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Abstract We present a discretization for dynamic large deformation contact prob-
lems without friction. Our model is based on Hamilton’s principle, which avoids the
explicit appearance of the contact forces. The resulting differential inclusion is dis-
cretized in time using a modified midpoint rule. This modification, which concerns
the evaluation of the generalized gradient, allows to achieve energy dissipativity. For
the space discretization we use a dual-basis mortar method.The resulting spatial al-
gebraic problems are nonconvex minimization problems withnonconvex inequality
constraints. These can be solved efficiently using a trust-region SQP framework with
a monotone multigrid inner solver.
Keywords: frictionless dynamic contact, large deformations, modified midpoint rule, mortar

method, multigrid SQP method

1 Introduction

In linear contact dynamics robust time discretizations have been developed on the
basis of the Newmark method, cf. [8]. In nonlinear mechanics, however, most of
these integrators lose their robustness as linear (spectral) stability is not sufficient
anymore. It has been shown that energy dissipation is the main criterion for stability
in nonlinear mechanics [2]. This motivates the construction of time discretization
schemes that algorithmically enforce the conservation of energy and momentum.

In [5] Hartmann and Ramm combined the Generalized Energy–Momentum
method [12] and a discrete contact velocity update [10] to construct a scheme con-
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serving energy and linear momentum. Hesch and Betsch used the discrete derivative
proposed by Gonzales [4] which results in a momentum conserving method that
conserves energy if a discrete persistency condition holds[6].

In all of the above models the contact forces appear explicitly, which requires the
solution of generalized saddle point systems or the use of penalty methods. We avoid
both issues by developing a variational integrator discretizing Hamilton’s principle
directly. This approach has been used by Kane et al. [7] in a model for contact
problems between nonsmooth bodies. The approach leads to a differential inclusion
involving generalized gradients [3], which has the advantage that no discretization
of the contact forces is necessary, as they enter only implicitly. We propose a mid-
point rule for the temporal discretization of the inclusionwhich is known to conserve
momenta in the absence of contact [12]. To additionally achieve energy dissipation
we further modify the resulting integrator by evaluating the generalized gradient at
the new configuration instead of the averaged one. This is motivated by the proven
dissipativity of a modified Newmark method for linearized contact problems, where
the contact forces of the old time step are treated completely implicitly [8].

For the discretization of the contact constraints we apply amortar method [13]
with dual basis functions as proposed by Krause and Wohlmuth[14] for linear con-
tact problems. The fully discrete problems that have to be solved in each time step
are equivalent to nonconvex minimization problems which wesolve using a trust-
region SQP method with a monotone multigrid method as the interior solver [11].

2 The continuous problem

First we present the continuous problem, and briefly derive the weak equations of
motion resulting from Hamilton’s principle.

Nonlinear elasticity

Let Ω1,Ω2 ⊂R
d be two domains denoting the reference configurations of two bod-

ies. Their boundaries, with unit outer normalsni , are supposed to be decomposed
into disjoint parts∂Ω i = Γ i

D ∪Γ i
N ∪Γ i

C. Let ϕϕϕ i : Ωi × [0,T]→ R
d, injective and suf-

ficiently smooth, denote the current configuration of the body Ωi .
In the framework of large deformations the equations of motion in reference

coordinates are given in terms of the first Piola–Kirchhoff stress tensorPi = Pi(ϕϕϕ i),
and read

div(Pi)+ fi = ρϕ̈ϕϕ i in Ωi

Pini = ti onΓ i
N (1)

ϕϕϕ i = ϕϕϕ i
D onΓ i

D,
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Fig. 1 Non-penetration condition. Left: Feasible configuration,νννΦΦΦ points in the direction ofX−
Φ(X). Right: Unfeasible configuration,νννΦΦΦ points away fromX−Φ(X).

whereti andϕϕϕ i
D are prescribed surface tractions and displacements, respectively,

andρ is the material density. The equations are supplemented with initial displace-
ments and velocities

ϕϕϕ i(0) = ϕϕϕ i
0, ϕ̇ϕϕ i(0) = vi

0 on Ωi .

We consider hyperelastic materials only, i.e. materials for which there exists a strain
energy functionalW such that the first Piola–Kirchhoff stress is given by

P =
∂W(X,F)

∂F
,

whereF = ∇ϕϕϕ denotes the deformation gradient.

Large deformation contact

We enforce non-penetration of the two bodies using the contact model introduced
by Laursen [9]. TheΓ i

C, introduced above, denote the parts of the boundaries that
may come into contact. We identify these two surfaces with each other by the time-
dependent closest point projection

Φ : Γ 1
C × [0,T]−→ Γ 2

C

Φ(X, t) := argmin
Y∈Γ 2

C

∥

∥ϕϕϕ1(X, t)−ϕϕϕ2(Y, t)
∥

∥.

This projection defines a vector field on the deformed contactpatchϕϕϕ2(Γ 2
C ) by

νννΦ(X, t) :=
ϕϕϕ1(X, t)−ϕϕϕ2◦Φ(X, t)

||ϕϕϕ1(X, t)−ϕϕϕ2◦Φ(X, t)||
sgn(ϕϕϕ),
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where sgn(ϕϕϕ) is chosen such thatνννΦ(t) points outward ofϕϕϕ2(Γ 2
C ). Note thatνννΦ

is normal toϕϕϕ2(Γ 2
C ) sinceΦ is a best approximation. The gap functiong : Γ 1

C ×
[0,T]→ R can then be defined as

g(X, t) := νννΦ(X, t) ·
(

ϕϕϕ1(X, t)−ϕϕϕ2◦Φ(X, t)
)

,

and non-penetration is achieved by enforcing

g(X, t)≥ 0 ∀(X, t) ∈ Γ 1
C × [0,T]. (2)

To see why this works note that for unfeasible deformations the vectorsϕϕϕ1−ϕϕϕ2◦Φ
andνννΦ point in opposite directions by the choice of sgn(ϕϕϕ), and the gap function
becomes negative (Fig. 1).

Weak equations of motion

In contact dynamics it is common to add the virtual work of theunknown con-
tact forces directly to the weak equations of motions, whichresults in a variational
equation for the deformations and the contact tractions [5,6]. We use a different
approach and derive weak equations of motion by applying Hamilton’s principle to
a nonsmooth Lagrangian [7]. This results in a differential inclusion which has the
advantage that the contact forces do not enter explicitly and thus will not have to
be discretized. For simplicity we assume vanishing external forces fi = 0, ti = 0.
Also for simplicity we assume that the Dirichlet boundary values, if present at all,
are constant in time. We writeH1

D(Ω) for the standard first-order Sobolev space of
d-valued functions that satisfy the Dirichlet condition.

Hamilton’s principle states that the evolution of a dynamical system during a time
interval[0,T] with LagrangianL(u, u̇) is a stationary point of the action integral

I (ϕϕϕ) :=
∫ T

0
L(ϕϕϕ , ϕ̇ϕϕ)dt.

For hyperelastic materials the Lagrangian is of the form

L(ϕϕϕ, ϕ̇ϕϕ) = ρ(ϕ̇ϕϕ, ϕ̇ϕϕ)L2(Ω)−
∫

Ω
W(∇ϕϕϕ)dx,

and the corresponding Euler–Lagrange equations are (1).
We incorporate non-penetration of the two bodies by adding the indicator func-

tion IK of the nonconvex set of feasible solutions

K :=
{

v ∈ H1
D(Ω) : g(X)≥ 0 a.e. onΓ 1

C

}

to the potential energy, which ensures that the trajectory stays feasible at all times.
The resulting new Lagrangian
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L̃(ϕϕϕ, ϕ̇ϕϕ) := L(ϕϕϕ , ϕ̇ϕϕ)− IK (ϕϕϕ). (3)

is nonsmooth and, due to the nonconvexity ofK , not even subdifferentiable. Nev-
ertheless it is possible to derive Euler–Lagrange equations by using the concept of
generalized gradients∂∂∂ in the sense of Rockafellar and Clarke [3], for which the
following first-order optimality criterion has been shown:

Proposition 1 ([3], Prop. 2.4.11). Let X be a Banach space and f: X → [−∞,+∞]
be finite atu. If u is a local extremal point of f then0∈ ∂∂∂ f (u).

Application of this stationary condition to the nonsmooth Lagrangian (3) leads to
the Euler–Lagrange differential inclusion

0∈ ∂∂∂ L̃ = ρϕ̈ϕϕ +Fint(ϕϕϕ)+∂∂∂ IK (ϕϕϕ), (4)

where the internal forcesFint are given by

Fint(ϕϕϕ)v :=
∫

Ω
P(ϕϕϕ) : ∇vdx.

3 Discretization

For the discretization of the problem we use the method of time layers, i.e. discretize
first in time and then in space. We will start with the description of the modified mid-
point rule and then state the finite element and mortar discretization of the contact
constraints.

3.1 Time discretization

Let 0= t0 < t1 < .. . < tN = T be a subdivision of the time interval[0,T] into—
for simplicity—equidistant time stepsτ = tk+1− tk, and denote byϕϕϕn = ϕϕϕ(tn) the
numerical approximation ofϕϕϕ at time steptn. For the time discretization of the
differential inclusion (4) we construct a modified midpointrule by approximating
the velocity and displacement by second order Taylor expansion

ϕϕϕn+1 = ϕϕϕn+ τϕ̇ϕϕn+
τ2

4
(ϕ̈ϕϕn+1+ ϕ̈ϕϕn),

ϕ̇ϕϕn+1 = ϕ̇ϕϕn+
τ
2
(ϕ̈ϕϕn+1+ ϕ̈ϕϕn),

and evaluating the differential inclusion at the averaged midpoints

ϕϕϕn+1/2 :=
ϕϕϕn+1+ϕϕϕn

2
.
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This leads to the following differential inclusion and update formula

0∈
2
τ2 ρ(ϕϕϕn+1−ϕϕϕn− τϕ̇ϕϕn)+Fint(ϕϕϕn+1/2)+∂∂∂ IK (ϕϕϕn+1/2),

ϕ̇ϕϕn+1 =
2
τ
(ϕϕϕn+1−ϕϕϕn)− ϕ̇ϕϕn.

In the absence of contact this midpoint rule is known not to beenergy dissipative
in general [12]. As energy dissipation is the main criteria for stability we propose
the following modification which is motivated by a similar construction by Kane et
al. [7] for the Newmark method, where the contact forces of the old time step are
treated implicitly. We evaluate the generalized gradient∂∂∂ IK at the new displace-
mentϕϕϕn+1 instead of the averaged midpoint. The modified time discreteinclusion
then reads

0∈
2
τ2 ρ(ϕϕϕn+1−ϕϕϕn− τϕ̇ϕϕn)+Fint(ϕϕϕn+1/2)+∂∂∂ IK (ϕϕϕn+1).

While there is no proof of the dissipativity of this time integrator, we nevertheless
observe in the numerical experiments in Section 4 a much better energy behaviour.
In particular, the total energy of the system stays bounded.

3.2 Spatial discretization

Assume thatΩ1 and Ω2 are discretized by conforming gridsΩ1,h and Ω2,h. We
discretize the nonlinear elasticity problem in the spaceSh of first-order Lagrangian
finite elements, and the non-penetration constraint using amortar method [13]. This
means that we replace the strong non-penetration constraint (2) by a weak integral
one on the deformed contact surfaceϕϕϕh(Γ 1

C )

∫

ϕϕϕh(Γ 1
C )

gθhds≥ 0 ∀θh ∈ M+
h .

As the mortar spaceM+
h we choose the positive cone of the dual basis mortar space

[13], which is characterized by a biorthogonality relationwith the nodal basis func-
tions ofSSSh. The corresponding set of admissible solutions is

Kh =
{

vh ∈ Sh(Ωh) :
∫

ϕϕϕh(Γ 1
C )

gθhds≥ 0 ∀θh ∈ M+
h

}

.

Note thatKh is again closed and nonconvex, but that it is not a subset ofK . The
fully discrete problem reads
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Fig. 2 Initial configuration

0∈
2
τ2 ρ(ϕϕϕn+1

h −ϕϕϕn
h− τϕ̇ϕϕn

h)+Fint(ϕϕϕn+1/2
h )+∂∂∂ IKh

(ϕϕϕn+1
h ), (5)

ϕ̇ϕϕn+1
h =

2
τ
(ϕϕϕn+1

h −ϕϕϕn
h)− ϕ̇ϕϕn

h.

By Proposition 1 we get the following characterization of the discrete problem

Lemma 1. A solutionϕϕϕn+1
h of the differential inclusion(5) is a stationary point of

the functional

J (v) :=
1
τ2

∫

Ωh

(ρv,v−2ϕϕϕn
h−2τϕ̇ϕϕn

h)dx+2
∫

Ωh

W

(

v+ϕϕϕn
h

2

)

dx

in the discrete admissible setKh.

We expect the stationary point to be a minimizer when the timestep size is small.
This suggests to treat (5) as a minimization problem for a nonconvex but smooth
energy functional, with nonconvex inequality constraints.

4 Numerical results

We will now examine the energy behaviour of the proposed scheme for a St. Venant–
Kirchhoff material with Young’s modulusE = 1 MPa and Poisson ratioν = 0.3 and
densityρ = 0.1 g/cm3. As the reference configuration we consider a rectangular
body that is fixed by prescribing homogeneous Dirichlet values on the lower bound-
ary. A spherical body is located at a distance of 2 mm above andis given an initial
angular velocity of(0,2,0)m/s plus a translational velocity of(2,0,0)m/s. Addi-
tionally both bodies are subjected to gravity. As the result, the ball bounces along
the foundation (Figure 2).

The discrete spatial problems are solved by a Trust-Region SQP method, cf. [11]
for more details. For the inner quadratic problems with linearized constraints we
use a monotone multigrid method [14], which allows to solve even large problems
efficiently. The implementation is based on the DUNE libraries [1].

The left of Figure 3 shows the total energy for different timestep sizes. There
is no increase in energy, and for small enough time step sizesthere is some energy
loss only when the ball hits the foundation. The loss of energy reduces with smaller
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Fig. 3 Total Energy. Left: Energy over time for different time step sizes. Right: Comparison of the
proposed integrator with the unmodified midpoint rule.

time step sizes. At each impact we also see small oscillations that are typical for
symplectic integrators.

Next we compare the proposed method against the unmodified midpoint rule for
the same model problem with a fixed time step size ofτ = 0.001 s. In the right
of Figure 3 the total energy of both methods is shown, and one can observe the
improved behaviour of the modified midpoint rule. While the unmodified midpoint
rule gains energy at each impact, the modified rule stays practically dissipative.
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