Eq. 1) is
thermodynamically feasible if and only if there is no internal cycle contained by J . A sketch
of the proof using oriented matroids can be found in (Beard et al., 2004). A detailed version
using LP-duality is available in Müller (2012) and was also recently published by Noor et al.
(2012b). This result is used by Yang et al. (2005) to detect reactions that are irreversible due
to thermodynamic constraints. In particular, one of their methods simply runs tFVA.

This paper is organized as follows: In Sect. 2.1, we show that the thermodynamically con-
strained flux balance problem is NP-complete and thus, MILPs are an appropriate tool. In
Sect. 2.2, we derive a tractability result and analyze how much this applies to current genome-
scale models. These theoretical results are the backbone of a new algorithm, which is described
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in Sect. 3. In Sect. 4 we apply our new method to study the importance of thermodynamic
constraints in the analysis of genome-scale metabolic networks.

2 Methods

2.1 NP-completeness

In FVA, a series of optimization problems is solved. The flux through each reaction in the
network is maximized and minimized. In the following, we will see that already determining
whether there exists a positive flux through a given reaction is NP-complete. Thus, the opti-
mization problem is NP-hard, and it is unlikely that an efficient algorithm exists for the general
case.

Problem 1 (Thermoflux)

• Instance:

– Metabolic network N =
(
M, R = I∪̇E , S ∈ QM×R

)
– Objective reaction r ∈ R

• Question: Does a thermodynamically feasible flux J ≥ 0 with Jr > 0 exist?

Theorem 1 Thermoflux is NP-complete. 2

The proof of this result can be found in the supplementary material.

2.2 Tractability

It was observed early on by Price et al. (2002) that a thermodynamically infeasible flux can be
turned feasible by removing internal cycles. For the following tractability result it is important
to understand when these internal cycles can be removed without changing the flux through
the objective reactions. Reactions that are contained in internal cycles and reactions that are
flux-forcing are problematic.

Definition 2 Let N =
(
M, R = I∪̇E , S ∈ RM×R

)
be a metabolic network. A reaction r ∈ R

is contained in an internal cycle if there exists a J ∈ RI with SIJ = 0 and Jr > 0.
Given lower and upper flux bounds `, u ∈ RR, a reaction r is called flux-forcing if `r > 0 or

ur < 0.
For a linear objective function c ∈ RR, a reaction r is called objective if cr 6= 0. 2

Theorem 2 Let N =
(
M, R = I∪̇E , S ∈ RM×R

)
be a metabolic network with lower and upper

flux bounds `, u ∈ RR and a linear objective function c ∈ RR. Let C ⊆ I be the set of reactions
contained in internal cycles, let F ⊆ R be the set of reactions that are flux-forcing, and let
O ⊆ R be the set of objective reactions.

Given a steady-state flux J with ` ≤ J ≤ u, a thermodynamically feasible flux J∗ with
cTJ = cTJ∗ and ` ≤ J∗ ≤ u can be computed in polynomial time w.r.t. the size of the network
N if C ∩ (F ∪O) = ∅. 2

The key to the proof of Thm. 2 is Alg. 1 which gives the wanted polynomial-time algorithm.
The complete proof can be found in the supplementary material.

It should be noticed that this theorem is similar to the result by Fleming et al. (2012).
While these authors use a different definition of thermodynamic feasibility, they also propose a
method that keeps the flux through exchange reactions invariant.
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Algorithm 1 This algorithm computes a thermodynamically feasible flux out of a possibly
thermodynamically infeasible flux, if the conditions of Thm. 2 are satisfied. It runs in polynomial
time. (1 denotes a vector where all entries are 1.)

Input: A steady-state flux J
repeat

I+ := {i ∈ I : Ji ≥ 0}
I− := {i ∈ I : Ji ≤ 0}

L := arg max


1LI+ − 1LI− : SIL = 0,

JI− ≤ LI− ≤ 0,
JI+ ≥ LI+ ≥ 0


JI := JI − L

until 1LI+ − 1LI− = 0
return J

Since we can compute optimal steady-state fluxes in polynomial time by solving an LP, it
follows that we can compute an optimal thermodynamically feasible flux in polynomial time,
if all of the reactions contained in internal cycles are neither flux-forcing nor contained in the
objective function. In practice, however, there will be reactions contained in internal cycles and
we have also to consider this case.

For the following result, we need to quantify how often a reaction is contained in internal
cycles. For this, it comes in very handy that internal cycles are simply steady-state flux vectors
that do not use exchange reactions. Hence, we can describe the space of all internal cycles by
elementary flux modes (Schuster and Hilgetag, 1994; Schuster et al., 2000). The elementary flux
modes that do not contain exchange reactions will be called internal circuits or simply circuits.
They may also be interpreted in terms of oriented matroid theory, which was introduced into
metabolic network analysis by Oliveira et al. (2001) and used by Beard et al. (2004) to describe
the internal circuits. The number of internal circuits containing the given reaction will be the
quantification measure.

We observed that the number of internal circuits is small for many genome-scale networks.
See the supplementary materials for more details.

Theorem 3 If the number of internal circuits containing flux-forcing or objective reactions is
bounded by a constant, the thermodynamically constrained flux balance (and flux variability)
problem can be solved in polynomial time w.r.t. the size of the network. 2

Figure 1: Blocking set (dashed
arrows) for a given thermody-
namically feasible flux (marked
in black). Reversible reactions
are drawn using two arrows. The
bold arrow indicates the objec-
tive reaction.

Figure 2: If a “wrong” block-
ing set is chosen, only subopti-
mal flux (here: no flux) may be
possible.
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Proof Let F resp. O denote again the set of flux-forcing resp. objective reactions. Let C be
the set of internal circuits that contain a reaction of F ∪O.

We know that the optimal thermodynamically feasible solution must not contain any internal
circuits. Hence, in every internal circuit C ∈ C, we can find a reaction that does not carry any
flux in the direction of the circuit. Any such set of reaction/circuit direction pairs will be called
a blocking set B ⊂ R×{−,+} (cf. Fig. 1 and 2). We can enforce such a blocking set by adding
sign constraints to the reactions in B, i.e., if (r,+) ∈ B, we add Jr ≤ 0 to the problem and if
(r,−) ∈ B, we add Jr ≥ 0.

It follows that after we enforced a blocking set, there exist no internal circuits that contain
reactions of F ∪ O anymore. Hence, by Thm. 2 we can use linear programming to solve the
thermodynamically constrained flux balance problem.

By brute force, we only need to enumerate all blocking sets to find one giving us the optimal
solution (see Alg. 2). For each C ∈ C, we have at most |C| − 1 reactions that can be blocked
(it does not make sense to block flux-forcing or objective reactions). This way, we only need
to enumerate at most

∏
C∈C(|C| − 1) blocking sets. Since the size of each circuit is bounded

by the number of reactions and the number of circuits is bounded by assumption, we obtain a
polynomial running time algorithm. �

Algorithm 2 General solving procedure

Input: objective function c, lower bounds lb, upper bounds ub
maxFlux := −∞
for all blocking set B do

` := lb, u := ub
for each (i,+) ∈ B do ui := 0
for each (i,−) ∈ B do `i := 0
J = solve ordinary FBA with bounds `, u
maxFlux = max(maxFlux, cTJ)

end for
return maxFlux

In case of the E. coli iAF1260 model, the bound of Thm. 3 tells us that we only need to
analyze at most 1680 different blocking sets (for optimization on one reaction without internal
flux-forcing reactions).

3 Implementation

To implement Alg. 2 and use the result of Thm. 3, we still have to find a way for enumerating
all blocking sets. To do this, we used the constraint integer programming (CP) framework Scip
(Achterberg, 2009). Scip can not only solve mixed integer programs (Wolsey, 1998), but also
offers an interface for adding more general and complex constraints. Hence, we implemented a
constraint handler and primal heuristic for Scip.

Our algorithm (see Alg. 3) works directly on the flux variables and does not use artificial
Boolean variables. It basically implements a branch-and-bound strategy. As we have seen
in Thm. 3, we need not block all internal circuits, but only those that contain objective or
flux-forcing reactions.

• With highest priority, the constraint handler branches on circuits that contain objective
reactions. If this is achieved, every flux through objective reactions must be sourced by
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Algorithm 3 Sketch of the constraint handler that enforces thermodynamic feasibility

Input: objective function c, flux bounds `, u
Run ordinary FBA to compute a steady-state flux J .
Find internal cycle L containing an objective reaction / a flux-forcing reaction by maximizing
flux through the respective reactions w.r.t. SIL = 0, 1 ≥ sign(Ji)Li ≥ 0 ∀i ∈ I.
if no non-zero internal cycle L is found then run heuristic (Alg. 1)
else

for i : Li > 0 do
if `i ≤ 0 then create child node with ui = 0.

end for
for i : Li < 0 do

if ui ≥ 0 then create child node with `i = 0.
end for
Add created child nodes to branch and bound tree and continue solving nodes.

end if

exchange reactions. This usually bounds the flux to realistic values and we may be able
to reject the current blocking set, because a better solution has already been found.

• If no circuits containing objective reactions are left, we branch on circuits containing
flux-forcing reactions.

• It never happens that we need to branch on circuits that contain neither objective reactions
nor flux-forcing reactions. This is because of the heuristic we also implemented.

The heuristic basically runs Alg. 1. This means, if the network contains no circuits with
objective or flux-forcing reactions, the heuristic will output an optimal flux and the current
branch of the search tree does not need to be analyzed further. If the network contains circuits
with objective reactions, we usually have a very large flux through an internal cycle and thus,
a very bad dual bound. Although Alg. 1 may also find an optimal solution in this case, the
solver will not know it (the dual bound will be larger than the value of the solution found). To
prove optimality, the solver will have to do the branching nonetheless. This is why we do not
run the heuristic in this case. The heuristic may also fail if the network does contain circuits
with flux-forcing reactions and no circuits with objective reactions. However, we may be lucky
and Alg. 1 produces a solution that still satisfies the flux bounds. This solution is thus proven
to be optimal. Therefore, we implemented a slight modification of Alg. 3 that additionally runs
the heuristic if there exist circuits with flux-forcing reactions, but no circuits with objective
reactions.

Thus, the heuristic is run at those nodes of the search-tree that do not contain any circuits
with objective reactions. This way, we usually only need to branch on circuits containing
objective reactions, sometimes on circuits containing flux-forcing reactions and never on circuits
containing none of the two.

Next to the actual solving routine, the result of Thm. 2 can also be used to speed-up tFVA
significantly. Gudmundsson and Thiele (2010) observed that for ordinary FVA, a speed-up of
factor 100 could be achieved by simply warm starting the LP computation necessary for FBA.
Previous implementations always created new instances of the LP problem that the LP-solver
had to solve from scratch. In warm starting, the LP-solution of the previous iteration is used as
the starting point of the simplex algorithm used by the LP-solver. In the case of tFVA, however,
we do not solve LPs anymore, hence this result is not directly applicable. On the other hand,
many genome-scale metabolic models only contain few reactions involved in internal cycles, see
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Fig. 3 and Tab. 1. By Thm. 2 it follows that for most reactions the LP-solution can easily
be transformed into a thermodynamically feasible one without having to start any MILP- or
CP-solver. Thus, the warm-starting effect can also be used for tFVA.

4 Discussion

4.1 Run time

We tested the correctness and run time of our implementation on various networks of the
BiGG-database (Schellenberger et al., 2011b). For tFVA, we compared our results with those
generated by the COBRA toolbox and obtained a difference of the order 10−3. This difference
is most likely due to numerical issues of the big-M formulation, since the results of our code only
vary in the order of 10−8. The E. coli iAF1260 model was used for a more detailed analysis. We
compared the CP approach to two different kinds of MILP formulations found in the literature;
we did not compare it to nonlinear formulations, since most nonlinear solvers do not return
globally optimal solutions. All computations were run on an Intel Core i5-2400S (2.5 GHz, 4
cores, 6 MiB L3 cache) with 4GB RAM. Both MILP formulations were solved using Gurobi
(www.gurobi.com), the CP formulation was solved using Scip together with the public-domain
solver Soplex (Achterberg, 2009). As can be seen in Fig. 7 of the supplementary material, the
CP-approach outperforms the MILP formulations in nearly all cases.

We also performed run time tests for tFVA and compared our algorithm to the one im-
plemented in the COBRA-Toolbox (Schellenberger et al., 2011a). The CP algorithm is 30-300
times faster than the COBRA-Implementation (see Tab. 1 ). The only trouble maker is the
H. sapiens reconstruction that did not finish within 2 hours in our implementation. We were
also not able to confirm the run time result by Schellenberger et al. (2011a) on that network,
because COBRA (version 2.0.3) with Gurobi 5.0.0 terminated with an error message, probably
due to numerical instabilities of the MILP-formulation in the Gurobi solver.

4.2 Irreversible and fixed flux rates due to thermodynamics

In a second study, we analyzed how much information on irreversibility and fixed flux rates of
reactions can be gained by adding thermodynamic constraints. Fixed reactions are sometimes
the focus of network analysis, as in Hädicke et al. (2011). We used the genome-scale networks
in the BioModels database (http://www.ebi.ac.uk/biomodels-main, available on 17 Sep 2012).
Nearly all of these networks contain reactions in internal cycles (see Fig. 3). Hence, nearly every
network of the BioModels database has reactions where FVA cannot predict bounds different
from those given in the original FBA problem. These bounds tend to be very bad, since usually
the only small bounds are given on exchange reactions. tFVA, however, will compute bounds for
these internal reactions that depend on the bounds on the exchange reactions, in particular the
bounds on nutrient uptake. Therefore, the bounds obtained by tFVA for reactions contained in
internal cycles will be orders better than the bounds computed by ordinary FVA. Irreversible
reactions and reactions with fixed fluxes are a special kind of reactions with improved bounds,
which we now investigate in more detail.

As explained in Sect. 2, our algorithm works best if the number of reactions in internal
cycles is small. In addition, as it can be seen in Fig. 3, the genome-scale networks in the
BioModels database may be divided into two categories: networks with less than 600 reactions
in internal cycles and networks with significantly more reactions. In what follows, we analyzed
those networks with less than 600 reactions in internal cycles. For each network we ran FVA
and tFVA on the whole flux space. If the model also contained an objective function on some
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reaction (e.g. biomass production), we also analyzed the optimal flux space with FVA and tFVA.
We ran the computations of FVA and tFVA for at most 30 minutes.
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Figure 3: The genome-scale networks available in the BioModels database seem to separate
into two classes: Networks with few (less than 600) reactions in internal cycles and networks
with many more reactions in internal cycles.

We obtained that 829 (45% of all genome-scale networks in the BioModels database) had
less than or equal to 600 reactions in internal cycles. Of these we were able to analyze 716
networks in the given time limit. We obtained the following results for the whole flux space
(resp. the optimal flux space):

• in 386 (resp. 387) networks, flux through at least 1 reaction was additionally fixed due to
thermodynamic constraints.

• In 481 (resp. 485) networks, at least 1 additional reaction was detected to be irreversible
due to thermodynamic constraints.

In Fig. 4 we provide further information on the number of additionally fixed or irreversible
reactions when analyzing the whole flux space. The plot looks similar for the optimal flux
space. Additional details can be found in the supplementary material.

Finally, we ran the same analysis for the networks of the BiGG-database and obtained that
in all of them, except S. aureus iSB619, additional fixed and irreversible reactions were detected,
see Table 2. In the optimal flux space, also in S. aureus iSB619 additional fixed and irreversible
reaction were found.

These results show that thermodynamic constraints provide useful information even for
well-curated models like those in the BiGG-database. Using our algorithm, tFVA can now be
performed in a routine manner.

4.3 Conclusion

We presented a new algorithm for solving thermodynamically constrained flux variability anal-
ysis. The run time experiments showed an enormous speed-up compared to previous imple-
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Model fixed opt. fixed irrev. opt. irrev.

E. coli iJR904 11 30 6 5
E. coli iAF1260 9 41 8 6
E. coli iJO1366 13 44 8 7
H. pylori iIT341 6 16 3 4
M. barkeri iAF692 1 7 8 9
M. tuberculosis iNJ661 6 13 8 13
S. aureus iSB619 0 5 0 1
S. cerevisiae iND750 5 15 13 19

Table 2: Number of additionally fixed and irreversible reactions due to thermodynamic con-
straints. Opt. fixed and opt. irrev. denote the number of additionally fixed resp. irreversible
reactions in the space of fluxes with optimal biomass production.
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Figure 4: Distribution of networks with additional fixed resp. irreversible reactions
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mentations. This way, thermodynamically constrained flux variability analysis can now be run
on large sets of networks and also as a subroutine for other methods. As shown in our experi-
ments, many network reconstructions, in particular also well-curated models, may be improved
by executing our algorithm.

Our current algorithm does not allow additional information on metabolite concentrations to
be included into the model. We plan to work on the incorporation of metabolite concentrations
as a next step of our work. However, this extension will not be trivial. The main workhorse
of the given method was the heuristic. When integrating metabolite concentrations, the main
properties that made the heuristic work will not be applicable anymore.
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Appendix: Supplementary Material

This section contains the proofs of our mathematical results and additional information on the
computational experiments. We always assume that our model is finite, i.e., there is only a finite
number of reactions and a finite number of metabolites. For reasons of notation, we define

sign(v) := ({i : vi > 0}, {i : vi < 0})
(A+, A−) ⊆ (B+, B−) :⇔ A+ ⊆ B+ ∧A− ⊆ B−.

For the following proofs, Thm. 0 is an essential ingredient. For proofs of Thm. 0 we refer the
reader to Beard et al. (2004); Müller (2012) and the recent publication by Noor et al. (2012b).

Theorem 0 Given a metabolic network N = (M,R = I∪̇E , S), a flux vector J ∈ RR is ther-
modynamically feasible if and only if it holds for all v ∈ RI with sign(v) ⊆ sign(JI) and SIv = 0
that v = 0. 2

NP-completeness

We show that determining whether there exists a positive flux through a given reaction is
NP-complete. To do so, we first establish that the problem Thermoflux is NP-hard (Propo-
sition 1). Then, we prove that the problem also lies in NP, completing the NP-completeness
proof (Theorem 1).

Problem 1 (Thermoflux)

• Instance:

– Metabolic network N =
(
M, R = I∪̇E , S ∈ QM×R

)
– Objective reaction r ∈ R

• Question: Does a thermodynamically feasible flux J ≥ 0 with Jr > 0 exist?

Proposition 1 Thermoflux is NP-hard. 2

Proof We will reduce Disjoint-Path to Thermoflux. Fortune et al. (1980) showed that
Disjoint-Path is NP-hard; hence, the reduction of Disjoint-Path to Thermoflux will prove
NP-hardness of Thermoflux.

Problem 2 (Disjoint-Path)

• Instance:

– Digraph G = (V,A)

– s1, t1, s2, t2 ∈ V

• Question: Do vertex disjoint paths from s1 to t1 and s2 to t2 exist?

Let G = (V,A) be the given digraph and let s1, t1, s2, t2 ∈ V be the vertices we want to find
disjoint paths for. Let I be the incidence matrix of G.

We now construct a metabolic network N by adding an input reaction a, an output reaction
o, and a target reaction r. The reaction a will deliver flow to s1. Reaction r will be the reaction

13



Figure 5: Corresponding Instances of Thermoflux and Disjoint-Path

we are interested in in Thermoflux and which will transport flow from t1 to s2. Reaction o
will serve as the output flow reaction from t2. Formally, we have

N ={V,A∪̇{a, o, r}, S}, with

SA = I, Sa = es1 , So = −et2 , Sr = es2 − et1 ,

where ei denotes the i-th unit-vector. The internal reactions of N are I = A∪̇{r} and the
external reactions are E = {a, o}. See Fig. 5 for an illustration of the construction.

Lemma 1 There exist disjoint paths from s1 to t1 and from s2 to t2 in G if and only if there
exists a thermodynamically feasible flow through r in N .

Proof ⇒: Let P1, P2 ⊂ A be the two disjoint paths. By removing cycles in P1, P2, we can
assume w.l.o.g. that P1, P2 are simple. Set Ji = 1 for all i ∈ P1∪P2∪{a, r, o} and Ji = 0
else. Since P1, P2 are paths, we have IJA = −es1 + et1 − es2 + et2 . It follows that SJ = 0,
hence J is a steady-state flux.

J is also thermodynamically feasible, since P1, P2 are vertex disjoint and simple, hence ev-
ery vertex on the path P1 ∪ P2 ∪ {a, r, o} has degree 2. Thus, no internal cycle is contained
in J and J is thermodynamically feasible by Thm. 0.

⇐: Let J be a thermodynamically feasible flux with Jr > 0. Since a, o are the only exchange
reactions, both must carry flux as well. Define Q := {e ∈ A : Je > 0}. Assume there
exists a path P in (V,Q) from s1 to t2 that does not contain r. Let jP := min{Je : e ∈ P}
the flux through this path. Since J is thermodynamically feasible, J̃ := J − jP

(
eP∪{a,o}

)
is also a thermodynamically feasible flux (by Thm. 0) with Jr > 0.

Thus, we can assume w.l.o.g. that every path from s1 to t2 contains r. Since Jr > 0, there
exists such a path. Let us denote this path by P . Since J is thermodynamically feasible,
P is simple, i.e., it does not contain any cycles. It follows that P \ {r} is the union of two
vertex disjoint paths, one going from s1 to t1 and the other going from s2 to t2. �

We have now shown the reduction of Disjoint-Path to Thermoflux. Hence, by the NP-
hardness result of Fortune et al. Fortune et al. (1980), it follows that Thermoflux is NP-
hard. �

For practical applications we can assume that the stoichiometric matrix contains only ra-
tional coefficients. In this case we can also show NP-completeness.

Theorem 1 Thermoflux is NP-complete. 2

Proof Since we already proved NP-hardness, it suffices to show that Thermoflux is in NP.
We can easily check (using one matrix multiplication) if a given flux J satisfies the steady-state
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assumption. For thermodynamic feasibility, it follows by Thm. 0 that we only need to check if
there exists no internal cycle contained in J . This can be done by solving the following LP:

max sign(JI)L : SIL = 0,

1 ≥ sign(Ji)Li ≥ 0 ∀i ∈ I

Since each component of L is restricted to be either positive or negative, it follows that the
objective value is greater than zero if and only if the flux is thermodynamically infeasible. Since
solving LPs is in P, we can check solutions in polynomial time and Thermoflux is in NP. �

Tractability

Theorem 2 Let N =
(
M, R = I∪̇E , S ∈ RM×R

)
be a metabolic network with lower and upper

flux bounds `, u ∈ RR and a linear objective function c ∈ RR. Let C ⊆ I be the set of reactions
contained in internal cycles, let F ⊆ R be the set of reactions that are flux-forcing, and let
O ⊆ R be the set of objective reactions.

Given a steady-state flux J with ` ≤ J ≤ u, a thermodynamically feasible flux J∗ with
cTJ = cTJ∗ and ` ≤ J∗ ≤ u can be computed in polynomial time w.r.t. the size of the network
N if C ∩ (F ∪O) = ∅. 2

To prove this result, we consider the Alg. 1 from the main article.

Lemma 2 (Correctness) When Algorithm 1 terminates, it returns a thermodynamically fea-
sible flux J∗ with sign(J∗) ⊆ sign(J), |J∗r | ≤ |Jr| for all r ∈ R, and JR\C = J∗R\C . 2

Proof Let J i denote the value of J at the end of the i-th iteration of the algorithm. Let
Li denote the value of L computed in the i-th iteration. Hence, we have by definition of the
algorithm

J0 = J

J iI = J i−1I − Li, J iE = J i−1E
Jn = J∗ if Ln = 0.

Li always exists, because the LP that computes L is always feasible, since 0 is a feasible solution.
Since Ln = 0, it follows by Thm. 0 that Jn is thermodynamically feasible. Since Li is a feasible
solution of the LP, it satisfies J iI− ≤ L

i
I− ≤ 0 and J iI+ ≥ L

i
I+ ≥ 0 and thus sign(J i) ⊆ sign(J i−1),

|J ir| ≤ |J i−1r | for all r ∈ R and all i = 1, . . . , n. By definition of C, we have supp(Li) ⊆ C for all
i = 1, . . . , n. This implies J iR\C = J i−1R\C . The lemma follows by induction. �

Lemma 3 (Termination and running time) Algorithm 1 runs in polynomial time. 2

Proof In each iteration the flux through one cycle is reduced by its maximal amount. Thus,
the flux of one reaction (which wasn’t zero before) becomes zero. Cycles are only searched on
those reactions that have nonzero flux. Thus, reactions that didn’t carry any flux will also not
carry any flux after the iteration. Hence, the number of reactions carrying flux strictly decreases
with each iteration. It follows that the algorithm terminates after at most |I| iterations. Since
we can solve LPs in polynomial time, the algorithm runs in polynomial time. �

Proof (Proof of Theorem 2) From Lemma 2 and Lemma 3, we conclude that Alg. 1 re-
turns a thermodynamically feasible flux J∗ after a polynomial running time with JR\C = J∗R\C .

Since C ∩ (F ∪ O) = ∅, it follows that cTJ = cTJ∗ and `r ≤ J∗r = Jr ≤ ur for all r ∈ F . For
r 6∈ F and Jr ≥ 0, we have `r ≤ 0 ≤ J∗r ≤ Jr ≤ ur. Analogously, for r 6∈ F and Jr ≤ 0, we have
`r ≤ Jr ≤ J∗r ≤ 0 ≤ ur. Thus `r ≤ J∗r ≤ ur is satisfied for all r ∈ R. �
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Figure 6: Sizes of the internal circuits in metabolic network models from the BiGG database

Tractability for the Networks from the BiGG database

Using the WW-Algorithm by Wright and Wagner (2008), we can compute the internal circuits
for many genome-scale networks. It turns out that all models of the BiGG database (Schel-
lenberger et al., 2010) (except Human Recon. 1, where the WW-Algorithm fails) contain only
relatively few internal circuits, see Fig. 6.

In Theorem 3 we derived a runtime bound of∏
C∈C

(|C| − 1), (7)

where C is the set of internal circuits that contain a flux forcing or objective reaction.
We observe that the run time increases exponentially with the number of internal circuits

that contain objective or flux forcing reactions. We only were able to obtain a polynomial
running time by assuming that the number of these internal circuits is bounded by a constant.
This is of course not true in general. However, Fig. 6 shows that the number is small for many
networks. Thus, the assumption is not violated too much, which explains why the algorithm still
works very well for many networks, such as for those from the BiGG database. In particular,
we observed that for E. coli iAF1260 the largest number of circuits that contained a common
reaction was 6.

In Fig. 7 we can also see how the theoretical runtime bound behaves compared to the actual
running time. Assuming that the actual running time is approximately proportional to the
theoretical bound, we drew linear correlation lines. We see, that as expected the runtime of the
CP method is correlated to the theoretical bound, but also the runtime of the MILP methods
from the literature are correlated to the theoretical bound.
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Figure 7: Comparison of different formulations of thermodynamic constraints. Milp1 is the
formulation used by Schellenberger et al. (2011a), Milp2 is the formulation used by Hoppe et al.
(2007); Cogne et al. (2011). CP is the new method presented in this paper. For each reaction of
E. coli iAF1260, corresponding to its run time in seconds and theoretical bound, a dot is drawn
(color according to the method). The lines are linear regression lines through these points.
Because this plot also shows reactions that need no branching, the theoretical bound (Eq. 7)
was increased by one for each reaction.
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MILP Formulations used in the Runtime-Comparison

Milp 1 This is the formulation used by Schellenberger et al. (2011a). K is the precomputed
nullspace matrix of SI , M = 101 and ε = 1.

max cTJ

s.t. SJ = 0, `J ≤ J ≤ uJ

K∆µ = 0

`Ji (1− ai) ≤ Ji ≤ uJi ai ∀i ∈ I
−Mai + ε ≤ ∆µi ≤M(1− ai)− ε ∀i ∈ I
a ∈ {0, 1}I

Milp 2 Instead of using the null space matrix, we can also directly formulate the space of
potential differences using the potentials µ. A formulation of this kind is used by Hoppe et al.
(2007) and Cogne et al. (2011).

max cTJ

s.t. SJ = 0, `J ≤ J ≤ uJ

∆µT = µTSI

`Ji (1− ai) ≤ Ji ≤ uJi ai ∀i ∈ I
−Mai + ε ≤ ∆µi ≤M(1− ai)− ε ∀i ∈ I
`µ ≤ µ ≤ uµ

a ∈ {0, 1}I

The Effect of Warm-Starting

The effect of the warm-starting can be observed by comparing Fig. 7 and Tab. 1 in the main
article. According to Fig. 7 the speed-up should amount to at most factor 10. However, for
FVA we obtain a speedup of factor 30− 300. Hence, the remaining speed-up (of a factor of at
least 15) for FVA can only be due to warm-starting.
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Hädicke, O., Grammel, H., and Klamt, S. (2011). Metabolic network modeling of redox balancing and biohydrogen production in

purple nonsulfur bacteria. BMC Systems Biology, 5(150).

Haus, U.-U., Klamt, S., and Stephen, T. (2008). Computing knock-out strategies in metabolic networks. Journal of Computational

Biology, 15(3), 259–268.

Henry, C., Jankowski, M., Broadbelt, L., and Hatzimanikatis, V. (2006). Genome-scale thermodynamic analysis of Escherichia

coli metabolism. Biophysical Journal, 90(4), 1453–1461.

Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. (2007). Thermodynamics-based metabolic flux analysis. Biophysical

Journal, 92, 1792–1805.

Hoppe, A., Hoffmann, S., and Holzhütter, H.-G. (2007). Including metabolite concentrations into flux balance analysis: thermo-

dynamic realizability as a constraint on flux distributions in metabolic networks. BMC Systems Biology, 1(23).

Jankowski, M. D., Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. (2008). Group contribution method for thermodynamic

analysis of complex metabolic networks. Biophysical Journal, 95, 1487–1499.
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