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Abstract

We discuss an efficient algorithm for optimal Hankel norm approximation of large-scale
systems and an implementation which allows to reduce models of order up to O(104) using
parallel computing techniques. The major computational tasks in this approach are the
computation of a minimal balanced realization, involving the solution of two Lyapunov
equations, and the additive decomposition of a transfer function via block diagonalization.
We will illustrate that these computational tasks can all be performed using iterative
schemes for the matrix sign function. Numerical experiments on a cluster of Linux PCs
show the efficiency of our methods.

1 Introduction

Consider the transfer function matrix (TFM) G(s) = C(sI −A)−1B + D, and the associated
stable, but not necessarily minimal, realization of a linear time-invariant (LTI) system,

ẋ(t) = Ax(t) + Bu(t), t > 0,
y(t) = Cx(t) + Du(t), t ≥ 0

(1)

with A ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n, and D ∈ IRp×m. We assume that A is stable, i.e.,
the spectrum of A, denoted by Λ(A), is contained in the open left half plane. This implies
that the system (1) is stable, that is, all the poles of G(s) have strictly negative real parts.
The number of state variables n is known as the order of the system.

We are interested in finding a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂û(t), t > 0,

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0
(2)

of order r, r ≪ n, such that the TFM Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ approximates G(s).
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A well-known approach for model reduction is based on state-space truncation or pro-
jected dynamics; see, e.g., the recent monographs [1, 2]. Methods based on truncated state-
space transformations usually differ in the measurement of the approximation error and the
way they attempt to minimize this error. Balanced truncation (BT) methods [3, 4, 5, 6],
singular perturbation approximation (SPA) methods [7], and Hankel norm approximation
(HNA) methods [8] all belong to the family of absolute error methods, which try to minimize
‖∆a‖ = ‖G − Ĝ‖ for some system norm ‖ . ‖. BT and SPA model reduction methods aim at
minimizing the H∞-norm norm of the error system G − Ĝ, defined as

‖G‖∞ = ess sup
ω∈IR

σmax(G(ω)), (3)

where  :=
√
−1 and σmax(M) is the largest singular value of the matrix M . However, they

usually do not succeed in finding an optimal approximation; see [9]. A different option is to
use the Hankel norm of a stable rational transfer function, defined by

‖G‖H := σ1(G), (4)

where σ1(G) is the largest Hankel singular value of G. Note that ‖G‖H is only a semi-norm
on the Hardy space H∞ as ‖G‖H = 0 does not imply G ≡ 0. However, semi-norms are often
easier to minimize than norms. In particular, using the Hankel norm it is possible to compute
a best order-r approximation to a given transfer function in H∞. It is shown in [8] that a
reduced-order transfer function Ĝ of order r can be computed that minimizes the Hankel
norm of the approximation error in the following sense:

‖G − Ĝ‖H = σr+1 ≤ ‖G − G̃‖H

for all stable transfer functions G̃ of McMillan degree less than or equal to r. Moreover, there
are explicit formulae to compute such a realization of Ĝ.

The derivation of a realization of Ĝ is quite involved. Due to space limitations, we refer
the reader to [8, 10]. In the next section, we only describe the essential computational tools
required in an implementation of the HNA method. We will discuss an efficient implemen-
tation of this algorithm that allows to compute an optimal HNA for large-scale systems, of
order up to O(104), using parallel computing techniques. The major computational tasks
involved are the computation of a minimal balanced realization, which requires the solution
of two Lyapunov equations, and an additive decomposition of a transfer function into its
stable and unstable parts. The additive decomposition can be performed via a block diago-
nalization of a matrix computed from a spectral division method followed by the solution of
a Sylvester equation. All these computational tasks can be solved using special variants of
Newton iteration for the sign function [11] which are specially appropriate for implementation
on (parallel) high-performance computers. Numerical experiments on a cluster of Linux PCs
will be reported in Section 3, showing the efficiency of our methods with respect to model
reduction abilities and savings of computation time. Parallelization not only yields results
faster than on serial computers, but also allows to solve larger problems on desktop computers
because of the possibility of using the resources (memory) of several machines.
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2 Computing the optimal Hankel norm approximation

2.1 The HNA reduced-order model

The computation of a realization (Â, B̂, Ĉ, D̂) of the reduced-order model essentially consists
of four steps.

In the first step, a balanced minimal realization of G is computed. This can be done
using the square-root version of the BT method described in [12, 5] where we utilize the
implementation described in [13]. That is, we compute full-rank factorizations of the system
Gramians using a factored form of the sign function method for Lyapunov equations; for
details of the algorithm and numerical tests reporting the efficiency, accuracy, and parallel
performance of this approach see [13].

Next a transfer function
G̃(s) = C̃(sI − Ã)−1B̃ + D̃

with the same McMillan degree as the original system (1) is computed as follows: first, the
order r of the reduced-order model is chosen such that the Hankel singular values of G satisfy

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σr+k > σr+k+1 ≥ . . . . . . ≥ σnmin
> 0, k ≥ 1.

Then, by applying appropriate permutations, the minimal balanced realization of G is re-
ordered such that the Gramians become

[

Σ̌
σr+1Ik

]

.

In a third step, the resulting balanced realization given by Ǎ, B̌, Č, Ď is partitioned ac-
cording to the partitioning of the Gramians, i.e.,

Ǎ =

[

A11 A12

A21 A22

]

, B̌ =

[

B1

B2

]

, Č = [ C1 C2],

where A11 ∈ IRn−k×n−k, B1 ∈ IRn−k×m, C1 ∈ IRp×n−k. Then the following formulae define a
realization of G̃:

Ã = Γ−1(σ2
r+1A

T
11 + Σ̌A11Σ̌ + σr+1C

T
1 UBT

1 ),

B̃ = Γ−1(Σ̌B1 − σr+1C
T
1 U),

C̃ = C1Σ̌ − σr+1UBT
1 ,

D̃ = D + σr+1U.

(5)

Here, U := (CT
2 )†B2, where M † denotes the pseudoinverse of M , and Γ := Σ̌2 − σ2

r+1In−k.

Finally, we compute an additive decomposition of G̃ such that G̃(s) = G̃−(s) + G̃+(s)
where G̃− is stable and G̃+ is anti-stable. Then Ĝ := G̃− is an optimal r-th order Hankel
norm approximation of G.

We have implemented the additive decomposition of G̃ via a block diagonalization of Ã,
where we first compute a block Schur form using the sign function of Ã and then annihilate the
off-diagonal block by solving a Sylvester equation using again a sign function-based iterative
solution procedure. We will now describe this additive decomposition procedure in detail.
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2.2 Additive decomposition of a transfer function

As the following procedure can be used for an additive decomposition of any transfer function
having no poles on the imaginary axis, and therefore has many other applications apart
from HNA, we present the method in terms of a generic realization (A, B, C, D) of a transfer
function T (s) without poles on the imaginary axis.

First, we introduce the sign function method [11] as it will serve as the major tool in the
computations. Consider a matrix Z ∈ IRn×n with Λ (Z) ∩ ıIR = ∅ and let

Z = S

[

J− 0
0 J+

]

S−1

be its Jordan decomposition. Here, the Jordan blocks in J− ∈ IRk×k and J+ ∈ IR(n−k)×(n−k)

contain, respectively, the eigenvalues of Z in the open left and right half of the complex plane,
denoted as Λ (J−) ⊂ C− and Λ (J+) ⊂ C+, respectively. The matrix sign function of Z is
defined as

sign (Z) := S

[

−Ik 0
0 In−k

]

S−1,

where Ik states for the identity matrix of order k. Note that sign (Z) is unique and indepen-
dent of the order of the eigenvalues in the Jordan decomposition of Z. Many other definitions
of the sign function can be given; see [14] for an overview.

The matrix sign function has proved useful in many problems involving spectral decom-
position as (In − sign (Z))/2 defines the skew projector onto the stable Z–invariant subspace
parallel to the unstable subspace. (By the stable invariant subspace of Z we denote the
Z–invariant subspace corresponding to the eigenvalues of Z in C−.)

Applying Newton’s root-finding iteration to Z2 = In, where the starting point is chosen
as Z, we obtain the Newton iteration for the matrix sign function:

Z0 ← Z,

Zk+1 ← 1

2
(Zk + Z−1

k ), k = 0, 1, 2, . . . (6)

Under the given assumptions, the sequence {Zk}∞k=0 converges to sign (Z) = limk→∞ Zk [11]
with a locally quadratic convergence rate. As initial convergence may be slow, acceleration
techniques are used, e.g., determinantal scaling [15]:

Zk ← ckZk, ck = |det (Zk)|−
1

n ,

where det (Zk) denotes the determinant of Zk. Other acceleration schemes can be employed;
see [16] for a comparison of these schemes.

Once we have computed sign (Z), we can compute an orthogonal basis for the stable or
anti-stable right invariant subspace of Z by computing a (rank-revealing) QR factorization
[17] of In − sign (Z) or In + sign (Z), respectively. Specifically, let

In − sign (Z) = QRP,

where

R =

[

R11 R12

0 0

]

=

[

@
]

, R11 ∈ IRk×k,
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and P is a permutation matrix. Then

Z̃ := QT ZQ =

[

Z11 Z12

0 Z22

]

(7)

where Λ (Z11) = Λ (Z) ∩ C−, Λ (Z22) = Λ (Z) ∩ C−.
In a second step, we compute a matrix V such that

Ẑ := V −1Z̃V =

[

Z11 0
0 Z22

]

.

Note that, under the given assumption,

V =

[

Ik Y
0 In−k

]

,

where Y ∈ IRk×n−k satisfies the Sylvester equation

Z11Y − Y Z22 + Z12 = 0. (8)

As Λ (Z11) ∩ Λ (Z22) = ∅, (8) has a unique solution [18]. Also, notice that V −1 =
[

Ik

0
−Y
In−k

]

.

The Sylvester equation (8) can again be solved using a sign function-based procedure. For
an equation

EY − Y F + W = 0,

with E and −F stable matrices, this iterative scheme, already derived in [11], can be written
as follows

E0 := E, F0 := F, W0 := W,
for j = 0, 1, 2, . . .

Ej+1 := 1
2

(

Ej + E−1
j

)

,

Fj+1 := 1
2

(

Fj + F−1
j

)

,

Wj+1 := 1
2

(

Wj + E−1
j WjF

−1
j

)

,

(9)

It follows that limj→∞ Ej = −Ik, limj→∞ Fj = In−k, and

Y =
1

2
lim

j→∞
Wj .

For an efficient implementation of this iteration on modern computer architectures and nu-
merical experiments reporting efficiency and accuracy, see [19].

Applying the above steps to the matrix A from the realization of T (s) we now obtain the
desired additive decomposition of T (s) = C(sI−A)−1B +D as follows: perform a state space
transformation

(Â, B̂, ĈD̂) := (V −1QT AQV, V −1QT B, CQV, D)

and partition

Â =

[

A11 A12

A21 A22

]

, B̂ =

[

B1

B2

]

, Ĉ = [ C1 C2],
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according to the partitioning in (7). Then

T (s) = C(sI − A)−1B + D = Ĉ(sI − Â)−1B̂ + D̂

=
[

C1 C2

]

[

(sIk − A11)
−1

(sIn−k − A22)
−1

] [

B1

B2

]

+ D

= {Ĉ1(sIk − A11)
−1B1} + {C2(sIn−k − A22)

−1B2 + D}
=: T−(s) + T+(s),

where T−(s) is a stable transfer function and T+(s) is an anti-stable transfer function.
The complete procedure for computing an optimal r–th order Hankel norm approximation

of a transfer function is summarized in Table 1

1. Compute a balanced minimal realization of G with Gramians

P = Q = diag(σ1, . . . , σnmin
),

where nmin is the McMillan degree of the system.

2. Choose r such that σr+1 > σr. Permute the balanced realization such
that the Gramians of the transformed system are

P̃ = Q̃ = diag(σ1, . . . , σr, σr+1+mr+1
, . . . , σnmin

, σr+1Imr+1
)

=: diag(Σ, σr+1Imr+1
),

where mr+1 is the multiplicity of σr+1 as a Hankel singular value of G.

3. Partition the resulting realization

Ã =:

[

A11 A12

A21 A22

]

, B̃ =:

[

B1

B2

]

, C̃ =:
[

C1 C2

]

,

such that A22 ∈ IRmr+1×mr+1 . Then compute Â, B̂, Ĉ, D̂ as in (5).

4. Compute an additive decomposition

G̃ = C̃(sI − Ã)−1B̃ + D̃ = Ĝ−(s) + Ĝ+(s),

with stable Ĝ := Ĝ− and anti-stable Ĝ+ using the method described in
Section 2.2.

Table 1: Computing an optimal r–th order Hankel norm approximation

3 Numerical experiments

We implemented the algorithm described in Table 1 as subroutine PAB09CX of the Parallel

Library in Control – Model Reduction (PLiCMR) [20] using the message-passing
paradigm and the parallel linear algebra kernels in ScaLAPACK [21]. In order to compute a
minimal realization we used the PLiCMR version of balanced truncation, described in [13].
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Example n m p σ1 η r

Eady 598 1 1 9.9 × 10+2 1.0 × 10−3 9

CDplayer 120 2 2 1.2 × 10+6 1.0 × 10−8 42

FOM 1006 1 1 5.0 × 10+1 1.0 × 10−3 10

PDE 84 1 1 5.3 × 10+0 1.0 × 10−3 2

Heat 200 1 1 3.3 × 10−2 1.0 × 10−3 4

ISS 270 3 3 5.8 × 10−2 1.0 × 10−3 36

Build 48 1 1 2.5 × 10−3 1.0 × 10−3 30

Beam 348 1 1 2.4 × 10+3 1.0 × 10−3 12

Table 2: Parameters of the examples employed in the numerical evaluation of the parallel
model reduction routines.

All the experiments presented in this section were performed on a cluster of 32 nodes using
ieee double-precision floating-point arithmetic (ε ≈ 2.2204 × 10−16). Each node consists of
an Intel Pentium-II processor at 300 MHz, and 128 MBytes of RAM. We employ a BLAS
library, specially tuned for the Pentium-II processor as part of the ATLAS and ITXGEMM
projects [22, 23], that achieves around 180 Mflops (millions of flops per second) for the ma-
trix product (routine DGEMM). The nodes are connected via a Myrinet crossbar network; the
communication library BLACS is based on an implementation of MPI specially developed
and tuned for this network. The performance of the interconnection network was measured
by a simple loop-back message transfer resulting in a latency of 33 µsec and a bandwidth of
200 Mbit/sec. We made use of the LAPACK, PBLAS, and ScaLAPACK libraries wherever
possible.

We first evaluate the accuracy of the Hankel norm approximations by comparing the
frequency responses of the transfer functions from input k to output j of the reduced-order
systems computed with the SLICOT subroutine AB09CD [24, 25] and our parallel PLiCMR
routine PAB09CX. In other words, we compare |Gjk( ω)|, 1 ≤ j ≤ p, 1 ≤ k ≤ m, with the Ĝjk

of the computed reduced-order systems.
For comparison purposes we test the routines for eight different examples from very differ-

ent applications. For a detailed description of the models see [26] and the references therein.
Table 2 shows the parameters of the systems used here. In order to fix the order of the
reduced-order system automatically, both the SLICOT and PLiCMR routines select r so that

σr > max(τ1, n · ε · σ1) > σr+1,

where ε is the machine precision and τ1 is a user-specified tolerance threshold. In our case, we
set τ1 = η ·σ1, where the value η is adjusted for each particular case as shown in the table. In
order to determine a minimal realization of the system, a second tolerance max(τ2, n · ε · σ1)
is needed. In our experiments we used τ2 = 0.

The results summarized in Table 3 show that the approximation error, here measured in
the H∞ norm, is equal in all cases except for the CD player example. However, Figure 1 shows
that the approximation quality for this particular example is equal for both implementations.

Due to space limitations, we do not display the Bode plots for all tested examples. The
more interesting ones are the ISS (International Space Station), the building and beam
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Example AB09CD PAB09CX

Eady 4.9 × 10−1 4.9 × 10−1

CDplayer 3.8 × 10−2 5.9 × 10−2

FOM 7.1 × 10−2 7.1 × 10−2

PDE 7.4 × 10−3 7.4 × 10−3

Heat 2.9 × 10−5 2.9 × 10−5

ISS 1.1 × 10−4 1.1 × 10−4

Build 4.6 × 10−6 4.6 × 10−6

Beam 2.0 × 10+0 2.0 × 10+0

Table 3: Absolute errors of the reduced-order models computed by the SLICOT and PLiCMR
HNA subroutines.
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Figure 1: Accuracy of HNAs for CD Player example. G11, G22 are easy to approximate and
are therefore not displayed.

examples—for the other examples, the transfer function is smooth and easy to approximate.
Figure 2 shows the magnitudes of two of the nine input-output maps for the ISS which exhibit
the typical behavior in this example; Figure 3 shows the frequency responses for the building
and beam examples. The plots also report equal approximation quality for the SLICOT and
PLiCMR routines.

Next we analyze the performance of our parallel HNA subroutine using a random scalable
LTI system constructed as follows. First, we generate a random positive semidefinite diagonal
Gramian Wc = diag(Σq1

, Σq2
, 0q3

, 0q4
), where Σq1

∈ IRq1×q1 contains the desired Hankel singu-
lar values for the system and Σq2

∈ IRq2×q2 . Then, we construct a random positive semidefinite
diagonal Gramian Wo = diag(Σq1

, 0q2
, Σq3

, 0q4
), with Σq3

∈ IRq3×q3 . Next, we set A to a ran-
dom stable diagonal matrix and compute F = −(AWc + WcA

T ) and G = −(AT Wo + WoA).
Thus,

F = diag(f1, f2, . . . , fq1+q2
, 0q3+q4

),

G = diag(g1, g2, . . . , gq1
, 0, . . . , 0, gq1+q2+1, . . . , gq1+q2+q3

, 0q4
).
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Figure 2: Accuracy of HNAs for ISS example. The approximations of all other Gij behave
similarly.
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Figure 3: Accuracy of HNAs for the Building example (left plot) and the Beam example
(right plot).

A matrix B ∈ IRn×(q1+q2) such that F = BBT is then obtained as

B = diag(
√

f1,
√

f2, . . . ,
√

fq1+q2
).

The procedure for obtaining C is analogous. The LTI system is finally transformed into
A := UT AU , B := UT B, and C := CU using a random orthogonal transformation U ∈ IRn×n.
The system thus defined has a minimal realization of order r = q1. The Cholesky factors
satisfy rank (S) = q1 + q2 and rank (R) = q1 + q3.

We evaluate the efficiency of the parallel algorithm computing a reduced model of order
r = 40 of a random LTI system with n = 1000, m = p = 100. Figure 4 reports the
execution times of the serial routines for model reduction in SLICOT and the corresponding
parallel algorithms as the number of nodes, np, is increased. The results show a considerable
acceleration achieved by the parallel algorithm (with even super speed-ups). This is partially
due to the efficiency of the Lyapunov solvers used in our algorithms which compute factors
of the Gramians in compact (full-rank) form instead of square matrices, thus requiring less
computations. Comparison of the results on 2 and 4 nodes roughly shows the efficiency of
the parallel algorithm. The execution time is reduced by a factor of almost 2 (the number
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Figure 4: Execution times of HNA subroutines AB09CD (result on 1 node) and PAB09CX (results
on more than 1 node) for the random system (n = 1000) with q1 = q2 = q3 = 25 (left plot)
and q1 = q2 = q3 = 100 (right plot).

of resources, that is nodes, is doubled). Using a larger number of nodes does not achieve a
significant reduction of the execution time due to the small ratio n/

√
np.

4 Conclusions

We have presented a numerical algorithm for computing optimal Hankel norm approximations
to rational transfer functions. The method is suitable for parallel computing and allows the
application of HNA to systems of order as big as n = O(104). Several examples demonstrate
the accuracy and efficiency of our parallel implementation.
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