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Abstract

In this paper we discuss optimization problems for cylindrical tubes
which are loaded by an applied force. This is a problem of optimal
control in linear elasticity theory (shape optimization). We are look-
ing for an optimal thickness minimizing the deflection (deformation) of
the tube under the influence of an external force. From basic equations
of mechanics, we derive the equation of deformation. We apply the dis-
placement approach from shell theory and make use of the hypotheses
of Mindlin and Reissner. A corresponding optimal control problem is
formulated and first order necessary conditions for the optimal solu-
tion (optimal thickness) are derived. We present numerical examples
which were solved by the finite element method.
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1 Introduction

In this paper, we discuss a particular class of optimal shape design for cylin-
drical shells. As a problem of shape optimization, it belongs to a very active
field of research with extensive literature. We refer only to the books by
Sokolowski and Zolesio [1], Pironneau [2], Haslinger and Mäkinen [3] and
Neittaanmäki et al. [4], Delfour and Zolesion [5], or Masmoudi et al. [6] and
to the references therein. Our problem is, in some sense, easier to handle,
because it can be transformed to an optimal control problem of coefficients in
a 4th order elliptic equation. We have been inspired by the papers [7,8,9,10]
on this subject. First investigations and modelings of these problems can be
found in the books of Ciarlet [11] and Timoshenko [12]. Lepik and Lepikult.
[7], Lepikult et al. [7,8], and Lellep [9,10] contributed to this topic. Lepikult
et al. [8] discuss related problems and solve them with the software Gesop.
We should also mention Olenev [14], who examined the plastic deformation
of cylindrical shells due to an external force. Lellep [10] developed optimiza-
tion procedures for cylindrical shells with piecewise linear geometry. The
work by Neittaanmäki et al. [4] and Sprekels and Tiba [15] is most close to
ours. They deal with a similar problem in elliptic equations of fourth order.

The present paper considers the effect of an external force on a cylindri-
cal shell (specific rotationally symmetric force). As a result of this force the
cylinder tube is deformed. Our objective is to determine the thickness of
the tube, which minimizes the deformation. The underlying physical pro-
cess is described by a 4th order ordinary differential equation with boundary
conditions, which results from the balance of power. As an additional con-
dition, we require that the volume of the tube remains constant. To obtain
practical solutions we also require the thickness to vary only within specified
limits. We seek to find an optimal thickness numerically and we derive first
order necessary conditions for the optimal solution. The particular way of
numerical treatment is one of our main issues. First-order conditions for
optimality are tested numerically to evaluate the precision of the computed
optimal shape. This is another novelty of this work. In this paper, we treat
the stationary case, which is formulated in the next section. In a forthcom-
ing paper we will deal with the transient case, which results from the law of
conservation of momentum.
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2 Modeling of the Problem

Many practical problems deal with deformations of bodies caused by the
influence of forces. Examples are the deflection of floors, vibration char-
acteristics of bridges, deformations during processing of metals, and crash
tests in car industry. These practical problems are analyzed in elasticity
theory. By using the basic equations of mechanics (balance of power, stress
reaction of the material) and taking into account the geometric properties
of the body the aforementioned problems can be modeled fairly simple. As
a result we obtain equations for the solution (deformation) of the problem.

Let Ω3D ⊂ R3 be the reference configuration for a body in the stress free
state. The state is expressed by a map φ : Ω3D → R3. This map includes
the identity mapping and small displacements y. The deviation from the
identity mapping is expressed by the strain. The strain-tensor ε has the
following components:

εij =
1

2

(

∂yi

∂xj
+
∂yj

∂xi

)

i, j = 1, 2, 3.

The displacements depend on material parameters by Hooke’s law

σ(y) = 2µ ε(y) + λ(trace (ε(y))) · I,

with the Lamé-constants λ, µ (material parameters), the identical tensor I,
and the stress tensor σ. In linear elasticity theory, the goal is to minimize
the energy functional

Π(y) :=

∫

Ω3D

[

1

2
σ(y) : ε(y) − f · y

]

dx−

∫

∂Ω3D

g · y dS

for all admissible y. The term σ : ε denotes the second order tensor product
of σ and ε. The function f represents the force exerted on the body and g
formulates possible boundary conditions derived from the specific problem.
For modeling the cylindrical shell we use the hypotheses of Mindlin and
Reissner [16,17]. This allows to reduce our 3-dimensional problem to a 1-
dimensional. The deformation of the body under the force f is modeled by
the balance of power

−div σ(y) = f . (1)

Let us introduce the cylindrical shell to be optimized. A cylindrical shell is
most conveniently described in cylindrical coordinates. The surface of the
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cylinder ΩC
2D := [0, 1] × [0, 2π] with radius R is given by

z(x, ϕ) =







x

R cosϕ
R sinϕ






, x ∈ Ω := [0, 1], ϕ ∈ [0, 2π].

The cylindrical shell S with center plane z(x, ϕ) and thickness u is given as

S =











z(x, ϕ) + h







0
cosϕ
sinϕ






| h ∈

[

−
u

2
,
u

2

]

, (x, ϕ) ∈ ΩC
2D











,

in the natural coordinate system ei, (i = 1, 2, 3), specified by the cylindrical
shell,

e1 =
∂S

∂x
e2 =

∂S

∂ϕ
e3 =

∂S

∂h
.

We mention that Ω3D = S, to close the gap the setting above.
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Figure 1: cylindrical shell

The Mindlin and Reissner hypotheses lead to the displacement law

y = y1(x, ϕ)e1 + y2(x, ϕ)e2 + y3(x, ϕ)e3 − h[θ1(x, ϕ)e1 + θ2(x, ϕ)e2]

with displacements yi : S → R with respect to all basis-directions and
torsions θi : S → R. We assume a rotationally symmetric force. Let the
tube be fixed at its ends and let the Kirchhoff-Love hypothesis for a thin
shell be fulfilled. We use soft clamped boundary conditions (yi = 0, ∇θi = 0
on the considered boundary) which are often considered in practice. Under
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these conditions, we have y1 = y2 = θ2 = 0 and ∂xy1 = θ1. We insert the
displacement law into the balance of power (1). With w := y3, fz := f · e3,
there follows the equation of the stationary problem in the weak formulation:
Find a solution w ∈ V := H2(Ω) ∩H1

0 (Ω) such that

∫

Ω

{

(2µ + λ)

[

Ru3

12
d2xwd

2
xw̃ +

(

u3

12R3
+
u

R

)

ww̃

]}

dx = R

∫

Ω
fzw̃ dx (2)

for each w̃ ∈ V . We recall that Ω = (0, 1). Here and what follows, d2xw

stands for d2w
dx2 . The space Hk(Ω) denotes the standard well know Sobolev

space of order k. The existence of a solution of equation (2) can be shown
by the Lemma of Lax and Milgram. This variational formulation has the
advantage that we look for the solution in the weak sense (weak solution)
w ∈ V . Later we need the higher regularity w ∈ V ∩ Hk(Ω) with k > 2.
To achieve this higher regularity, we require that the force fz belongs to
Hk−1(Ω) and that the coefficients of the differential equation are sufficiently
smooth, for more information see [18].

Under sufficient smoothness, w is a classical solution of the equation (2).
We allow the function fz to be only square integrable, i.e. fz ∈ L2(Ω). This
generalization fits better to the practical situation.

To cover the non-linearities with respect to the control u, we define
Nemytskij operators Φ,Ψ : L∞(Ω) → L∞(Ω):

Φ(u) := (2µ + λ)
Ru3

12
Ψ(u) := (2µ + λ)

(

u3

12R3
+
u

R

)

.

These operators are continuously differentiable. We need them for the
derivatives of optimality criteria for the optimal control problem. These
derivatives can be expressed for a direction h ∈ L∞(Ω) by

Φ′(u)h = (2µ + λESZ)
Ru2

4
h Ψ′(u)h = (2µ + λESZ)

(

u2

4R3
+

1

R

)

h.

3 The Optimal Control Problem

For the formulation of the problem and its solvability, we assume the exis-
tence of an optimal control u. The goal is to determine a thickness u, which
minimizes the deformation of the cylinder tube. Additionally, we require
the cylindrical shell to have a constant volume:

min
u∈Uad

J(w) := min
u∈Uad

∫

Ω
fz(x)w(x) dx
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subject to

d2x

(

Φ(u)d2xw
)

+Ψ(u)w = Rfz

w(0) = w(1) = d2xw(0) = d2xw(1) = 0

where

Uad =

{

u ∈ L∞(Ω), ua ≤ u(x) ≤ ub a.e.,

∫

Ω
u(x) dx = C

}

,

and 0 < ua < ub are given. Additionally, the objective function is weighted
by the applied force fz. In regular situations, we can assume that the re-
sulting deformation w has the same direction as the applied force. Then the
objective function is positive. The thickness u = u(x) is the control func-
tion that influences the displacement (deflection) w = w(x) for a given force
fz = fz(x). The constant C := VZ

2πR considers the constant volume of the
shell VZ . In this formulation of the optimal control problem we have used the
strong formulation to highlight the type of equation and the soft clamped
boundary conditions. In the following and in the numerical calculations we
use only the weak formulation (2).

Let us assume for convenience that a (globally) optimal control exists
that we denote in the following by u. In general, this problem of existence is
fairly delicate in the theory of shape optimization. We refer to the preface
in Sokolowski and Zolesio [1], who underline the intrinsic difficulties of this
issue. The existence of optimal controls can be proved in certain classes of
functions that are compact in some sense. We refer also to recent discussions
on bounded perimeter sets in shape optimization discussed in [5,6,18,19]. In
the case of optimal shaping of some thin elastic structures such as arches
or curved rods, another method was presented by Sprekels and Tiba [15],
cf. also Neittaanmäki et al. [6]. In our case, this method is not applicable,
because we have a volume constraint that cannot be handled this way. We
also might work in a set Uad that is compact in L∞. This is not useful for our
application. However, in the numerical discretization, the existence of an
optimal control follows by standard compactness arguments. Moreover, as
in classical calculus of variations, we might assume the existence of a locally
optimal control. The whole theory of our paper remains true without any
change for any locally optimal control u.

Next, we transform this problem to a nonlinear optimization problem in
a Banach space. For this, we define the control-to-state operator G : u 7→
w, G : L∞(Ω) → V where w ∈ V is the solution of the state equation.
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This allows us to eliminate the state w in the objective functional and to
formulate the so-called reduced optimal control problem:

min
u∈Uad

J(G(u)) = min
u∈Uad

∫

Ω
[fz G(u)](x) dx. (3)

Let us define the reduced functional f by

f(u) :=

∫

Ω
[fzG(u)](x) dx.

Next, we formulate the first order necessary conditions of this problem.
Notice that f is continuously Fréchet-differentiability.

Lemma 1 Let u ∈ Uad be a solution of the problem (3). Then the varia-
tional inequality

f ′(u)(u− u) ≥ 0 ∀ u ∈ Uad

is fulfilled.

We refer, for instance, to [19] for the proof of this standard result. By the
chain rule, we find for any h ∈ L∞(Ω)

f ′(u)h =

∫

Ω
[fzG

′(u)h](x) dx

as the derivative of the objective functional. The derivative of the control-
to-state operator G is given by the following theorem as a solution of a
boundary value problem.

Theorem 1 Let Ω be a bounded Lipschitz domain and Φ,Ψ be differentiable
Nemytskij operators in L∞(Ω). Then the control-to-state operator G is con-
tinuously Fréchet-differentiable. The derivative at u in direction h given
by

G′(u)h = y

with y being the weak solution of the boundary value problem

d2x

(

Φ(u)d2xy
)

+Ψ(u)y = −d2x

(

Φ′(u)hd2xw
)

−Ψ′(u)hw

with boundary conditions y(0) = d2xy(0) = y(1) = d2xy(1) = 0. Here, u
and w ∈ V denote the optimal control and the associated optimal state,
respectively.
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Proof. Let w = G(u) be the weak solution of the boundary value problem

d2x(Φ(u)d
2
xw) + Ψ(u)w = Rfz

w(0) = w(1) = d2xw(0) = d2xw(1) = 0

and let wu = G(u + h), h ∈ L∞(Ω), be the weak solution of the boundary
value problem

d2x(Φ(u+ h)d2xwu) + Ψ(u+ h)wu = Rfz

wu(0) = wu(1) = d2xwu(0) = d2xwu(1) = 0.

We consider the differenceG(u+h)−G(u) and use the Fréchet-differentiability
of the Nemytskij operators:

d2x([Φ
′(u)h+ rΦ(u, h)]d

2
xw +Φ(u+ h)d2x(wu − w))

+[Ψ′(u)h+ rΨ(u, h)]w +Ψ(u+ h)(wu − w) = 0.

For the boundary conditions, it follows

wu(0) − w(0) = 0 d2x(wu(0)− w(0)) = 0

wu(1) − w(1) = 0 d2x(wu(1)− w(1)) = 0.

We define wu − w = y + yr with y ∈ V being the weak solution of the
equation

d2x(Φ(u)d
2
xy) + Ψ(u)y = −d2x(Φ

′(u)hd2xw)−Ψ′(u)hw

with boundary conditions y(0) = d2xy(0) = y(1) = d2xy(1) = 0. Now we
consider the difference in order to derive an equation for the function yr ∈ V :

d2x(Φ(u+ h)d2xyr) + Ψ(u+ h)yr + d2x([Φ
′(u)h+ rΦ(u, h)]d

2
xy)

+[Ψ′(u)h+ rΨ(u, h)]y + d2x(rΦ(u, h)d
2
xw) + rΨ(u, h)w = 0.

For the boundary conditions it follows

yr(0) = d2xyr(0) = yr(1) = d2xyr(1) = 0.

In order to prove the existence of a solution by the Lemma of Lax and
Milgram, we consider the variational formulation. To this aim, we define
the bilinear forms

ay(y, v) :=

∫

Ω
{Φ(u)d2xyd

2
xv +Ψ(u)yv} dx

ayr(yr, v) :=

∫

Ω
{Φ(u+ h)d2xyrd

2
xv +Ψ(u+ h)yrv} dx
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for each v ∈ V . Moreover, we introduce linear functionals fy : V → R and
fyr : V → R by

fy(v) :=

∫

Ω
{−Φ′(u)hd2xwd

2
xv −Ψ′(u)hwv} dx

fyr(v) :=

∫

Ω

{

−rΦ(u, h)d
2
xwd

2
xv − rΨ(u, h)wv

−[Φ′(u)h+ rΦ(u, h)]d
2
xyd

2
xv − [Ψ′(u)h+ rΨ(u, h)]yv

}

dx

for fixed h ∈ L∞(Ω) sufficiently small. Notice that d2xw ∈ L2(Ω) is satisfied,
hence the expressions on the right-hand side are well-posed. This leads to
the following problems: Find functions y and yr that satisfy the equations

ay(y, v) = fy(v) and ayr(yr, v) = fyr(v)

for all v ∈ V . Obviously, the bilinear forms satisfy the conditions of the
Lemma of Lax and Milgram. In order to estimate the linear form fy(v), we
define Θ1(u)(x) := max{|Φ′(u)(x)|, |Ψ′(u)(x)|}, x ∈ Ω, and it holds

|fy(v)| ≤

∫

Ω
|Θ1(u)h||d

2
xwd

2
xv + wv| dx ≤ ‖Θ1‖L∞‖h‖L∞‖w‖H2‖v‖H2 .

For the norm of the functional it follows

‖fy‖V ∗ = sup
v∈V

|fy(v)|

‖v‖V
≤ ‖Θ1‖L∞‖h‖L∞‖w‖H2 .

The Lemma of Lax and Milgram yields

‖y‖H2 ≤
‖Θ1‖L∞‖h‖L∞

β0
‖w‖H2

with a constant β0 > 0. The solution y depends linearly on h. In order to
estimate the linear form fyr(v) we define

ryr(u, h)(x) := max{|rΦ(u, h)(x)|, |rΨ(u, h)(x)|}, x ∈ Ω.

We have

|fyr(v)| ≤

∫

Ω
|ryr(u, h)||d

2
x(w + y)d2xv + (w + y)v|+ |Θ1||h||d

2
xyd

2
xv + yv| dx

≤ ‖ryr(u, h)‖L∞‖w + y‖H2‖v‖H2 + ‖Θ1‖L∞‖h‖L∞‖y‖H2‖v‖H2 ,

hence

‖fyr‖V ∗ ≤ ‖ryr(u, h)‖L∞‖w + y‖H2 + ‖Θ1‖L∞‖h‖L∞‖y‖H2 .
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Therefore it holds
‖yr‖H2 ≤ cα‖fyr‖V ∗

with a constant cα > 0. It remains to show that the remainder term yr
satisfies the required property. We divide by ‖h‖L∞ > 0,

‖yr‖H2

‖h‖L∞

≤ cα
‖fyr‖V ∗

‖h‖L∞

,

and consider the limit ‖h‖L∞ → 0. In the following we analyze each term
separately. First, we invoke the remainder property of Nemytskij operators.
For the second term, we use our estimate of the solution y,

‖ryr(u, h)‖L∞‖y‖H2

‖h‖L∞

≤
‖ryr(u, h)‖L∞‖Θ1‖L∞‖h‖L∞‖w‖H2

β0‖h‖L∞

=
‖ryr(u, h)‖L∞‖Θ1‖L∞‖w‖H2

β0
→ 0,

as ‖h‖L∞ → 0. The last term is handled by

‖Θ1‖L∞‖h‖L∞‖y‖H2

‖h‖L∞

≤
‖Θ1‖

2
L∞‖h‖2L∞‖w‖H2

β0‖h‖L∞

=
‖Θ1‖

2
L∞‖h‖L∞‖w‖H2

β0
→ 0

for ‖h‖L∞ → 0. In view of the remainder property, we conclude

‖yr‖H2

‖h‖L∞

≤ cα
‖fyr‖V ∗

‖h‖L∞

≤ o(‖h‖L∞).

Thus we showed the Fréchet-differentiability of the operator G:

G(u+ h)−G(u) = G′(u)h+ rG(u, h)

with G′(u)h = y and rG(u, h) = yr.
2

By an adjoint state, we are able to formulate this derivative more useful.

Definition 1 The adjoint state p ∈ V associated with u is the weak solution
of the boundary value problem

d2x

(

Φ(u)d2xp
)

+Ψ(u)p = fz

with boundary conditions p(0) = d2xp(0) = p(1) = d2xp(1) = 0.
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We use the function p in order to express the first order necessary condition
more conveniently. The function p can be interpreted as Lagrange multiplier
associated with the state equation.

Lemma 2 Let functions u, h ∈ L∞(Ω) be given. Furthermore, let y and p
be the weak solutions of

d2x(Φ(u)d
2
xy) + Ψ(u)y = −d2x(Φ

′(u)hd2xw −Ψ′(u)hw

y(0) = y(1) = d2xy(0) = d2xy(1) = 0

and

d2xΦ(u)d
2
xp) + Ψ(u)p = fz

p(0) = p(1) = d2xp(0) = d2xp(1) = 0.

Then it holds

∫

Ω
fzy dx =

∫

Ω
[−Φ′(u)d2xwd

2
xp−Ψ′(u)wp]h dx.

Using this lemma, it follows for h = u− u that

f ′(u)(u− u) =

∫

Ω
[fz G

′(u)h](x) dx =

∫

Ω
fzy(x) dx

=

∫

Ω
[−Φ′(u)d2xwd

2
xp−Ψ′(u)wp](u− u) dx. (4)

Corollary 1 (Necessary condition) Any optimal control u and the cor-
responding optimal state w = G(u) must fulfill the optimality system

∫

Ω
{Φ(u)d2xpd

2
xv +Ψ(u)pv} dx =

∫

Ω
fzv dx, ∀ v ∈ V

∫

Ω
{−Φ′(u)d2xwd

2
xp−Ψ′(u)wp}(u− u) dx ≥ 0, ∀ u ∈ Uad,

where the Lagrange multiplier p ∈ V is the weak solution of the adjoint
equation.

This formulation implicitly contains the constraints in terms of the control-
to-state operator G.
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4 Numerical Implementation and Solution of the

Problem

Our equality is a fourth order ordinary differential equation. We solve this
equation by the finite element method. For the resulting optimal control
problem we use the optimization solver fmincon that is part of the software-
package Matlab. Subsequently, we give some details to the finite element
method (FEM) [16,20] that is used to determine approximate solutions of
the state equations and the associated adjoint equation. The starting point
of this method is the variational formulation (2).

In order to approximate the solution space V , we use Hermite interpo-
lation of the functions w and p with step size parameter h:

wh =
n
∑

j=0

w0
jpj + w1

j qj

with basis functions pj, qj ∈ P3(Ω) for j = 0, 1, . . . , n (cubic polynomials),
where n is the number of grid points, and the w0

j , w
1
j are certain real node

parameters. For the node parameters, we have in mind w0
j ≈ wh(xj) and

w1
j ≈ dxwh(xj). First, we define the discrete solution space

Vh =







wh(·) : wh(·) =
n
∑

j=0

w0
jpj(·) + w1

j qj(·)







⊂ V.

In this definition of the solution space, we use conformal finite elements.
Furthermore, we define a discrete bilinear form and a linear form

ah(wh, vh) :=

∫

Ω
Φ(uh)d

2
xwhd

2
xvh +Ψ(uh)whvh dx

Fh(vh) := R

∫

Ω
fzvh dx.

For the weak formulation of our state equation or adjoint equation (with
small modifications in the linear form), we define the following discrete prob-
lem: Find wh ∈ Vh solving the equation

ah(wh, vh) = Fh(vh) ∀ vh ∈ Vh.

For this discrete problem and our approach, we can use the standard tech-
niques of linear algebra to calculate an approximate solution for the state
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wh and the associated adjoint state ph. For the control function u, we use a
piecewise linear interpolation,

uh =
n
∑

j=0

ujlj

with linear continuous basis functions lj; then it holds uh ∈ C(Ω). With the
linear interpolation of the control u it follows for the Nemytskij-operators
Φ(u) and Ψ(u) on each interval E(i) := [xi−1 , xi]:

Φ(uh)|E(i) :=
(2µ + λESZ)R

12





i
∑

k=i−1

uklk(x)





3

(5)

Ψ(uh)|E(i) :=
(2µ + λESZ)

12R3











12R2





i
∑

k=i−1

uklk(x)



 +





i
∑

k=i−1

uklk(x)





3










.

The coefficients ui−1 and ui are equal to uh(xi−1) and uh(xi) within the
considered element E(i). Therefore, we have established an isomorphism

uh ⇐⇒ ~uh = [u0, . . . , un] ∈ Rn+1

and the objective functional fh(uh) =
∫

Ω f
h
z wh dx can be expressed by a

mapping ϕ : Rn+1 → R:

ϕh : ~uh 7→ uh 7→ fh(uh).

This function will be used in the numerical implementation. The optimal
control problem is finally approximated by

min
~u∈Uh

ad

ϕh(~uh),

where the set Uh
ad will be defined later.

4.1 Implementation of the Derivative of the Objective Func-

tional

In order to express the derivative of the objective functional f , we invoke
the adjoint state p. We get from (4)

f ′(u)z =

∫

Ω
[−Φ′(u)d2xwd

2
xp−Ψ′(u)wp]z dx ∀ z ∈ L∞(Ω).



14 P. Nestler

The optimization solver fmincon calculates the discrete derivative ∇ϕh(~uh)
by finite differences. This means that, in principle, our adjoint calculus is not
needed by fmincon. However, proceeding in this way, the computing times
will be very long. The tool fmincon can be accelerated by providing infor-
mation on the derivative. During the analytical treatment of the optimal
control problem, we determined the derivative f ′(u) by (4). Numerically, we
implement this derivative by the finite element approximation to compute
∇ϕh(~uh). During the numerical optimization process, this gradient is passed
to the solver fmincon. This reduces the running time of the optimization
algorithm considerably. On the other hand, this approach might be prob-
lematic, because we approximate ∇ϕh by means of a discretized continuous
adjoint equation. This is not necessarily equal to the exact discrete gradient
∇ϕh. The solver fmincon is testing the quality of the transmitted gradient
∇ϕh by finite differences. During our numerical experiments, it turned out
that the difference between our gradient ∇ϕh (computed via the adjoint
equation) and the ”exact” discrete gradient was marginal of the order 10−6

for sufficiently small discretization parameters h.

We should mention that the computation of the gradient via the adjoint
equation was numerically more stable than the use of the one generated by
fmincon. Of course, the solution of the optimization problem with finite
element gradients is identical with the one obtained from finite difference
gradients. We used a discretized version of this gradient, where we consider
arbitrary directions zh ∈ C(Ω) (the analog approach to u), and it holds

∇fh(uh)zh =

∫

Ω
[−Φ′(uh)d

2
xwhd

2
xph −Ψ′(uh)whph]zh dx

=
n
∑

i=1

∫

E(i)
[−Φ′(uh)d

2
xwhd

2
xph −Ψ′(uh)whph]zh dx

for each zh. The derivatives of the Nemytskij operators Φ′(uh), Ψ
′(uh) are

discretized analogously to (5). For any direction zh, we can choose the nodal
basis functions lj successively for j = 0, . . . , n. It follows for the numerical
implementation of the discrete gradient vector that

[∇ϕh]j =
n
∑

i=1

∫

E(i)
[−Φ′(uh)d

2
xwhd

2
xph −Ψ′(uh)whph]lj dx j = 0, . . . , n.

The same implementation is used for checking the first order necessary op-
timality conditions, see Corollary 1.
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4.2 Numerical Solution of the Optimization Problem

The reduced problem (3) is our starting point for the direct solution of the
optimal control problem. It is a finite dimensional optimization problem:

min
~uh∈U

ad

h

ϕh(~uh) (6)

subject to

Ah~uh = C, (7)

where
Uad
h = {~uh ∈ Rn+1 | ~ua ≤ ~uh ≤ ~ub}

and
Ah =

[

h
2 h . . . h h

2

]

∈ Rn+1.

The volume condition (7) is formulated as an additional constraint. It was
derived by the trapezoidal rule. The constant C (volume) depends on the
particular problem. The restrictions on ~uh are defined componentwise.

We use the Optimization Toolbox of Matlab, in particular the tool
fmincon, for obtaining numerical solutions. It is designed for solving opti-
mization problems with linear (or nonlinear) objective functions and linear
(or nonlinear) constraints, both in form of equations as well as inequalities.
The routine fmincon requires the following inputs: the values of the discrete
objective functional ϕh(~uh), the volume condition (7) by input of Ah and
C, the vectors ~ua, ~ub, and the discrete gradient vector ∇ϕh that leads to a
reduction of running time. The program stops, if changes of the objective
functional are smaller than a prescribed threshold, the violations of the con-
straint be located within the tolerances, and the necessary conditions for the
optimality of the solution are fulfilled. The output is the optimal solution
vector ~uh, the discrete Lagrange multiplier qh for the volume condition, and
the Lagrange multipliers ~µa, ~µb for the control restrictions, where they are
active. Whether the solution uh of the discrete optimal control problem
really be a candidate for the optimal solution is verified by checking the first
order necessary condition. Let us call this ”optimality test”.

The variational inequality
∫

Ω
[−Φ′(u)d2xwd

2
xp−Ψ′(u)wp](z − u) dx ≥ 0, ∀ z ∈ Uad, (8)

is the starting point for evaluating the optimality of the numerically com-
puted optimal solution uh. Pointwise evaluation of the first oder necessary
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condition, as done in [19] for optimal control problems with box constraints,
is not applicable in our case due to the non-constant ansatz for the control
function u and the additional volume condition. Let us define the linear
form

b(z) :=

∫

Ω
[Φ′(u)d2xwd

2
xp+Ψ′(u)wp]z dx.

The inequality (8) is equivalent to

max
z∈Uad

b(z) = b(u),

hence, to be optimal, u must solve a linear continuous optimization problem.
As done for the control u we linearly interpolate the function z. We have
also an isomorphism

ψh : ~zh 7→ zh 7→ bh(zh),

with

bh(zh) =

∫

Ω
[Φ′(uh)d

2
xwhd

2
xph +Ψ′(uh)whph]zh dx.

Hence we obtain the discrete problem:

max
~zh∈U

ad

h

ψh(~zh) (9)

subject to

Ah~zh = C.

A first test is performed as follows: After computing uh, we compute the
state wh and the adjoint state ph. Then we solve the optimal problem (9).
The solution is zh. If uh is optimal for the discretized problem, the equation
uh = zh should hold. In general, there is an error and the difference ‖uh−zh‖
indicates the precision of uh. This procedure shows, how good uh solves the
discretized optimization problem. Another test is used to estimate, how well
uh solves the reduced problem.

Now, we give some implementation details. The problem (9) is also
solved by the optimization solver fmincon. The gradient ∇ψh is calculated
by finite elements and is passed to fmincon. We used ~z0 = uh+ǫ·1 as starting
approximation for our examples below. The parameter ǫ ∈ R generates a
perturbation in all components of optimal solution uh of (6). The output is
the optimal solution zh of (8).
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5 Examples

Let us discuss some simple test examples for our optimal control problem.
They are used to evaluate the quality of the necessary optimality conditions
and the advantage of using finite elements gradients. In the examples, we
use the material parameters

E = 2.1 · 102, ν = 0.3, R = 1,

that is the elastic modulus E, the Poisson number ν and the radius R. The
first two parameters depend on the material and the last parameter depends
on the particular geometry. To discretize the stationary problem, we choose
an equidistant grid. For this grid, we compute the discrete optimal solution
uh and the corresponding optimal state wh.

Figure 2: Starting configuration

Figure 2 shows a longitudinal cut through the cylindrical shell, where we
only plot the upper part due to symmetry. The dash-dotted-line represents
the central plane of the cylindrical shell. This is the starting configuration
for all examples. We define the vector 1 ∈ Rn+1 containing the integer
number in all entries. As restrictions to the control we set the constants
ua = 0.05 ·1 and ub = 0.2 ·1. The fixed volume is prescribed by C = 0.6283,
and u0 = 0.1 · 1 is the initial value on the control. The figures below show
the optimal solution uh, the solution zh of the variational inequality and the
corresponding shape of the cylindrical shell for different choices of fz.
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Example 1. We take as force fz = sin(2πx).

First, we justify the use of the finite element gradient via the adjoint
equation.
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with fmincon−Gradient (50 nodes)

Figure 3: Optimal thickness uh on
using the finite difference method
of fmincon for gradients (fdm-
gradient)
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Figure 4: Optimal thickness uh by
using the finite element method and
the adjoint equation for the gradi-
ents (fem-gradient)

As can be easily seen, the use of the finite element gradient is of great
advantage. The second major advantage is the acceleration of the
optimization solver fmincon:

grid-points fmincon with fdm-gradient fmincon with fem-gradient

50 246.433 2.49704
100 1166.62 5.58509

The values of the 2nd and 3nd column are given in seconds. These
values were calculated for Example 1.

The next pictures show the numerically calculated optimal control uh
and the associated configuration of the cylindrical shell. Again, we
only display its upper half.
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Figure 5: Optimal thickness uh
Figure 6: Configuration of the cylin-
drical shell

The following table shows how the error developed with consideration
of the step size. For u, we take the solution uh on a very fine grid with
h = 1.25 · 10−3.

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 5.215633 · 10−3 1.322039 · 10−3

2.00 · 10−2 3.393303 · 10−3 5.254619 · 10−4

1.00 · 10−2 1.465212 · 10−3 2.395697 · 10−4

5.00 · 10−3 8.900138 · 10−4 7.009283 · 10−5

2.50 · 10−3 6.143035 · 10−4 5.524533 · 10−5

The next table displays the discretization error of (9) in different
norms.

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.398209 · 10−1 3.264695 · 10−2

1.00 · 10−2 1.476560 · 10−1 1.978807 · 10−2

5.00 · 10−3 1.105508 · 10−4 9.371137 · 10−6

2.50 · 10−3 6.110761 · 10−5 4.862581 · 10−6

1.25 · 10−3 1.024119 · 10−5 2.125253 · 10−6
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Example 2. We take as force fz = x(1− x).

In the next example a ”simple” symmetric force is acting on the cylin-
drical shell. We again show the optimal control uh and the cut through
the cylindrical shell.
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Figure 7: Optimal thickness uh
Figure 8: Configuration of the cylin-
drical shell

For the error, the following values are obtained:

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 4.279621 · 10−3 1.663178 · 10−3

2.00 · 10−2 3.652657 · 10−3 1.513568 · 10−3

1.00 · 10−2 3.312656 · 10−3 1.432902 · 10−3

5.00 · 10−3 2.552378 · 10−3 1.187955 · 10−3

2.50 · 10−3 1.194550 · 10−3 1.520591 · 10−4

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.100842 · 10−3 3.894984 · 10−5

1.00 · 10−2 1.100871 · 10−3 3.895043 · 10−5

5.00 · 10−3 1.100853 · 10−3 3.894977 · 10−5

2.50 · 10−3 1.100852 · 10−3 3.895002 · 10−5

1.25 · 10−3 1.092301 · 10−3 3.864768 · 10−5

Figure 7 indicates that, in the major parts of Intervall [0, 1] the solution
is almost linear. This explains the very good approximation already
for h = 0.02.
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Example 3. The force is given by fz = exp(x).

In this example, an exponential power is applied to the cylindrical
shell.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

x−region

op
tim

al
 c

on
tr

ol

 

 
u

opt
 Direct Sol.

z
opt

 Sol. of VU

Figure 9: Optimal thickness uh
Figure 10: Configuration of the
cylindrical shell

For this example, we calculated the following errors:

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 6.617402 · 10−3 1.663178 · 10−4

2.00 · 10−2 1.062276 · 10−3 1.513568 · 10−4

1.00 · 10−2 1.073535 · 10−3 1.432902 · 10−5

5.00 · 10−3 9.485243 · 10−4 1.187955 · 10−5

2.50 · 10−3 5.911537 · 10−4 1.520591 · 10−5

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.479757 · 10−1 2.707877 · 10−2

1.00 · 10−2 3.221490 · 10−3 2.032824 · 10−4

5.00 · 10−3 1.617830 · 10−4 6.937561 · 10−6

2.50 · 10−3 8.919767 · 10−5 3.873755 · 10−6

1.25 · 10−3 1.159797 · 10−5 1.552477 · 10−6
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Example 4. We select as force

fz(x) =

{

exp(x) x ∈ [0, 0.5]
exp(−x) x ∈ (0.5, 1]

.

In this example, we considered also an exponential power influence on
the cylindrical shell. But on half of the interval, we used a negative
exponential power.
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Figure 11: Optimal thickness uh
Figure 12: Configuration of the
cylindrical shell

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 5.145951 · 10−3 8.806373 · 10−4

2.00 · 10−2 2.393243 · 10−3 2.094697 · 10−4

1.00 · 10−2 1.718650 · 10−3 1.538653 · 10−4

5.00 · 10−3 9.667670 · 10−4 9.869548 · 10−5

2.50 · 10−3 3.907290 · 10−4 6.034828 · 10−5

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.363838 · 10−1 1.535772 · 10−2

1.00 · 10−2 2.291533 · 10−3 1.604229 · 10−4

5.00 · 10−3 1.537531 · 10−4 8.267414 · 10−6

2.50 · 10−3 1.023066 · 10−4 4.271060 · 10−6

1.25 · 10−3 1.004273 · 10−5 1.403717 · 10−6

6 Concluding Remarks

We discussed a problem of optimal shape design in linear elasticity theory.
The optimal thickness of a cylindrical tube is determined that minimizes
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the displacement of the tube under the influence of given external force.
Necessary optimality conditions for the optimal solution are formulated and
proved. In contrast to previous work on this subject, we selected a direct
method for the optimization for a finite element discretized model. We
also use finite element method to generate gradients and to test necessary
optimality conditions. We considered only small deformations. The case of
large deformations that might lead to effects of plasticity ist not considered
here.
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