A dissipative discretization for large defor mation
frictionless dynamic contact problems

Jonathan William Youett, Oliver Sander

Abstract We present a discretization for dynamic large deformatimmact prob-
lems without friction. Our model is based on Hamilton’s gipie, which avoids the
explicit appearance of the contact forces. The resultiffgreintial inclusion is dis-
cretized in time using a modified midpoint rule. This modifica, which concerns
the evaluation of the generalized gradient, allows to aehémergy dissipativity. For
the space discretization we use a dual-basis mortar methedesulting spatial al-
gebraic problems are nonconvex minimization problems wndthconvex inequality
constraints. These can be solved efficiently using a tregibn SQP framework with
a monotone multigrid inner solver.

Keywords: frictionless dynamic contact, large deformations, modified miigiprule, mortar
method, multigrid SQP method

1 Introduction

In linear contact dynamics robust time discretizationsehlagen developed on the
basis of the Newmark method, cf.l[8]. In nonlinear mecharticsvever, most of
these integrators lose their robustness as linear (shestadility is not sufficient
anymore. It has been shown that energy dissipation is the cnigerion for stability
in nonlinear mechanics[2]. This motivates the constructbtime discretization
schemes that algorithmically enforce the conservatiomefgy and momentum.

In [5] Hartmann and Ramm combined the Generalized Energyaéfdum
method [12] and a discrete contact velocity updateé [10] tstrmict a scheme con-
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serving energy and linear momentum. Hesch and Betsch uselisttrete derivative
proposed by Gonzales![4] which results in a momentum coirggmethod that
conserves energy if a discrete persistency condition H6Jds

In all of the above models the contact forces appear explierhich requires the
solution of generalized saddle point systems or the useralpemethods. We avoid
both issues by developing a variational integrator disireg Hamilton’s principle
directly. This approach has been used by Kane et al. [7] in dednfor contact
problems between nonsmooth bodies. The approach leadsfferamtial inclusion
involving generalized gradients|[3], which has the advgetdat no discretization
of the contact forces is necessary, as they enter only iitipli¢/e propose a mid-
point rule for the temporal discretization of the inclusi@hich is known to conserve
momenta in the absence of contact/[12]. To additionallyaehenergy dissipation
we further modify the resulting integrator by evaluating tieneralized gradient at
the new configuration instead of the averaged one. This is/atet by the proven
dissipativity of a modified Newmark method for linearizedhtaxct problems, where
the contact forces of the old time step are treated completglicitly [8].

For the discretization of the contact constraints we appiyoatar method[[13]
with dual basis functions as proposed by Krause and Wohlfddjtor linear con-
tact problems. The fully discrete problems that have to Iheesldn each time step
are equivalent to nonconvex minimization problems whichsekve using a trust-
region SQP method with a monotone multigrid method as thegiottsolver[[11].

2 The continuous problem

First we present the continuous problem, and briefly defieewteak equations of
motion resulting from Hamilton’s principle.

Nonlinear elasticity

Let Q;, Q> ¢ RY be two domains denoting the reference configurations of b b
ies. Their boundaries, with unit outer normals are supposed to be decomposed
into disjoint part9? Q' = I UM Ul Let¢': Qj x [0, T] — RY, injective and suf-
ficiently smooth, denote the current configuration of theyb©¢d

In the framework of large deformations the equations of oroin reference
coordinates are given in terms of the first Piola—Kirchhtiféss tensoP' = P'(¢'),
and read

div(P)+f =pd' inQ
Pn'=t'  onfy (1)
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Fig. 1 Non-penetration condition. Left: Feasible configuratieg, points in the direction oK —
@(X). Right: Unfeasible configuratiom,q points away fronX — @(X).

wheret' and ¢‘D are prescribed surface tractions and displacements,atbspg,
andp is the material density. The equations are supplementédimitial displace-
ments and velocities

¢'(0)=95 ¢'(0)=vh onQ.

We consider hyperelastic materials only, i.e. materialsvitich there exists a strain

energy functionalV such that the first Piola—Kirchhoff stress is given by
p_ OW(X,F) ,
oF

whereF = O¢ denotes the deformation gradient.

Large deformation contact

We enforce non-penetration of the two bodies using the com@del introduced

by Laursen[[®]. Thd?{, introduced above, denote the parts of the boundaries that
may come into contact. We identify these two surfaces witthedher by the time-
dependent closest point projection

@ rdx[0T] —rd
(X, 1) := argmin||¢*(X,t) — 3(Y, 1) .
Yerd

This projection defines a vector field on the deformed cornamhdzz(l'cz) by

LX) — 920 d(X.Y)
VolX.U = [i1x 1) gZod(x.0)] 0P
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where sgii$) is chosen such thate(t) points outward of?(I2). Note thatve
is normal to¢2(l'cz) since @ is a best approximation. The gap functign I'C1 X
[0, T] — R can then be defined as

g(X,t) = Vo (X,t)- (§(X,1) — Z0 @(X,1)),
and non-penetration is achieved by enforcing
gX,t) >0 V(X,t)eldx[0,T]. 2)

To see why this works note that for unfeasible deformatibes/ectorgp? — ¢p2o @
andv point in opposite directions by the choice of ¢, and the gap function
becomes negative (Fig. 1).

Weak equations of motion

In contact dynamics it is common to add the virtual work of thknown con-
tact forces directly to the weak equations of motions, whegults in a variational
equation for the deformations and the contact tractioh&]5We use a different
approach and derive weak equations of motion by applyingittams principle to
a nonsmooth Lagrangiahl[7]. This results in a differentiglusion which has the
advantage that the contact forces do not enter explicittytans will not have to
be discretized. For simplicity we assume vanishing exteioraesf = 0, t = 0.
Also for simplicity we assume that the Dirichlet boundanjues, if present at all,
are constant in time. We writd(Q) for the standard first-order Sobolev space of
d-valued functions that satisfy the Dirichlet condition.

Hamilton’s principle states that the evolution of a dynaah&ystem during a time
interval [0, T] with LagrangiarL(u, ) is a stationary point of the action integral

7#):= [ L)

For hyperelastic materials the Lagrangian is of the form

L($.8) = P($. ) 20) — [ W(OP)dx.

and the corresponding Euler—Lagrange equationgare (1).
We incorporate non-penetration of the two bodies by addiegridicator func-
tion |, of the nonconvex set of feasible solutions

A ={veHj(Q) : g(X)>0ae.on}

to the potential energy, which ensures that the trajectimysseasible at all times.
The resulting new Lagrangian
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L(9.9):=L(9.9)— 1 (9). 3)

is nonsmooth and, due to the nonconvexitysf not even subdifferentiable. Nev-
ertheless it is possible to derive Euler—Lagrange equsiigrusing the concept of
generalized gradien® in the sense of Rockafellar and Clarke [3], for which the
following first-order optimality criterion has been shown:

Proposition 1 ([3], Prop. 2.4.11). Let X be a Banach space and X — [—o0, +00]
be finite atu. If u is a local extremal point of f thede 8 f(u).

Application of this stationary condition to the nonsmoothgkangian[(3) leads to
the Euler-Lagrange differential inclusion

0cdL=pd+F"(9)+dl,(9), (4)

where the internal forces™ are given by

F't(¢)v = / P(¢) : Ovdx.
Jo

3 Discretization

For the discretization of the problem we use the method of tayers, i.e. discretize
firstin time and then in space. We will start with the desdoipof the modified mid-

point rule and then state the finite element and mortar digat®n of the contact
constraints.

3.1 Time discretization

Let0=1% <t <... <tN =T be a subdivision of the time intervé0, T] into—
for simplicity—equidistant time steps= t“** —t*, and denote bg" = ¢ (t") the
numerical approximation o at time stept". For the time discretization of the
differential inclusion[(#) we construct a modified midpointe by approximating
the velocity and displacement by second order Taylor expans

2
T° . .
¢n+l _ ¢n_|_ T¢n+ Z(¢n+1+¢n)’
T, .
PTE=9"+ 58"+ 9",
and evaluating the differential inclusion at the averagétpwints

o2 974"
: S
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This leads to the following differential inclusion and upeléormula
Oe %p(¢n+l_ ¢n_ T¢n) +Fint(¢n+l/2) _'_al(}{//(¢n—%—1/2)7
2
n+l_ Soantl g0y an
Pt = (99" — .

In the absence of contact this midpoint rule is known not tebergy dissipative
in general[[12]. As energy dissipation is the main critedadtability we propose
the following modification which is motivated by a similarriruction by Kane et
al. [7] for the Newmark method, where the contact forces efdhd time step are
treated implicitly. We evaluate the generalized gradi#hy at the new displace-
ment¢ "1 instead of the averaged midpoint. The modified time disdretieision
then reads

0 Zp(8™ — 9"~ T") +FM(B"H2) 1910 (471,

While there is no proof of the dissipativity of this time intagpr, we nevertheless
observe in the numerical experiments in Secfibn 4 a mucletetergy behaviour.
In particular, the total energy of the system stays bounded.

3.2 Spatial discretization

Assume thatQ, and Q. are discretized by conforming grid3;, and Q.. We
discretize the nonlinear elasticity problem in the sp&g¢ef first-order Lagrangian
finite elements, and the non-penetration constraint usmgrdéar method [13]. This
means that we replace the strong non-penetration cortsfBhiby a weak integral
one on the deformed contact surfage(I )

/ g6hds>0 V8, e M.
#n(rd)

As the mortar spaclsa’lh+ we choose the positive cone of the dual basis mortar space
[13], which is characterized by a biorthogonality relatieith the nodal basis func-
tions of §,. The corresponding set of admissible solutions is

%:{Vhe&(fzh):/'ﬁ(rl)gehdszo veheM,f}.
h\'c

Note that.#; is again closed and nonconvex, but that it is not a subsgt'ofThe
fully discrete problem reads
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Fig. 2 Initial configuration
gravity
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= (45”+1 $n) — dh.

By Propositiori ]l we get the following characterization af thiscrete problem

Lemmal A solut|on¢>r“rl of the differential inclusior{g) is a stationary point of
the functional

F(v) = le/Qh(pv7v—2¢ﬂ—2r¢ﬂ)dx+2/9hw<V+2¢R> d

in the discrete admissible sef;,.

We expect the stationary point to be a minimizer when the stee size is small.
This suggests to tredt]l(5) as a minimization problem for acoowex but smooth
energy functional, with nonconvex inequality constraints

4 Numerical results

We will now examine the energy behaviour of the proposedrsetfer a St. Venant—
Kirchhoff material with Young’s modulug = 1 MPa and Poisson ratiw= 0.3 and
densityp = 0.1 g/cn?. As the reference configuration we consider a rectangular
body that is fixed by prescribing homogeneous Dirichlet ®alan the lower bound-
ary. A spherical body is located at a distance of 2 mm abovdsagiven an initial
angular velocity of(0,2,0) m/s plus a translational velocity ¢2,0,0) m/s. Addi-
tionally both bodies are subjected to gravity. As the reshi ball bounces along
the foundation (Figurgl 2).

The discrete spatial problems are solved by a Trust-Reg@® @ethod, cf[[11]
for more details. For the inner quadratic problems withdiieed constraints we
use a monotone multigrid methad [14], which allows to solverelarge problems
efficiently. The implementation is based on theNE libraries [1].

The left of Figurd B shows the total energy for different tistep sizes. There
is no increase in energy, and for small enough time step Hiees is some energy
loss only when the ball hits the foundation. The loss of epeeguces with smaller
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Fig. 3 Total Energy. Left: Energy over time for different time step siZRight: Comparison of the
proposed integrator with the unmodified midpoint rule.

time step sizes. At each impact we also see small oscilktibat are typical for
symplectic integrators.

Next we compare the proposed method against the unmodifidlomnit rule for
the same model problem with a fixed time step size ef 0.001s. In the right
of Figure[3 the total energy of both methods is shown, and ameobserve the
improved behaviour of the modified midpoint rule. While thengdified midpoint
rule gains energy at each impact, the modified rule staydipadyg dissipative.
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