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Abstract. We discuss the possibility of computing eigenpairs
of some prototypical linear second-order self-adjoint elliptic par-
tial differential operator (or its high-resolution finite element dis-
cretization) by numerical upscaling techniques. We compute a low-
dimensional generalized finite element space that preserves small
eigenvalues in a superconvergent way. The approximate eigenpairs
are then obtained by solving the corresponding low-dimensional
algebraic eigenvalue problem. The rigorous error bounds are based
on two-scale decompositions of H1(Ω) by means of a certain Clément-
type quasi-interpolation operator.

1. Introduction

In this paper, we present and analyze a numerical upscaling tech-
nique for computing eigenpairs of self-adjoint linear elliptic second or-
der differential operators with arbitrary positive bounded coefficients.
The precise setting of the paper is as follows. Let Ω ⊂ Rd be a
bounded Lipschitz domain with piecewise flat boundary and let A ∈
L∞(Ω,Rd×d

sym) be a matrix-valued coefficient with uniform spectral bounds
0 < α ≤ β <∞,

(1.1) σ(A(x)) ⊂ [α, β] for almost all x ∈ Ω.

Consider the prototypical self-adjoint second order linear partial differ-
ential operator A : H1

0(Ω)→ H−1(Ω) defined by

(1.2) Av := − div(A∇v) for v ∈ H1
0(Ω)

and the associated eigenproblem: find pairs consisting of an eigenvalue
λ ∈ R and associated non-trivial eigenfunction u ∈ V := H1

0 (Ω) such
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2 AXEL MÅLQVIST AND DANIEL PETERSEIM

that

(1.3) Au = λu.

We are mainly interested in the small eigenvalues of A or some ac-
curate approximation Ah. The discretized operator Ah shall be related
to a conforming finite element space of dimension Nh based on some,
possibly very fine, mesh Th of width h.

Popular approaches for the computation of these eigenvalues include
Lanczos/Arnoldi-type iterations (as implemented, e.g., in [LSY98]) or
the QR-algorithm applied directly to the Nh-dimensional finite element
matrices. If more structure can be exploited (e.g., a hierarchy of finite
element meshes and/or spaces) some preconditioned outer iteration for
the eigenvalue approximation may be performed and linear problems
are solved (approximately) in every iteration step [Hac79], [KN03b],
[KN03a]; see also [Ney03] and [BBS08] and references therein.

Our aim is to avoid the application of any eigenvalue solver to the
large-scale matrix Ah directly. Instead, inspired by [MP11], we will
compute some low-dimensional approximation AH of A (resp. Ah)
first. This preprocessing step is done by (approximately) inverting
the operator (resp. its discretization) for special right hand sides and
subject to certain linear constraints. Having performed NH � Nh

of these computations, the solution of a low-dimensional NH × NH

eigenvalue problem by standard algebraic solvers yields approximations
of the first NH eigenpairs.

We emphasize that the linear problems to be solved in our method
are completely independent of each other. They can be computed in
parallel without any communication. Moreover, their solutions give rise
to some low-dimensional discrete approximation space and the corre-
sponding low-dimensional discrete operatorAH approximates the small
(leading) eigenvalues and, hence, the macroscopic response of the op-
erator, accurately. In this sense, our method may be understood as
numerical upscaling or computational homogenization.

Our method is related to some coarse finite element mesh with maxi-
mal width H. The accuracy of the approximate eigenvalues is expressed
in terms of H. Without any assumptions on the smoothness of eigen-
functions, we prove that the error scales like H4. Note that a standard
first-order conforming finite element computation yields H2 under full
H2(Ω) regularity, see e.g. [Lar00]. Under such strong assumption of
high regularity, the two-grid method of [XZ01] allows certain postpro-
cessing (solution of linear problems on the fine scale) of the coarse finite
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element eigenpairs to increase the accuracy to H4. However, the regu-
larity assumption is essential and not justified on non-convex domains
or for heterogeneous and highly variable coefficients.

Since our estimates are both, of high order (at least H4) and indepen-
dent of the underlying regularity, the accuracy of our approximation
may actually suffice to fall below the error of the fine scale discretization
which scales algebraically in the fine mesh size h but depends on the
regularity of the data (convexity of Ω, differentiability and variability
of A) in a crucial way.

In cases with singular eigenfunctions (due to re-entrant corners in the
domain or isolated jumps of the coefficient), it may be advantageous to
use modern mesh-adaptive algorithms driven by some a posteriori error
estimator as proposed and analyzed, e.g., in [Lar00], [DPR03], [CG11],
[GMZ09], [GG09], [MM11], [CG12]. We are not competing with these
efficient algorithms. However, adaptive mesh refinement has its limi-
tations. For instance, if the diffusion coefficient A is highly variable,
the mesh width has to be sufficiently small to resolve the oscillations
[PS12]. For problems in geophysics or material sciences with charac-
teristic geometric features on microscopic length scales, this so-called
resolution condition is often so restrictive that the initial mesh must
be chosen very fine and further refinement exceeds computer capacity.
Our method is especially designed for such situations which require
coarsening rather than refinement.

The main tools in this paper are decompositions of H1(Ω) into coarse
and fine parts which are presented in Section 2. The method for the
approximation of eigenvalues is presented and analyzed in Section 3
which further discusses practical aspects and complexity issues. Nu-
merical experiments are presented in Section 4.

In the remaining part of this paper, we will frequently make use of
the notation a . b which abbreviates a ≤ Cb, with some multiplicative
constant C > 0 which only depends on the domain Ω and the parameter
ρ (cf. (2.1) below) that measures the quality of some underlying finite
element mesh. We emphasize the C does not depend on the mesh size,
the eigenvalues, and the coefficient A. Furthermore, a ≈ b abbreviates
a . b . a.

2. Two-scale Decompositions

Two-scale decompositions of functions u ∈ V = H1
0(Ω) into some

macroscopic/coarse part ucs ∈ Vcs plus some microscopic/fine part ufs ∈
Vfs with a certain orthogonality relation are at the very heart of this
paper. We understand macroscopic or coarse in the sense that Vcs
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is a low-dimensional generalized finite element space based on some
coarse finite element mesh. We understand microscopic or fine in the
sense that Vfs contains highly oscillating functions which cannot be
represented on the coarse mesh. The decompositions will be presented
in Section 2.4 after some preliminaries presented in Sections 2.1-2.3.

2.1. Finite Element Mesh. We denote the underlying coarse mesh
by TH . The mesh is assumed to be some regular (in the sense of [Cia87])
finite element mesh of Ω into closed simplices with mesh-size function
0 < H ∈ L∞(Ω) defined by H|T = diam(T ) =: HT for all T ∈ T . The
mesh size may vary in space. However, we will not exploit the possible
mesh adaptivity in this paper. The error bounds, typically, depend
on the maximal mesh size ||H||L∞(Ω). If no confusion seems likely, we

will use H also to denote the maximal mesh size (instead of writing
||H||L∞(Ω)). The use of the capital letter H for the mesh-size instead
of the standard choice h shall indicate that we consider a coarse mesh
and that we are not interested in asymptotics as the mesh size tends
to zero. As usual, the error analysis depends on the constant ρ > 0
which represents the shape regularity of the finite element mesh TH ;

(2.1) ρ := max
T∈TH

ρT with ρT :=
diamT

diamBT

for T ∈ TH ,

where BT denotes the largest ball contained in T .

2.2. First-Order Conforming Finite Elements. The first-order con-
forming finite element space corresponding to TH is given by
(2.2)
VH := {v ∈ V | ∀T ∈ TH , v|T is a polynomial of total degree ≤ 1}.

Let N denote the set of interior vertices of TH . For every vertex z ∈ N ,
let φz ∈ VH denote the corresponding nodal basis function (tent/hat
function) determined by nodal values

φz(z) = 1 and φz(y) = 0 for all y 6= z ∈ N .

These nodal basis functions form a basis of VH . The dimension of VH
equals the number of interior vertices,

NH := dimVH = |N |.

2.3. Quasi-Interpolation. The key tool in our construction will be
the bounded linear surjective Clément-type (quasi-)interpolation oper-
ator IH : V → VH presented and analyzed in [Car99]. Given v ∈ V ,
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IHv :=
∑

z∈N (IHv)(z)φz defines a (weighted) Clément interpolant
with nodal values

(2.3) (IHv)(z) :=
(v, φz)

(1, φz)

for z ∈ N . The nodal values are weighted averages of the function over
nodal patches ωz := suppφz.

Recall the (local) approximation and stability properties of the in-
terpolation operator IH [Car99]: There exists a generic constant CIH
such that for all v ∈ V and for all T ∈ TH it holds

(2.4.a) H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH‖∇v‖L2(ωT ),

where ωT := ∪{K ∈ TH | T ∩ K 6= ∅}. The constant CIH depends
on the shape regularity parameter ρ of the finite element mesh TH (see
(2.1) above) but not on HT . Note that there exists a constant Col > 0
that only depends on ρ such that the number of elements covered by
ωT is uniformly bounded (w.r.t. T ) by Col. Both constant, CIH and
Col, may be hidden in the notation “.” introduced at the end of the
Introduction on page 3.

2.4. Decompositions. We define the finescale space

Vfs := kernel IH ,

which will take over the role of the microscopic/fine part in all subse-
quent decompositions.

Our particular choice of a quasi-interpolation operator gives rise to
the following orthogonal decomposition. We write ||·|| :=

√
(·, ·) to

abbreviate the L2-norm on Ω.

Lemma 2.1 (L2-orthogonal two-scale decomposition). Any function
v ∈ V can be decomposed uniquely into the sum of vH := IH |−1

VH
(IH(v)) ∈

VH and vfs := v − vH ∈ Vfs with

(2.5) (vH , vfs)L2(Ω) = 0.

The orthogonality implies stability in the sense of

||vH ||2 + ||vfs||2 = ||v||2 .

Remark 2.1 (L2-projection onto the finite element space). Lemma 2.1

shows that the L2-orthogonal projection ΠL2

VH
: V → VH onto the fi-

nite element space VH may be characterized via the modified Clément
interpolation (2.3),

ΠL2

VH
= IH |−1

VH
IH .
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Proof of Lemma 2.1. It is easily verified that the restriction of IH on
the finite element space VH is invertible. This yields the decomposition.
For the proof of orthogonality, let vH =

∑
z∈N vH(z)φz ∈ VH and vfs ∈

Vfs. Since IH(vfs) = 0, we have that (φz, vfs) = IH(vfs)(z)
∫

Ω
φz = 0 for

all z ∈ N . This yields

(vH , vfs) =
∑
z∈N

vH(z)(φz, vfs) = 0

and shows that VH and Vfs are orthogonal subspaces of V . �

We may rewrite Lemma 2.1 as

(2.6) V = VH ⊕ Vfs and (VH , Vfs) = 0.

The orthogonalization of this decomposition with respect to the
scalar product a yields the definition of a modified coarse space Vcs,
that is the a-orthogonal complement of Vfs in V . Given v ∈ V , define
its the a-orthogonal fine scale projection operator Fv ∈ Vfs by

a(Fv, w) = a(v, w) for all w ∈ Vfs.

We define the energy norm |||·||| :=
√
a(·, ·) (the norm induced by the

scalar product a).

Lemma 2.2 (a-orthogonal two-scale decomposition). Any function v ∈
V can be decomposed uniquely into v = vcs + vfs, where

vcs := (1− F)v ∈ Vcs := (1− F)VH

and

vfs := Fv ∈ Vfs = kernel IH .
The decomposition is orthogonal

(2.7) a(vcs, vfs)L2(Ω) = 0,

and, hence, stable in the sense of

(2.8) |||vcs|||2 + |||vfs|||2 = |||v|||2 .

In other words,

(2.9) V = Vcs ⊕ Vfs and a(Vcs, Vfs) = 0.

We aim to compute approximate eigenvectors in the space Vcs. The
orthogonalization has preserved the dimension of the coarse part of the
decomposition, i.e.,

dimVcs = dimVH = NH
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Moreover, the images of the nodal basis functions under the a-orthogonal
projection (1− F) onto Vcs yield a basis of Vcs,

(2.10) Vcs = span{(1− F)φz | z ∈ N}.

In order to use this space for the approximation of eigenvalues and
eigenvectors of (3.1), we need to approximate NH solutions ψz = Fφz ∈
Vfs of

(2.11) a(ψz, v) = a(φz, v) for all v ∈ Vfs.

These problems are linear and independent. The only difference with
a standard Poisson problem is that there is some linear constraint hid-
den in the space Vfs, that is, the quasi-interpolation of trial and test
functions vanishes.

The main reason why this preprocessing of the coarse space Vcs can
be useful is the following L2-quasi-orthogonality of the a-orthogonal
decomposition (2.9).

Theorem 2.3 (L2-quasi-orthogonality of the a-orthogonal decomposi-
tion). The decomposition V = Vcs ⊕ Vfs from Lemma 2.2 is L2-quasi-
orthogonal in the sense that for all vcs ∈ Vcs and all vfs ∈ Vfs, it holds

(2.12) (vcs, vfs)L2(Ω) . H2 ||∇vcs|| ||∇vfs|| ≤ α−1H2 |||vcs||| |||vfs||| .

The decomposition is stable in the sense that

(2.13) ||vcs||2 +
∣∣∣∣H−1vfs

∣∣∣∣2 . α−1 |||vcs + vfs|||2

Proof. Given any vcs ∈ Vcs and vfs ∈ Vfs, Lemma 2.1, the Cauchy-
Schwarz inequality, (2.4.a), and (2.1) yield

(vcs, vfs) = (vcs − IHvcs, vfs − IHvfs) . H2 ||∇vcs|| ||∇vfs|| ,

since (IHvcs, vfs) = 0 which is the quasi-orthogonality. A similar esti-
mate shows

(Hvfs, Hvfs) = (H(vfs − IHvfs), H(vfs − IHvfs))

.
∑
T∈TH

||∇vfs||2L2(ωT )

. α−1 |||vfs|||2 .

This, Friedrichs’ inequality

||vcs|| ≤ π−1 diam Ω ||∇vcs|| ,

and (2.8) readily prove the stability estimate. �
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3. Approximation of Eigenvalues and Eigenvectors

This Section presents a new scheme for the approximation of eigen-
values and eigenvectors of (1.3) and its rigorous error analysis.

3.1. Variational Formulation and Galerkin Approximation. Re-
call that the eigenpairs of (1.3) are characterized equivalently as the
solution to the variational problem

(3.1) a(u(`), v) :=

∫
Ω

(A∇u(`)) · ∇v = λ(`)(u(`), v) for all v ∈ V,

where (·, ·) denotes the standard inner product in L2(Ω). Recall that,
for this problem, there exists a countable number of eigenvalues. More-
over, since A is symmetric, all eigenvalues λ(`) (` ∈ N) are real and
positive,

0 < λ(1) ≤ λ(2) ≤ λ(3) ≤ . . . .

Depending on the actual domain Ω and the coefficient A, there may be
multiple eigenvalues. A multiple eigenvalue is repeated several times
according to its multiplicity in the enumeration above. Let u(`) (` ∈ N)
be normalized to one in L2(Ω), i.e., (u(`), u(`)) = 1. It is well known
that the eigenfunctions enjoy (or, in the case of multiple eigenvalues,
may be chosen such that they fulfill) the orthogonalities

(3.2) a(u(`), u(m)) = (u(`), u(m)) = 0 if ` 6= m.

The Galerkin discretization of (3.1) with respect to the generalized

finite element space Vcs reads: find λ
(`)
H ∈ R and non-trivial u

(`)
cs ∈ Vcs

such that

(3.3) a(u(`)
cs , v) = λ

(`)
H (u(`)

cs , v) for all v ∈ Vcs.

Since Vcs is a finite-dimensional subspace of V , we can order the discrete
eigenvalues similar as the original ones

0 < λ
(1)
H ≤ λ

(2)
H ≤ λ

(3)
H ≤ · · · ≤ λ

(NH)
H .

Again, multiple eigenvalues are repeated according to their multiplic-

ity. Let also u
(`)
cs (` = 1, 2, . . . , NH) be normalized to one in L2(Ω), i.e.,

(u
(`)
cs , u

(`)
cs ) = 1. The discrete eigenfunctions satisfy (or, in the case of

multiple eigenvalues, can be chosen such that they satisfy) the orthog-
onalities

(3.4) a(u(`)
cs , u

(m)
cs ) = (u(`)

cs , u
(m)
cs ) = 0 if ` 6= m.
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In the subsequent paragraphs we will present error bounds for the
approximate eigenvalues and eigenvectors based on the variational tech-
niques from [SF73] (which are based on [BdBSW66] on their part); see
also [Bof10].

3.2. Two-Scale Decomposition Revisited. The eigenfunctions al-
low a different (with respect to Section 2) characterization of a macro-
scopic function, that is, any function spanned by eigenfunctions related
to the ` smallest eigenvalues. Define

(3.5) E` := span{u(1), . . . , u(`)}.

We will have a closer look at the quasi-orthogonality results in Lemma 2.2
given some macroscopic function u ∈ E`.

Corollary 3.1 (L2-quasi-orthogonality of the a-orthogonal decompo-
sition of macroscopic functions). Let ` ∈ N and let u = ucs + ufs ∈ E`
with ||u|| = 1, where ucs ∈ Vcs (resp. ufs ∈ Vfs) denotes the coarse
scale part (resp. fine scale part) of u according to the a-orthogonal
decomposition in Lemma 2.2. Then it holds

|||ucs||| ≤
√
λ(`),(3.6)

|||ufs||| .
√
`(λ(`))3

(
H√
α

)2

, and(3.7)

(ucs, ufs) .
√
`

(
H
√
λ(`)

√
α

)4

.(3.8)

Proof. Let δj ≤ 1, j = 1, 2, . . . , `, be the coefficients in the repre-

sentation of u by eigenfunctions, that is, u =
∑`

j=1 δju
(j). Then (3.6)

follows from the fact that (1−F) is a projection and the obvious bound
|||u|||2 ≤ λ(`).

For the proof of (3.7), we employ some algebraic manipulations and
equation (3.1),

(3.9) |||ufs|||2 = a(u, ufs) =
∑̀
j=1

δja(u(j), ufs) =
∑̀
j=1

δjλ
(j)(u(j), ufs).

Theorem 2.3 shows that

(3.10) (u(j), ufs) .

(
H√
α

)2 ∣∣∣∣∣∣u(j)
∣∣∣∣∣∣ |||ufs||| .

The combination of (3.9)-(3.10) together with
∣∣∣∣∣∣u(j)

∣∣∣∣∣∣2 = λ(j) ≤ λ(l)

and δj ≤ 1 yields the upper bound of |||ufs|||.



10 AXEL MÅLQVIST AND DANIEL PETERSEIM

The combination of Theorem 2.3 and the bounds (3.6)–(3.7) readily
yields (3.8). �

Remark 3.1. In certain cases, e.g., if Ω is convex and the coefficient
A is constant, we have that any macroscopic function u ∈ E` is in
H2(Ω) and ||∇2u|| . λ(`)/α ||u||. Such an instance of regularity gives
rise to an additional power of H/λ(`) in the estimates (3.7) and (3.8)
in Corollary 3.1. This is due to the possible modification of (3.10),

(u(j), ufs) = (u(j) − IHu(j), ufs − IHufs) .
H3λ(j)

α2
|||ufs||| .

3.3. Estimates for Approximate Eigenvalues. We first introduce
the Rayleigh quotient, which is defined for non-trivial v ∈ V by

R(v) :=
a(v, v)

(v, v)
.

Recall that the `th eigenvalue may be characterized via the minmax-
principle (which goes back to Poincaré [Poi90])

(3.11) λ(`) = min
S∈S`(V )

max
v∈S\{0}

R(v),

where S`(V ) denotes the set of `-dimensional subspaces of V . This
principle applies equally well to the discrete problem (3.3), i.e.,

(3.12) λ
(`)
H = min

S∈S`(Vcs)
max
v∈S\{0}

R(v)

characterizes the `th discrete eigenvalue (` ≤ NH). The conformity
Vcs ⊂ V yields monotonicity

(3.13) λ(`) ≤ λ
(`)
H for all ` = 1, 2, . . . , NH .

The following theorem gives an estimate in the opposite direction.

Theorem 3.2 (Bound for the eigenvalue error). Let H be sufficiently
small so that H . `−1/4

√
α
λ(l)

. Then it holds

(3.14)
λ

(`)
H − λ(`)

λ(`)
.
√
`

(
H

√
λ(`)

α

)4

for all ` = 1, 2, . . . , NH .

Proof. Recall the definition of E` in (3.5) and define

σ
(`)
H := max

u∈E`:(u,u)=1
|(ufs, ufs) + 2(ucs, ufs)|,

where ucs ∈ Vcs (resp. ufs ∈ Vfs) denotes the coarse scale part (resp.
fine scale part) of u ∈ E` according to the a-orthogonal decomposition



COMPUTATION OF EIGENVALUES BY NUMERICAL UPSCALING 11

in Lemma 2.2. Theorem 2.3 and Corollary 3.1 yield

σ
(`)
H .

√
`

(
H√
α

)2(
Hλ(`)

√
α

)2

,

where we have used that, under the condition H . `−1/4
√

α
λ(l)

, the
term |(ufs, ufs)| is of higher order when compared with |(ucs, ufs)|,

|(ufs, ufs)| . `(λ(l))3(H/
√
α)6.

If H is chosen small enough so that σ
(`)
H ≤ 1

2
, then Lemma 6.1 in [SF73]

shows that

λ
(`)
H ≤ (1− σ(`)

H )−1λ(`) ≤ (1 + 2σ
(`)
H )λ(`).

Inserting our estimate for σ
(`)
H gives the assertion. �

Remark 3.2 (Smallness of H). Since all our estimates are explicit with
respect to the eigenvalues, the condition H . `−1/4

√
α
λ(l)

in Theo-
rem 3.2 is a qualitative condition for the smallness of H. Note that,
typically, a condition H . 1/λ(`) (or even more restrictive) arises
[BBS08, Sau10]. The relaxed condition is possible because no regu-
larity of the eigenfunctions has been used to establish the error bound.

Remark 3.3 (Improved eigenvalue error bound). With regard to Re-
mark 3.1, the error bound in Theorem 3.2 may be improved provided
that the first ` eigenfunctions are regular in the sense of

∣∣∣∣∇2u(j)
∣∣∣∣ .

λ(j)/α. The improved bound reads

(3.15)
λ

(`)
H − λ(`)

λ(`)
.
√
`λ(`)/α

(
H
√
λ(`)

√
α

)5

for all ` = 1, 2, . . . , NH .

This improved bound might still be pessimistic in the sense that the
error in the `th eigenvalue/vector depends on the regularity of all pre-
vious previous eigenfunctions. The recent theory [KO06] shows that
this is not necessarily true. Moreover, there might be smoothness also
in the single summands of the two-scale decomposition which is not
exploited.

3.4. Estimates for Approximate Eigenvectors. We turn to the
error in the approximate eigenfunctions. Again, we follow the receipt
provided in [SF73].

Theorem 3.3 (Estimates of Eigenvector error). Let λ(`) be an eigen-
value of multiplicity r, i.e. λ(`) = · · · = λ(`+r−1), with corresponding
eigenspace spanned by the orthonormal basis {u(`+i)}r−1

i=0 . Let the pair

{λ(`)
H , u

(`)
cs } be a Galerkin approximation solving equation (3.3) such that
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‖u(`)
cs ‖L2(Ω) = 1. Then there exists an eigenfunction in span({u(`+i)}r−1

i=0 ),

let us denote it u(`), such that

(3.16)
∣∣∣∣∣∣u(`) − u(`)

cs

∣∣∣∣∣∣2 . (λ(`))3`1/2H
4

α2
+ 4(1 + ρ)2(λ(`))4`

H6

α3
,

where ρ = maxj 6∈{`,`+1,...,`+r−1}
λ(`)

|λ(`)−λ(j)H |
.

Proof. For any v ∈ span({u(`+i)}r−1
i=0 ) fulfilling ‖v‖L2(Ω) = 1 it holds,∣∣∣∣∣∣v − u(`)

cs

∣∣∣∣∣∣2 = λ(`) − 2λ(`)(v, u(`)
cs ) + λ

(`)
H

= λ(`)(2− 2(v, u(`)
cs )) + λ

(`)
H − λ

(`)

= λ(`)‖v − u(`)
cs ‖2

L2(Ω) + λ
(`)
H − λ

(`).(3.17)

It remains to bound the L2 norm. By applying the analysis presented
in Lemma 6.4 and Theorem 6.2 in [SF73] we have that there is a normal
eigenfunction u(`) ∈ span({u(`+i)}r−1

i=0 ) such that,

‖u(`) − u(`)
cs ‖2

L2(Ω) ≤ 4(1 + ρ)2‖ufs‖2
L2(Ω) . 4(1 + ρ)2H2α−1 |||ufs|||2 ,

where ufs denotes the fine scale part of u(`) according to the a-orthogonal
decomposition in Lemma 2.2. The theorem follows by combining equa-
tion (3.17) with v = u(`), Corollary 3.1, and Theorem 3.2. �

3.5. Approximation of the Ideal Coarse Space. The previous re-
sults have theoretical impact, but the method is not yet feasible be-
cause the definition of the coarse space Vcs involves the inversion of
some infinite dimensional operator. That is why we consider the case
where the original eigenvalue problem has been discretized first by some
suitable finite element space related to some fine triangulation Th; cf.
Section 3.5.1. Moreover, we discuss complexity issues in Sections 3.5.2–
3.5.3.

3.5.1. Eigenvalues of High-Resolution Finite Element Discretization.
Note that the previous estimates apply verbatim to the case, where
V is replaced with some fine scale finite element discretization space
Vh ⊃ VH . One might think of Vh being the space of conforming piece-
wise affines (or higher-order polynomials) with respect to some fine
triangulation Th of mesh-size h ≤ H.

In this regard, our approach is a method for approximating the small-
est eigenvalues of the corresponding finite element discretization by first
solving a few large scale linear equations and then a small scale eigen-
value problem on top of that. The accuracy of this approach is only
linked with the coarse mesh-size H. Since our estimates are of high
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order (at least proportional to H4) and independent of the underly-
ing regularity, the accuracy may actually suffice to fall below the error
of the fine scale discretization which scales algebraically in h but de-
pends on the regularity of the data (convexity of Ω, differentiability
and variability of A) in a crucial way.

3.5.2. Localization of Microscopic Computations and Macroscopic Com-
pression. The construction of the coarse space Vcs is based on fine scale
equations formulated on the whole domain Ω which makes them ex-
pensive to compute. However, in [MP11] it was shown that Fφz decays
exponentially fast outside of the support of the coarse basis function
φz. We specify this feature as follows. Let k ∈ N. We define nodal
patches ωz,k of k coarse grid layers centered around the node z ∈ N by

(3.18)
ωz,1 := suppφz = ∪{T ∈ TH | z ∈ T} ,
ωz,k := ∪{T ∈ TH | T ∩ ωz,k−1 6= ∅} for k ≥ 2.

The result in the decay of Fφz in [MP11] can be expressed as follows.
For all vertices z ∈ N and for all k ∈ N, it holds

(3.19)
∣∣∣∣A1/2∇Fφz

∣∣∣∣
L2(Ω\ωz,k)

. e−(α/β)1/2k |||Fφz||| .

For moderate contrast β/α, this motivates the truncation of the com-
putations of the basis functions to local patches ωz,k. We approximate
ψz = Fφz ∈ Vfs from (2.11) with ψz,k ∈ Vfs(ωz,k) := {v ∈ Vfs | v|Ω\ωx,k

=
0} such that

(3.20) a(ψz, v) = a(φz, v) for all v ∈ Vfs(ωz,k).

This yields a modified coarse space V k
cs with a local basis

(3.21) V k
cs = span{φz − ψz,k | z ∈ N}.

The number of non-zero entries of the corresponding stiffness matrix is
proportional to kdNH (note that we expect N2

H non-zero entries without
the truncation). Due to the exponential decay, the very weak condition
k ≈ logH implies that the perturbation of the ideal method due to this
truncation is of higher order and the estimates in Theorem 3.2 and 3.3
remain valid. We refer to [MP11] for details and proofs.

3.5.3. Complexity. Finally, we shall comment on the overall complex-
ity of our approach. Consider quasi-uniform meshes of size H resp. h
and corresponding conforming first-order finite element space VH and
Vh. We want to approximate the eigenvalues related to Vh. Therefore,
we need to solve NH linear problems with approximately kdNh/NH

degrees of freedom each; the parameter k being the truncation pa-
rameter as above. Since almost linear complexity is possible (using,
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e.g., multilevel preconditioning techniques), the cost for solving one of
these problems up to a given accuracy is proportional to the number
of degrees of freedom Nh/NH up to possible logarithmic factors . This
yields an overall complexity of kdNh log(Nh) (resp. NHNh log(Nh) if
kd ≥ NH) for setting up the coarse problem. Note that this effort can
reduced drastically either by considering the independence of the linear
problems in terms of parallelism or by exploiting a possible periodicity
in the problem and the mesh. In the latter case, only very few of the
problems have to be computed because all the other ones are equivalent
up to change of coordinates.

On top of the assembling, an NH-dimensional eigenvalue problem is
to be solved. The complexity of this depends only on NH , the number
of eigenvalues of interest, and the truncation parameter k but not on
the critically large parameter Nh.

4. Numerical Experiments

Two numerical experiments shall illustrate our results. We focus on
the case without localization. The localization (as discussed in Sec-
tion 3.5.2 has been studied extensively for the linear problem [MP11].
In the present context of eigenvalue approximation, we are interested
to observe the enormous convergence rate which is 4 or higher for the
eigenvalues. In order to achieve this rate also with truncation, patches
have to be large (at least 4 layers of elements) which pays off only
asymptotically when H is small enough.

4.1. Constant coefficient on L-shaped domain. Let Ω := (−1, 1)2\
[0, 1]2 be the L-shaped domain. Consider the constant scalar coefficient
A1 = 1. Consider uniform coarse meshes with maximal mesh widths√

2H = 2−1, . . . , 2−4 of Ω as depicted in Figure 1.
The reference mesh Th has maximal mesh width h = 2−7/

√
2. We

consider some P1 conforming finite element approximation of the eigen-
values on the reference mesh Th and compare these discrete eigenvalues

λ
(`)
h with coarse scale approximations depending on the coarse mesh size
H.

Table 1 shows results for the case without truncation, i.e., all linear
problems have been solved on the whole of Ω. For fixed `, the rate of

convergence of the eigenvalue error λ
(`)
H − λ

(`)
h in terms of H observed

in Table 1 is between 6 and 7 which is even better than predicted in
Theorem 3.2 and in Remark 3.1.

4.2. Rough coefficient with multiscale features. Let Ω := (0, 1)2

be the unit square. The scalar coefficient A2 (see Figure 2) is piecewise
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Figure 1. Initial uniform triangulation of the L-shape
domain (5 degrees of freedom).

constant with respect to the same uniform Cartesian grid of width
2−6. Its values are taken from the data of the SPE10 benchmark, see
http://www.spe.org/web/csp/. The coefficient is highly varying and
strongly heterogeneous. The contrast for A2 is large, β(A2)/α(A1) ≈
4·106. Consider uniform coarse meshes of size

√
2H = 2−1, 2−2, . . . , 2−4

of Ω as depicted in Figure 2. Note that none of these meshes resolves
the rough coefficient A2 appropriately. Hence, (local) regularity cannot
be exploited on coarse meshes.

Again, the reference mesh Th has width h = 2−7/
√

2 and we compare

the discrete eigenvalues λ
(`)
h (with respect to some P1 conforming finite

element approximation of the eigenvalues on the reference mesh Th)
with coarse scale approximations depending on the coarse mesh size
H. Table 2 shows the errors and allows us to estimate the average
rate around 4 which matches our expectation from the theory. We
emphasize that the large contrast does not affect the accuracy of our

method in approximating the eigenvalues λ
(`)
h . However, the accuracy

of λ
(`)
h is affected by the high contrast and the lack of regularity caused

by the coefficient.
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