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Abstract

We discuss shape optimization problems for cylindrical tubes that are
loaded by time-dependent applied force. This is a problem of shape op-
timization that leads to optimal control in linear elasticity theory. We
determine the optimal thickness of a cylindrical tube minimizing the de-
formation of the tube under the influence of the external force. The main
difficulty is that the state equation is a hyperbolic partial differential equa-
tion of 4th order. First order necessary conditions for the optimal solution
are derived. Based on them, a numerical method is set up and numerical
examples are presented.

Keywords: Calculus of variations and optimal control · Problems involv-
ing ordinary differential equations · Optimization of shapes other than
minimal surfaces

1 Introduction
The present paper considers the effect of an external rotationally and symmetric
force on a cylindrical shell. This force depends on time and space. The reader
might imagine an explosion in a certain region of a pipeline. It is, by the
way, one application that stands behind the problem. As a result of this force
the cylinder tube is deformed. Our objective is to determine the thickness of
the tube, that minimizes the deformation. The underlying physical process is
described by a hyperbolic partial differential equation with boundary and initial
conditions, which results from the law of conservation of momentum.

As an additional condition, we require that the volume of the tube remains
constant. To obtain practical solutions we also assume the thickness to vary
only within specified limits. To determine an optimal thickness numerically
and we derive first order necessary conditions for the optimal solution. The
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particular way of numerical treatment is one of our main issues. Moreover,
the first-order conditions for optimality are tested numerically to evaluate the
precision of the computed optimal shape. The main novelty of this work is that,
we treat the transient case, which is formulated in the next section.

In this way, we extended our investigation in [1], where we discussed a
simpler problem of this topic, namely the stationary case. For a short survey
on the history of this particular problem, we refer the reader to [1]. We only
mention the papers R. T. Haftka et al [2] and Z. Mróz [3], that are related to
our problems.

The main novelty in comparison with [1] is that the state equation is now a
hyperbolic partial differential equation of 4th order and the associated optimal
control problems are more complex. To prove necessary optimality conditions
for optimality is now essentially more difficult. Also the numerical simulations
are more expensive and time consuming.

The main theoretical tool for establishing our optimality conditions is ad-
joint calculus. We should mention that the use of adjoint methods in the
numerical analysis of optimal shape design problems already has a long history
and numerous publications were devoted to this topic. We only refer to [4],[5],[6]
with a stronger focus on the analysis of the problems and to R. T. Haftha et al
[2], Z. Mróz [3], or G. Rozvany [7], who are shed more light on the mechanics
of the problems but also derive first order necessary optimality conditions and
discuss their numerical use.

Notice that, due to the presence of a hyperbolic state equation, the analysis
of first order conditions is more delicate for our class of problems. The asso-
ciated analysis is one of our major issues, even through we do not present all
details to shorten the presentation. Details can be found in [1].

2 Modeling of the Problem
We first state some very preliminary notions of elasticity theory, detailed infor-
mation can be found in standard books on this topic [8,9,10]. We also refer to
the discussion in [1] that is related to this paper.

Let Ω3D ⊂ R3 be the reference configuration for a body in the stress free
state. The state is expressed by a map φ : Ω3D → R3. This map includes the
identity mapping and small displacements y. The deviation from the identity
mapping is expressed by the strain. The strain-tensor ε has the components

εij = 1
2

(
∂yi
∂xj

+ ∂yj
∂xi

)
i, j = 1, 2, 3.

The displacements depend on material parameters by Hooke’s law

σ(y) = 2µ ε(y) + λ(trace (ε(y))) · I,

with the Lamé-constants λ, µ (material parameters), the identical tensor I, and
the stress tensor σ.
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We derive our system equation from the principle of minimizing the energy
functional

Π(y) :=
∫

Ω3D

[1
2σ(y) : ε(y)− f · y

]
dx−

∫
∂Ω3D

g · y dS

for all admissible y. The term σ : ε denotes the second order tensor product
of σ and ε. The function f represents the force exerted on the body and g
formulates possible boundary conditions derived from the specific problem. For
modeling the cylindrical shell we use the hypotheses of Mindlin and Reissner
[8,9]. This allows to reduce our 3-dimensional problem to a 1-dimensional. The
deformation of the body under a force f is modeled by the balance of power

−div σ(y) = f .

In the transient case, the small displacements y : Ω3D× [0, T ]→ R depend also
on the time. We will use the law of conservation of momentum

ρ∂2
t y = div σ(y) + f , (1)

with the density ρ as starting point for modeling. Invoking also the hypothe-
ses of Mindlin and Reissner, we transform the 3-dimensional reference domain
problem to 1-dimensional domain problem.

Next, we introduce the cylindrical shell to be optimized. A cylindrical shell
is most conveniently described in cylindrical coordinates. The surface of the
cylinder ΩC

2D := [0, 1]× [0, 2π] with radius R is given by

z(x, ϕ) =

 x
R cosϕ
R sinϕ

 , x ∈ Ω := [0, 1], ϕ ∈ [0, 2π].

The cylindrical shell S with center plane z(x, ϕ) and thickness u is given by

S =

z(x, ϕ) + h

 0
cosϕ
sinϕ

 | h ∈ [−u2 , u2
]
, (x, ϕ) ∈ ΩC

2D

 ,
in the natural coordinate system ei, i ∈ {1, 2, 3}, specified by the cylindrical
shell,

e1 = ∂S
∂x

e2 = ∂S
∂ϕ

e3 = ∂S
∂h

.

We mention that Ω3D = S, to close the gap to the setting above.

The hypotheses of Mindlin and Reissner lead to the displacement law in the
natural basis ei i ∈ {1, 2, 3}:

y = y1(x, ϕ, t)e1 + y2(x, ϕ, t)e2 + y3(x, ϕ, t)e3 − h[θ1(x, ϕ, t)e1 + θ2(x, ϕ, t)e2]
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Figure 1: cylindrical shell

where yi : S × (0, T ] → R are the displacements with respect to all basis-
directions and we have torsions θi : S × (0, T ]→ R. We assume a rotationally
symmetric force. Let the tube be fixed at its ends and let the Kirchhoff-Love
hypothesis for a thin shell be fulfilled. This hypothesis implies

y1 = y2 = θ2 = 0 and ∂xy1 = θ1

for all t in [0, T ]. We use soft clamped boundary conditions (yi = 0, ∇θi = 0
for all t on the considered boundary) which are often considered in practice.
The displacement law is substituted into the momentum conservation law (1).
With wo := y3 and fz := f · e3 we end up with the equations for the transient
problem in weak formulation. We define the solution space

Wo(0, T ) := {wo ∈ L2(0, T ;V), ∂two ∈ L2(0, T ;H1
0(Ω)), ∂2

two ∈ L2(0, T ;V∗)}

with V := H2(Ω) ∩ H1
0(Ω)) and ∂2

two as distributional derivative. Here and in
what follows, ∂two stands for ∂wo/∂t. The space Hk(Ω) denotes the standard
Sobolev space of order k and L2(0, T ;V) is the space of abstract Lebesgue
measurable functions with images in V. We recall that Ω = (0, 1).

Original problem: Find a solution wo ∈Wo(0, T ) that fulfills the equations∫
Ω

{
ρ

(
Ru∂2

twow̃ + Ru3

12 ∂2
t ∂xwodxw̃

)
(2)

+(2µ+ λ)
[
Ru3

12 ∂2
xwod

2
xw̃ +

(
u3

12R3 + u

R

)
(wow̃)

]}
dx = R

∫
Ω
fzw̃ dx

for each w̃ ∈ V and for almost all t ∈ (0, T ) with initial data w0 = 0 in V
and ∂two(0)) = 0 in H1

0(Ω). We use d2
xw̃ instead d2w̃/dx2. For a proof of the

existence of a solution of the derived equations, we need the assumptions below
and define a family of continuous bilinear forms on V,

a(t;wo, w̃) := (2µ+ λ)
[
Ru3

12 ∂2
xwod

2
xw̃ +

(
u3

12R3 + u

R

)
(wow̃)

]
dx.

Assumptions 2.1. 1) The function t → a(t;wo, w̃) is for all wo, w̃ in V
once continuously differentiable in [0, T ], with T <∞.
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2) There holds the symmetry a(t;wo, w̃) = a(t; w̃, wo) and, for some λ ∈ R,

a(t;wo, wo) + λ|wo| ≥ α‖wo‖2V, α > 0 ∀ wo ∈ V.

We consider the problem (2) by a variational formulation in the Gelfand
triple (V,L2(Ω),V∗):

(
ρRu∂2

two, w̃
)
L2

+
(
ρ
Ru3

12 ∂2
t ∂xwo, dxw̃

)
L2

+ a(t;wo, w̃) = (Rfz, w̃)L2 .

Theorem 2.1. Assume that assumptions (2.1) hold. Let fz ∈ L2(0, T ;V),
wo(0) ∈ V and ∂two(0) ∈ H1

0(Ω) be given. Then exists a unique solution wo in
Wo(0, T ) of (2). The mapping {fz, wo(0), ∂two(0)} → {wo, ∂two} is continuous
and linear from L2(0, T ;V)× V×H1

0(Ω) to L2(0, T ;V)× L2(0, T ;H1
0(Ω)).

We omit the proof of this theorem that is long and technical. For the proof
and additional information, we refer to [11], where also general results of [12,13]
are used.

The term with the mixed derivative ∂2
t ∂xwodxw̃ is neglected in most cases

that are interesting for mechanical applications. Then it follows a simplified
equation for the transient case. First we define the associated solution space

Ws(0, T ) := {ws ∈ L2(0, T ;V), ∂tws ∈ L2(0, T ;L2(Ω)), ∂2
tws ∈ L2(0, T ;V∗)}

In what follows, the subscripts "o" and "s" stand for original and simplified
problem.

Simplified problem: Find a solution ws ∈Ws(0, T ) that fulfills the equations∫
Ω

{
ρRu∂2

twsw̃ + (2µ+ λ)
[
Ru3

12 ∂2
xwsd

2
xw̃ +

(
u3

12R3 + u

R

)
(wsw̃)

]}
dx

= R

∫
Ω
fzw̃ dx (3)

for each w̃ ∈ V and for almost all t ∈ (0, T ) with initial data w0 = 0 in V and
∂two(0)) = 0 in L2(Ω). Numerical tests have shown for constant coefficients
that the influence of the mixed derivative of the solution wo can be neglected.
Also for this problem, we have an existence theorem.

Theorem 2.2. Assume that assumptions (2.1) hold. Let fz ∈ L2(0, T ;V),
ws(0) ∈ V and ∂tws(0) ∈ L2(Ω) be given. Then exists a unique solution ws in
Ws(0, T ) of (3). The mapping is continuous and linear from

L2(0, T ;V)× V× L2(Ω) to L2(0, T ;V)× L2(0, T ;L2(Ω)).

The proof of this theorem can be found in [11] as well. The variational
formulations have the advantage weak solution wo/s ∈ Wo/s(0, T ) can be con-
sidered and the functions fz need only to be square-integrable, i.e. fz ∈
L2(0, T ;L2(Ω)). This generalization fits to practical problems. For the deriva-
tion of first order necessary conditions we additionally require the solutions wo
or ws to have higher regularity. We can achieve this by demanding that the ini-
tial data wo/s(0), ∂two/s(0) and the right-hand side fz have higher smoothness.
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However, given initial data and the right-hand side at the initial time must be
compatible. Thus the solutions belong to the following spaces:

wo/s ∈ H1(0, T ;V) := {wo/s ∈ L2(0, T ;V), ∂two/s ∈ L2(0, T ;V)} or
wo/s ∈ H2(0, T ;V) := {wo/s ∈ H1(0, T ;V), ∂2

two/s ∈ L2(0, T ;V)}.

For more information on higher regularity for hyperbolic partial differential
equation can be found in [11,12,13].

To cover the non-linearities with respect to the control u, we define Nemyt-
skij operators Θ,Υ,Φ,Ψ : L∞(Ω)→ L∞(Ω):

Θ(u) := ρRu, Υ(u) := ρRu3

12 ,

Φ(u) := (2µ+ λ)Ru
3

12 , Ψ(u) := (2µ+ λ)
(

u3

12R3 + u

R

)
.

These operators are continuously Frechét differentiable. Their derivatives can
be expressed for a direction h ∈ L∞(Ω) by

Θ′(u)h = ρRh Υ′(u)h = ρRu2

4 h

Φ′(u)h = (2µ+ λESZ)Ru
2

4 h Ψ′(u)h = (2µ+ λESZ)
(
u2

4R3 + 1
R

)
h.

3 Optimal Control Problems
The goal of optimization is to determine a thickness u, that minimizes the
deformation of the cylinderical tube. Additionally, we require the cylindrical
shell to have a constant volume. For the formulation of the problem and its
solvability, we assume the existence of an optimal control u. To prove this
existence is a delicate issue as we have explained in [1] for the stationary case.
It is even more difficult in the transient case; therefore we do not discuss this
question here.

We will now define four optimal control problems. These differ in the
objective functional and the constraints used. In all problems we denote by
Q = Ω × (0, T ] the space-time domain and by Σ = ({0} ∪ {1}) × (0, T ] the
corresponding boundary part.

In the formulations of the optimal control problems we prefer the strong
formulation to highlight the type of equations and the soft clamped boundary
conditions. In the following considerations and in the numerical calculations
we use only the weak formulation.

Problem I min
u∈Uad

JI(ws) := min
u∈Uad

∫
Ω
ws(x, T ) dx

subject to

Θ(u)∂2
tws + ∂2

x

(
Φ(u)∂2

xws
)

+ Ψ(u)ws = Rfz

ws|Σ = ∂2
xws|Σ = 0 (4)

ws(·, 0) = ∂tws(·, 0) = 0
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where

Uad =
{
u ∈ L∞(Ω), ua ≤ u(x) ≤ ub a.e.,

∫
Ω
u(x) dx = C

}
,

and 0 < ua < ub are given. The constant C := VZ/(2πR) considers the constant
volume of the shell VZ . Notice that in contrast to the load fz, the control u is
independent of time. The set Uad is the same in all four problems.

Problem II min
u∈Uad

JII(wo) := min
u∈Uad

∫
Ω
wo(x, T ) dx

subject to

Θ(u)∂2
two − ∂x(Υ(u)∂2

t ∂xwo) + ∂2
x

(
Φ(u)∂2

xwo
)

+ Ψ(u)wo = Rfz

wo|Σ = ∂2
xwo|Σ = 0 (5)

wo(·, 0) = ∂two(·, 0) = 0.

In the next two problems, we use a topology optimization compliance objective
functional in the following settings:

Problem III min
u∈Uad

JIII(ws) := min
u∈Uad

∫∫
Q
fzws dx dt

subject to (4) and

Problem IV min
u∈Uad

JIV (wo) := min
u∈Uad

∫∫
Q
fzwo dx dt

subject to (5).
These problems are similar to each other, and we refer hereafter only to

the differences. Additionally, the first two objective functional, we assume
wi(·, T ), i ∈ {o, s} greater than zero and the last two objective function is
weighted by the applied force fz. In regular situations, we can assume that
the resulting deformations wi, i ∈ {o, s}, have the same direction as the applied
force. Then the objective functional is positive. The thickness u = u(x) is the
control function that influences the displacement (deflection) wi = wi(x, t), for
a given force fz = fz(x, t).

Next, we transform these problems to nonlinear optimization problems in a
Banach space. For this, we define the control-to-state operators

Gi : u 7→ wi(·, T ), Gi : L∞(Ω)→ V, i ∈ {o, s}.

The terminal states wi(·, T ) are the solutions of the constraints in the weak
formulations. These operators Gi are of a fairly complex type, they contain
the map u 7→ wi, an linear observation operators EiT : wi 7→ wi(·, T ). For the
problems III and IV, we also define the mappings

Fi : u 7→ wi, Fi : L∞(Ω)→Wi(0, T ), i ∈ {o, s}.
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This allows us to eliminate the state wi in the objective functionals. Let us
define four reduced functionals by

fI(u) :=
∫

Ω
Gs(u) dx fII(u) :=

∫
Ω
Go(u) dx (6)

fIII(u) :=
∫∫

Q
fzFs(u) dx dt fIV (u) :=

∫∫
Q
fzFo(u) dx dt.

In this way, we obtain the following reduced optimal control problems:

Problem (Pi): min
u∈Uad

fi(u), i ∈ {I, II, III, IV }.

Let us now formulate the first order necessary conditions of these problems.
Notice all fi are continuously Fréchet-differentiability.

Lemma 3.1. Let u ∈ Uad be a solution of problems Pi (6). Then the variational
inequality

f ′i(u)(u− u) ≥ 0 ∀ u ∈ Uad (7)
is fulfilled.

We refer, for instance, to [14] for the proof of this standard result. By the
chain rule, we find for any h ∈ L∞(Ω)

f ′I(u)h :=
∫

Ω
G′s(u)h dx f ′II(u)h :=

∫
Ω
G′o(u)h dx

f ′III(u)h :=
∫∫

Q
fzF

′
s(u)h dx dt f ′IV (u)h :=

∫∫
Q
fzF

′
o(u)h dx dt

as the derivatives of the reduced functionals. By associated adjoint equation,
we can transform (7) to a computationally more comment form.

3.1 Optimality Conditions for Problem I

First we consider the optimal control problem (PI) with simplified constraint.
Here, we assume that ws(0), ∂tws(0) ∈ V and force fz ∈ H2(0, T ;L2(Ω)). Hence,
the data have higher regularity such that it follows ws ∈ H2(0, T ;V) for the
solution. The derivative of the control-to-state operator Gs yields a solution of
an initial-boundary value problem.

Theorem 3.1. Let the solution of simplified problem have higher regularity,
ws ∈ H2(0, T ;V). Then the control-to-state operator Gs is continuous Fréchet-
differentiable from L∞(Ω) to V and it holds for any h ∈ L∞(Ω) that

G′s(u)h = ys(·, T ),

where ys ∈ H1
s(0, T ;V) is the weak solution of the initial-boundary value problem

Θ(u)∂2
t ys + ∂2

x(Φ(u)∂2
xys) + Ψ(u)ys

= −Θ′(u)h∂2
tws − ∂2

x(Φ′(u)h∂2
xws)−Ψ′(u)hws

with boundary conditions ys|Σ = ∂2
xys|Σ = 0 and initial data ys(·, 0) = 0 and

∂tys(·, 0) = 0. The functions u and ws ∈ H2
s(0, T ;V) are a given control and

the associated state of PI , respectively.
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Proof. Let w̃s = Gs(u) = ws(·, T ) be the terminal state of the weak solution of
the initial-boundary value problem

Θ(u)∂2
tws + ∂2

x

(
Φ(u)∂2

xws
)

+ Ψ(u)ws = Rfz

ws|Σ = ∂2
xws|Σ = 0

ws(·, 0) = ∂tws(·, 0) = 0

and let w̃u = wu(·, T ) = Gs(u + h), h ∈ L∞(Ω), be the terminal state of the
weak solution of the initial-boundary value problem

Θ(u+ h)∂2
twu + ∂2

x

(
Φ(u+ h)∂2

xwu
)

+ Ψ(u+ h)wu = Rfz

wu|Σ = ∂2
xwu|Σ = 0

wu(·, 0) = ∂twu(·, 0) = 0.

We consider the difference Gs(u + h) − Gs(u), which is the difference of the
terminal values of ws and wu. The terminal values ws(·, T ) and wu(·, T ) assigned
by the linear observation operator EsT clearly are the solutions ws(·, ·) and
wu(·, ·). We can subtract the initial-boundary value problems and invoke the
Fréchet-differentiability of the Nemytskij operators:

Θ(u+ h)∂2
t (wu − ws) + [Θ′(u)h+ rΘ(u, h)]∂2

tws

+ ∂2
x[Φ(u+ h)∂2

x(wu − ws)] + ∂2
x([Φ′(u)h+ rΦ(u, h)]∂2

xws)
+ Ψ(u+ h)(wu − ws) + [Ψ′(u)h+ rΨ(u, h)]ws = 0.

The initial data and boundary conditions remain unchanged.
We put wu − ws = ys + yr and analogous expression holds for the terminal

values w̃u − w̃s = ỹs + ỹr and ỹs = ys(·, T ) by use EsT . Let ys be the weak
solution of the initial-boundary value problem

Θ(u)∂2
t ys + ∂2

x

(
Φ(u)∂2

xys
)

+ Ψ(u)ys

= −Θ′(u)h∂2
tws − ∂2

x

(
Φ′(u)h∂2

xws
)
−Ψ′(u)hws

ys|Σ = ∂2
xys|Σ = 0

ys(·, 0) = ∂tys(·, 0) = 0.

We take the difference yr = wu − ws − ys to determine an equation for yr and
use the Fréchet-differentiability of the Nemytskij operators:

Θ(u+ h)∂2
t yr + ∂2

x(Φ(u+ h)∂2
xyr) + Ψ(u+ h)yr + [Θ′(u)h+ rΘ(u, h)]∂2

t ys

+ rΘ(u, h)∂2
tws + ∂2

x([Φ′(u)h+ rΘ(u, h)]∂2
xys) + [Ψ′(u)h+ rΨ(u, h)]ys

+ ∂2
x(rΦ(u, h)∂2

xws) + rΨ(u, h)ws = 0,

where ỹr = yr(·, T ) satisfied the needed properties of a remainder term. The
initial data and boundary conditions of the equations for ys and yr are analogous
to the equations for ws and wu.
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Next, we transform the initial-boundary value problem for ys into the com-
plete variational formulation and discuss the existence of a weak solution,∫∫

Q
{Θ(u)∂2

t ysv + Φ(u)∂2
xys∂

2
xv + Ψ(u)ysv} dx dt

=
∫∫

Q
{−Θ′(u)∂2

twsv − Φ′(u)∂2
xws∂

2
xv −Ψ′(u)wsv}h dx dt

for each v ∈Ws(0, T ). We define

fys(v) :=
∫∫

Q
{−Θ′(u)∂2

twsv − Φ′(u)∂2
xws∂

2
xv −Ψ′(u)wsv}h dx dt

and Σ(u)(x) := max{|Θ′(u)|, |Φ′(u)|, |Ψ′(u)|}. Then it follows

‖fys‖ ≤ C̃‖Σ(u)‖L∞‖h‖L∞‖ws‖H2(0,T,V).

Since the functions on the right hand side are obviously square integrable,
fys(v) is also square integrable, we can apply the existence theorem 2.2. For
the solution ys, it follows the estimate,

‖ys‖W2
s(0,T ) ≤ C‖Σ‖L∞‖h‖L∞‖fz‖L2(0,T ;H),

with constant C. From the assumption on higher regularity of the solution ys, it
follows ys ∈ H1(0, T ;V) and ∂2

t ys ∈ L2(0, T ;L2(Ω)). We will need this property
of higher regularity with respect to ys below.

We turn to the equation for the remainder yr. In order to calculate a
complete variational formulation, we discuss the existence of a solution of∫∫

Q
{Θ(u+ h)∂2

t yrv + Φ(u+ h)∂2
xyr∂

2
xv + Ψ(u+ h)yrv} dx dt

=
∫∫

Q
{[Θ′(u)h+ rΘ(u, h)]∂2

t ysv + rΘ(u, h)∂2
twsv

+ [Φ′(u)h+ rΘ(u, h)]∂2
xys∂

2
xv + [Ψ′(u)h+ rΨ(u, h)]ysv

+ rΦ(u, h)∂2
xws∂

2
xv + rΨ(u, h)wsv} dx dt,

for each v ∈Ws(0, T ). For the estimate the solution yr, we define

fyr (v) :=
∫∫

Q
{[Θ′(u)h+ rΘ(u, h)]∂2

t ysv + rΘ(u, h)∂2
twsv

+ [Φ′(u)h+ rΘ(u, h)]∂2
xys∂

2
xv + [Ψ′(u)h+ rΨ(u, h)]ysv

+ rΦ(u, h)∂2
xws∂

2
xv + rΨ(u, h)wsv} dx dt,

and ryr (u, h)(x) := max{|rΘ(u, h)(x)|, |rΦ(u, h))(x)|, |rΨ(u, h))|}. Obviously,
every function of the right side is square integrable. For the norm of the func-
tional fyr , we calculate for all v ∈W2

s(0, T ):

‖fyr‖ ≤ C
{
‖Σ‖2L∞‖h‖2L∞ + ‖ryr (u, h)‖L∞‖Σ‖L∞‖h‖L∞

+ ‖ryr (u, h)‖L∞} ‖fz‖L2(0,T ;H).
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Now we apply the existence theorem 2.2 to the solution yr to obtain the estimate

‖yr‖W2
s(0,T ) ≤ C

{
‖Σ‖2L∞‖h‖2L∞ + ‖ryr (u, h)‖L∞‖Σ‖L∞‖h‖L∞

+ ‖ryr (u, h)‖L∞} ‖fz‖L2(0,T ;H),

with some constant C.
The solution ys of the initial-boundary value problem is linear with respect

to h ∈ L∞(Ω), and the linear observation operator EsT does not change this
property. We have to show the remainder property of the solution yr. We
divide remainder term by the norm of h, and have to show that for h→ 0 this
fractions tends to zero:

‖yr‖W2
s(0,T )

‖h‖L∞
≤ C

{
‖Σ‖2L∞‖h‖L∞ + ‖ryr (u, h)‖L∞‖Σ‖L∞

+ ‖ryr (u, h)‖L∞

‖h‖L∞

}
‖fz‖L2(0,T ;H).

The term ‖Σ‖2L∞‖h‖L∞ tends obviously to zero as h → 0. For ryr (u, h), we
use the remainder property of the Nemytskij operators. The conclusion is that
yr → 0 for h→ 0. After applying the linear observation operator EsT it follows
ỹr → 0, too. Since ỹr ∈ V, the remainder property is valid with respect to the
space V and thus the assertion of the proposition follows.

Next, we are able to formulate the first order necessary conditions in a more
convenient form. To this aim, we define the adjoint state pI .

Definition 3.1. The adjoint state pI ∈Ws(0, T ) associated with u is the weak
solution of the final-time-boundary value problem

Θ(u)∂2
t pI + ∂2

x

(
Φ(u)∂2

xpI
)

+ Ψ(u)pI = 0

pI |Σ = ∂2
xpI |Σ = 0 (8)

pI(·, T ) = 0, Θ(u)∂tpI(·, T ) = −1.

For this problem the existence of a solution has been proved, in [11]. The
functions pi, i ∈ {I, II, III, IV } can be interpreted as Lagrange multipliers
associated with the original or simplified equations.

Lemma 3.2. Let functions u, h ∈ L∞(Ω) be given.
Furthermore, let ys ∈ H1(0, T ;V) be the weak solution of

Θ(u)∂2
t ys + ∂2

x

(
Φ(u)∂2

xys
)

+ Ψ(u)ys

= −Θ′(u)h∂2
tws − ∂2

x

(
Φ′(u)h∂2

xws
)
−Ψ′(u)hws

ys|Σ = ∂2
xys|Σ = 0

ys(·, 0) = ∂tys(·, 0) = 0
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and let pI ∈ H1(0, T ;V) be the weak solution of

Θ(u)∂2
t pI + ∂2

x

(
Φ(u)∂2

xpI
)

+ Ψ(u)pI = 0

pI |Σ = ∂2
xpI |Σ = 0

pI(·, T ) = 0 Θ(u)∂tpI(·, T ) = −1.

Then it holds∫
Ω
ys(x, T ) dx =

∫∫
Q
{Θ′(u)∂tws∂tpI − Φ′(u)∂2

xws∂
2
xpI −Ψ′(u)wspI}h dx dt.

The proof of this lemma is simple and omitted here. With this lemma, we
can formulate necessary optimality conditions.

Corollary 3.1 (Necessary condition for Problem I). Any optimal control
u and the corresponding optimal final state ws(·, T ) = Gs(u) for (PI) must fulfill
the variational inequality∫∫

Q

{
Θ′(u)∂tws∂tpI − Φ′(u)∂2

xws∂
2
xpI −Ψ′(u)wspI

}
(u− u) dx dt ≥ 0

for each u ∈ Uad, where the Lagrange multiplier pI ∈ Ws(0, T ) is the adjoint
state defined by (8).

3.2 Optimality Conditions for Problem II-IV

In the same way as in the preceding section, we obtain necessary conditions
for the problem II-IV. In view of the analogy, we only formulate the associated
adjoint equations and variational inequalities.

Problem II

Θ(u)∂2
t pII − ∂x(Υ(u)∂2

t ∂xpII) + ∂2
x

(
Φ(u)∂2

xpII
)

+ Ψ(u)pII = 0

pII |Σ = ∂2
xpII = 0

Θ(u)pII(·, T )− ∂x(Υ(u)∂xpII(·, T )) = 0
1 + Θ(u)∂tpII(·, T )− ∂x(Υ(u)∂t∂xpII(·, T )) = 0∫∫

Q

{
−Θ′(u)∂2

twopII −Υ′(u)∂2
t ∂xwo∂xpII − Φ′(u)∂2

xwo∂
2
xpII

−Ψ′(u)wopII
}

(u− u) dx dt ≥ 0

for each u ∈ Uad.
Problem III

Θ(u)∂2
t pIII + ∂2

x

(
Φ(u)∂2

xpIII
)

+ Ψ(u)pIII = fz

ps|Σ = ∂2
xpIII |Σ = 0

pIII(·, T ) = ∂tpIII(·, T ) = 0∫∫
Q

{
Θ′(u)∂tws∂tpIII − Φ′(u)∂2

xws∂
2
xpIII −Ψ′(u)wspIII

}
(u− u) dx dt ≥ 0
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for each u ∈ Uad.
Problem IV

Θ(u)∂2
t pIV − ∂x(Υ(u)∂2

t ∂xpIV ) + ∂2
x

(
Φ(u)∂2

xpIV
)

+ Ψ(u)pIV = fz

pIV |Σ = ∂2
xpIV = 0

pIV (·, T ) = ∂tpIV (·, T ) = 0∫∫
Q

{
−Θ′(u)∂2

twopIV −Υ′(u)∂2
t ∂xwo∂xpIV − Φ′(u)∂2

xwo∂
2
xpIV

−Ψ′(u)wopIV
}

(u− u) dx dt ≥ 0

for each u ∈ Uad.

4 Numerical Implementation and Solution of the
Problems

The constraints are hyperbolic partial differential equation of fourth order with
respect to the spatial variables and of second order in time. We solve these
equations by transforming them into a system of parabolic partial differential
equations that can be solved by the finite element method in combination with
Rothe’s method. We use σ-weighted difference schemes for the time derivatives
and apply the finite element method in x. For the resulting optimal control
problem we use the optimization code fmincon that is part of the software-
package Matlab. Subsequently, we give some details to the finite element
method (FEM) [8,11,15] that is used to determine approximate solutions of
the equations and the associated adjoint equations. The starting point of this
method are the variational formulations (2) and (3).

In order to approximate the solution space V, we use Hermite interpolation
of the functions wi, i ∈ {o, s} and pi with step size parameter h. First, we
define the discrete solution space

Vh =

wh(·) : wh(·) =
n∑
j=0

w0
jpj(·) + w1

j qj(·)

 ⊂ V.
In this definition of the solution space, conformal finite elements are included.
Next, we define for each time step tm ∈ (0, T ]:

wmih(·, tm) =
n∑
j=0

w0
ij(tm)pj(·) + w1

ij(tm)qj(·) wmih ∈ Vh

with basis functions pj , qj ∈ P3(Ω) for j = 0, 1, . . . , n (cubic polynomials), where
n is the number of grid points. The w0

ij(tm), w1
ij(tm), i ∈ {o, s}, are certain real

node parameters. For the node parameters, we have in mind

w0
ij(tm) ≈ wih(xj , tm) and w1

ij(tm) ≈ ∂xwih(xj , tm).



4 NUMERICAL IMPLEMENTATION AND SOLUTION 14

Furthermore, we define discrete bilinear forms and a linear form

ah(wh, vh, tm) :=
∫

Ω
Φ(uh)d2

xwh(tm)d2
xvh + Ψ(uh)wh(tm)vh dx,

gh(wh, vh, tm) :=
∫

Ω
Υ(uh)dxwh(tm)dxvh + Ψ(uh)wh(tm)vh dx,

Fh(vh, tm) := R

∫
Ω
fz(tm)vh dx.

For equations or adjoint equations (with small modifications in the linear form),
we define the following discrete problems:

Find wih ∈ Vh, i ∈ {o, s} solving

(Θ(uh)ẅmoh, vh)L2 + gh(wmoh, vh, tm) + ah(wmoh, vh, tm) = Fh(vh) or
(Θ(uh)ẅmsh, vh)L2 + ah(wmsh, vh, tm) = Fh(vh) ∀ vh ∈ Vh

for each time step tm ∈ (0, T ] and given initial data. Analogously we discretize
the adjoint equations. Now we set ymih = ẇmih and it follows

(ẇmoh − ymoh, vh)L2 = 0
(Θ(uh)ẏmoh, vh)L2 + gh(wmoh, vh, tm) + ah(woh, vh, tm) = Fh(vh) or

(ẇmsh − ymsh, vh)L2 = 0
(Θ(uh)ẏmsh, vh)L2 + ah(wmsh, vh, tm) = Fh(vh) ∀ vh ∈ Vh

To solve the discrete problems, we can apply standard techniques of linear
algebra. The control function u is discretized by piecewise linear interpolation,

uh =
n∑
j=0

ujlj

with linear continuous basis functions lj ; hence it holds uh ∈ C(Ω). Therefore,
we have established an isomorphism

uh ⇐⇒ ~uh = [u0, . . . , un] ∈ Rn+1

and the objective functionals

fIh(uh) =
∫

Ω
wmsh(·, T ) dx fIIh(uh) =

∫
Ω
wmoh(·, T ) dx

fIIIh(uh) =
∫∫

Q
fzw

m
sh dx dt fIV (uh) =

∫∫
Q
fzw

m
oh dx dt

can be expressed by mappings ϕi : Rn+1 → R, i ∈ {I, II, III, IV }:

ϕih : ~uh 7→ uh 7→ fih(uh).

These functions will be used in the numerical implementations. The optimal
control problems are finally approximated by

min
~u∈Uh

ad

ϕih(~uh),

where the set Uhad will be defined later.
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4.1 Implementation of the Derivative of the Objective Func-
tional

The optimization solver fmincon calculates the discrete derivative ∇ϕih(~uh) by
finite differences. This means that, in principle, our adjoint calculus is not
needed by fmincon. However, proceeding in this way, the computing times will
be very long. The tool fmincon can be accelerated by providing information on
the derivative. During the analytical treatment of the optimal control problem,
we determined the derivative f ′i(u).

Numerically, we implement this derivative by FEM to compute ∇ϕih(~uh).
During the numerical optimization process, this gradient is passed to the solver
fmincon. This reduces the running time of the optimization algorithm consid-
erably. On the other hand, this approach might be problematic, because we
approximate ∇ϕih by means of a discretized continuous adjoint equation. This
is not necessarily equal to the exact discrete gradient ∇ϕih. The solver fmincon
is testing the quality of the transmitted gradient ∇ϕih by finite differences.

During our numerical experiments, it turned out that the difference between
our gradient ∇ϕih (computed via the adjoint equation) and the "exact" discrete
gradient was marginal of the order 10−6 for sufficiently small discretization
x-parameter h and t-parameter τ for time.

We should mention that the computation of the gradient via the adjoint
equation was numerically more stable than the use of the one generated by
fmincon. Of course, the solution of the optimization problem with finite element
gradients is identical with the one obtained from finite difference gradients. We
used a discretized version of this gradient, where we consider arbitrary directions
zh ∈ C(Ω) (the analog approach to u).

For the function wi, pi, i ∈ {I, II, III, IV }, we apply the two-dimensional
Hermite interpolation:

w̃τih(x, t) =
m∑
j=0

n∑
i=0

1∑
a,b=0

α̂abij s
a
i (x)sbj(t)

with global functions si, sj ∈ P3 (cubic polynomials) and τ the time-stepsize.
The parameters a, b denote the derivative da

dxa ,
db

dtb
of the function s, and the

node parameters α̂abij are the derivatives of the functions wi or pi at the grid
point

α̂00
ij = wi(xi, tj) α̂10

ij = ∂xwi(xi, tj) α̂01
ij = ∂twi(xi, tj) α̂11

ij = ∂x∂twi(xi, tj)

This approach involves the approximation of the space V. Through this ap-
proach, practically the Bogner-Fox-Schmidt element is used. With these con-
ventions we obtain for α ∈ {I, III}:

∇fαh(uh)zh =
∫∫

Q

{
Θ′(uh)∂tw̃mαh∂tp̃mαh − Φ′(uh)∂2

xw̃
m
αh∂

2
xp̃
m
αh

−Ψ′(uh)w̃mαhp̃mαh
}
zh dx dt
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and for β ∈ {II, IV }:

∇fβh(uh)zh =
∫∫

Q

{
Θ′(uh)∂tw̃mβh∂tp̃mβh + Υ′(uh)∂t∂xw̃mβh∂t∂xp̃mβh

−Φ′(uh)∂2
xw̃

m
βh∂

2
xp̃
m
βh −Ψ′(uh)w̃mβhp̃mβh

}
zh dx dt,

for each zh. For any direction zh, we can choose the nodal basis functions lj
successively for j = 0, . . . , n. It follows for the numerical implementation of the
discrete gradient vector that

[∇ϕαh]j =
n∑
i=1

∫
E(i)

∫ T

0

{
Θ′(uh)∂tw̃mαh∂tp̃mαh − Φ′(uh)∂2

xw̃
m
αh∂

2
xp̃
m
αh

−Ψ′(uh)w̃mαhp̃mαh
}
dt lj dx

and

[∇ϕβh]j =
n∑
i=1

∫
E(i)

∫ T

0

{
Θ′(uh)∂tw̃mβh∂tp̃mβh + Υ′(uh)∂t∂xw̃mβh∂t∂xp̃mβh

−Φ′(uh)∂2
xw̃

m
βh∂

2
xp̃
m
βh −Ψ′(uh)w̃mβhp̃mβh

}
dt lj dx

for j = 0, · · · , n. The same implementation is used for checking the first order
necessary optimality conditions, see Section 3.1− 3.4.

4.2 Numerical Solution of the Optimization Problem

The reduced problems (6) are our starting point for the direct solution of the
optimal control problems. We solve the finite dimensional optimization prob-
lems

min
~uh∈Uad

h

ϕih(~uh) i ∈ {I, II, III, IV } (9)

subject to

Ah~uh = C, (10)

where
Uadh = {~uh ∈ Rn+1 | ~ua ≤ ~uh ≤ ~ub}

and
Ah =

[
h
2 h . . . h h

2

]
∈ Rn+1.

The volume condition (10) is formulated as an additional constraint. It was
derived by the trapezoidal rule. The constant C (volume) depends on the
particular problem. The restrictions on ~uh are defined componentwise.

The tool fmincon of the Matlab (optimization toolbox) is designed for
solving optimization problems with linear (or nonlinear) objective functions
and linear (or nonlinear) constraints, both in form of equations as well as in-
equalities. The routine fmincon requires the following inputs: the values of the
discrete objective functional ϕih(~uh), the volume condition (10) by input of Ah
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and C, the vectors ~ua, ~ub, and the discrete gradient vector ∇ϕih that leads to a
reduction of running time. The program stops, if changes of the objective func-
tional are smaller than a prescribed threshold, the violations of the constraint
be located within the tolerances, and the necessary conditions for the optimal-
ity of the solution are fulfilled. The output is the optimal solution vector ~uh,
the discrete Lagrange multiplier qh for the volume condition, and the Lagrange
multipliers ~µa, ~µb for the control restrictions, where they are active. Whether
the solution uh of the discrete optimal control problem really be a candidate for
the optimal solution is verified by checking the first order necessary condition.
Let us call this "optimality test".

The variational inequalities for problems I-IV are the starting points for
evaluating the optimality of the numerically computed optimal solutions uh.
Pointwise evaluation of the first oder necessary condition, as done in [14] for
optimal control problems with box constraints, is not applicable in our case due
to the non-constant ansatz for the control function u and the additional volume
condition. Let us define the linear forms

bα(z) :=
∫∫

Q
{−Θ′(u)∂twα∂tpsα+ Φ′(u)∂2

xwα∂
2
xpα

+ Ψ′(u)wαpα}z dx dt

bβ(z) :=
∫∫

Q
{−Θ′(u)∂twβ∂tpβ −Υ(u)′∂t∂xwβ∂t∂xpβ

+ Φ′(u)∂2
xwβ∂

2
xpβ + Ψ′(u)wβpβ}z dx dt.

The variational inequalities for problems (Pi) are equivalent to

max
z∈Uad

bi(z) = bi(u). (11)

hence, to be optimal, u must solve a linear continuous optimization problem.
As done for the control u, we linearly interpolate the function z. We have also
a correspondence

ψih : ~zh 7→ zh 7→ bih(zh).

Hence we obtain the discrete problem:

max
~zh∈Uad

h

ψih(~zh) (12)

subject to (10).
A first test is performed as follows: After computing uh, we compute the

state w̃τih and the adjoint state p̃τih. Then we solve the optimal problems (12).
The solution is zh. If uh is optimal for the discretized problem, the equation
uh = zh should hold. In general, there is an error and the difference ‖uh − zh‖
indicates the precision of uh. This procedure shows, how good uh solves the
discretized optimization problem. Another test is used to estimate, how well
uh solves the reduced problem.

To perform this optimality test, the problem (12) is also solved by the
optimization solver fmincon. The gradient ∇ψih is calculated by finite elements
and is passed to fmincon. We used ~z0 = uh + ε · 1 as starting approximation
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for our examples below. The parameter ε ∈ R generates a perturbation in all
components of optimal solution uh of (9). The output is the optimal solution
zh of (11).

5 Examples
Let us discuss some test examples. They are used to evaluate the quality of the
necessary optimality conditions and demonstrate the advantage of using finite
elements gradients. In the examples, we use the material parameters

E = 2.1 · 102, ν = 0.3, ρ = 7.8, R = 1

that is the elastic modulus E, the Poisson number ν, the density ρ and the radius
R. The first three parameters depend on the material and the last parameter
depends on the particular geometry. To discretize the transient problems, we
choose an equidistant grid for x and t-location. For this grid, we compute the
discrete optimal solution uh and the corresponding optimal state w∗h. We set
final-time T = 1, this is only for our academic examples.

Figure 2: Starting configuration

Figure 2 shows a longitudinal cut through the cylindrical shell, where we
only plot the upper part due to symmetry. The dash-dotted-line represents
the central plane of the cylindrical shell. This is the starting configuration for
all examples. We define the vector 1 ∈ Rn+1 containing the number 1 in all
entries. As restrictions to the control we set the constants ua = 0.05 · 1 and
ub = 0.15 · 1. The fixed volume is prescribed by C = 0.6283, and u0 = 0.1 · 1
is the initial value on the control. The figures below show the optimal solution
uh, the solution zh of the variational inequality and the corresponding shape of
the cylindrical shell for different choices of fz.

Example 1. We take as force fz = x(1− x).

First, we justify the use of the finite element gradient via the adjoint
equation. We have chosen these figures by #x-nodes × #t-nodes :=
100× 100.
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Figure 3: Optimal thickness uIh on us-
ing the finite difference method of fmin-
con for gradients (fdm-gradient)

Figure 4: Optimal thickness uIh by us-
ing the finite element method and the
adjoint equation for the gradients (fem-
gradient)

As can be easily seen, the use of the finite element gradient is of great
advantage. The second major advantage is the acceleration of the opti-
mization solver fmincon that required the following running times:

#x×#t fmincon with fdm-gradient fmincon with fem-gradient
50× 50 3429.59 147.941

100× 100 66441.10 645.231

The values of the 2nd and 3nd column are given in seconds. These values
were calculated by Problem I. The next pictures show the numerically
calculated optimal control uIh and the associated configuration of the
cylindrical shell. Again, we only display its upper half.

Figure 5: Optimal thickness uIh
Figure 6: Configuration of the cylinder
tube by Problem I

The following table shows how the error develops depending on the step
size. For the unknown exact solution uI , we take the solution uIh on a
very fine grid with h = 6.25 · 10−3.
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step-size h ‖uI − uIh‖∞ ‖uI − uIh‖2
5.00 · 10−2 3.969554 · 10−3 1.933653 · 10−3

2.50 · 10−2 3.970259 · 10−3 1.948629 · 10−3

1.25 · 10−2 1.471205 · 10−3 1.022756 · 10−3

The next table displays the discretization error of (12) in different norms.

step-size h ‖uI − zIh‖∞ ‖uI − zIh‖2
5.00 · 10−2 1.000000 · 10−1 6.629668 · 10−3

2.50 · 10−2 1.000000 · 10−1 6.501185 · 10−3

1.25 · 10−2 2.033245 · 10−3 1.308890 · 10−4

In the same way, we sketch the results for (PII) and (PIII).

Figure 7: Optimal thickness uIIh
Figure 8: Configuration of the cylinder
tube by Problem II

step-size h ‖uII − uIIh‖∞ ‖uII − uIIh‖2
5.00 · 10−2 6.306746 · 10−3 2.278883 · 10−3

2.50 · 10−2 4.010179 · 10−3 1.194692 · 10−3

1.25 · 10−2 1.571840 · 10−3 3.023343 · 10−4

step-size h ‖uII − zIIh‖∞ ‖uII − zIIh‖2
5.00 · 10−2 1.036696 · 10−3 8.608683 · 10−5

2.50 · 10−2 1.033434 · 10−3 8.276054 · 10−5

1.25 · 10−2 1.032171 · 10−3 8.190915 · 10−5



5 EXAMPLES 21

Figure 9: Optimal thickness uIIIh
Figure 10: Configuration of the cylinder
tube by Problem III

step-size h ‖uIII − uIIIh‖∞ ‖uIII − uIIIh‖2
5.00 · 10−2 2.980146 · 10−3 7.591920 · 10−4

2.50 · 10−2 1.142223 · 10−3 3.242174 · 10−4

1.25 · 10−2 5.579242 · 10−4 2.375532 · 10−4

step-size h ‖uIII − zIIIh‖∞ ‖uIII − zIIIh‖2
5.00 · 10−2 1.057317 · 10−3 8.416476 · 10−5

2.50 · 10−2 1.056553 · 10−3 8.384105 · 10−5

1.25 · 10−2 1.056706 · 10−3 8.384590 · 10−5

The solution of problem (PIV ) is graphically identical to that of (PIII),
cf. Fig. 9 and 10.

Example 2. Now, the force is given by fz = sin(x) exp(t).

In this example we use a time-dependent and un-symmetric force. We
again show the optimal control uih and the cut trough the cylindrical
shell.

Figure 11: Optimal thickness uIh
Figure 12: Configuration of the cylinder
tube
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step-size h ‖uI − uIh‖∞ ‖uI − uIh‖2
5.00 · 10−2 5.406534 · 10−2 8.614244 · 10−3

2.50 · 10−2 4.433849 · 10−2 1.030356 · 10−2

1.25 · 10−2 4.275253 · 10−2 3.250238 · 10−3

step-size h ‖uI − zIh‖∞ ‖uI − zIh‖2
5.00 · 10−2 8.968443 · 10−2 4.106036 · 10−2

2.50 · 10−2 9.322465 · 10−2 4.896630 · 10−2

1.25 · 10−2 4.275253 · 10−2 2.941370 · 10−3

Again, we also display the results for (PII) and (PIII).

Figure 13: Optimal thickness uIIh
Figure 14: Configuration of the cylinder
tube

We can see that the term with the mixed derivative in the original con-
straint has a significant influence on the optimal solutions.

step-size h ‖uII − uIIh‖∞ ‖uII − uIIh‖2
5.00 · 10−2 3.525451 · 10−2 7.830259 · 10−3

2.50 · 10−2 2.291262 · 10−2 5.738711 · 10−3

1.25 · 10−2 8.049868 · 10−3 1.705603 · 10−3

step-size h ‖uII − zIIh‖∞ ‖uII − zIIh‖2
5.00 · 10−2 7.671809 · 10−2 3.815766 · 10−2

2.50 · 10−2 2.384418 · 10−4 6.891144 · 10−5

1.25 · 10−2 8.267400 · 10−4 7.911593 · 10−5



6 CONCLUDING REMARKS 23

Figure 15: Optimal thickness uIIIh
Figure 16: Configuration of the cylinder
tube

step-size h ‖uIII − uIIIh‖∞ ‖uIII − uIIIh‖2
5.00 · 10−2 9.322822 · 10−3 1.403460 · 10−3

2.50 · 10−2 5.215082 · 10−3 7.257135 · 10−4

1.25 · 10−2 2.969511 · 10−3 3.103673 · 10−4

step-size h ‖uIII − zIIIh‖∞ ‖uIII − zIIIh‖2
5.00 · 10−2 7.518352 · 10−2 1.312048 · 10−2

2.50 · 10−2 9.672485 · 10−2 1.250337 · 10−2

1.25 · 10−2 3.755295 · 10−4 5.879215 · 10−5

Analogously to Example 1, the solution of problem (PIV ) is graphically
identical to that of (PIII), cf. Fig. 15 and 16.

6 Concluding Remarks
We discussed problems of optimal shape design in linear elasticity theory. The
optimal thickness of a cylindrical tube is determined that minimizes the dis-
placement of the tube under the influence of given external time-dependent
force. Necessary optimality conditions for the optimal solution are formulated
and proved. In contrast to previous work on this subject, we selected a direct
method for the optimization for a finite element discretized model in combina-
tion with the Rothe method. We also use the finite element method to generate
gradients with solution of adjoint equation and to test necessary optimality con-
ditions. We considered only small deformations. The case of large deformations
that might lead to effects of plasticity ist not considered here.
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