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Abstract. In incompressible flows with vanishing normal velocities at the boundary, irro-
tational forces in the momentum equations should be balanced completely by the pressure
gradient. Unfortunately, nearly all available discretization methods for incompressible
flows violate this property. The origin of the problem is that discrete velocity approxima-
tions of incompressible flows are usually not divergence-free. Hence, the use of divergence-

free velocity reconstructions is proposed wherever an L2 scalar product appears in the dis-
crete variational formulation. The approach is illustrated and applied to a nonconforming
MAC-like discretization for unstructured Delaunay grids. It is numerically demonstrated
that a divergence-free velocity reconstruction based on the lowest-order Raviart-Thomas
element increases the robustness and accuracy of an existing convergent discretization,
when irrotational forces appear in the momentum equations.

1. Main result

Accurate and robust numerical simulations of incompressible flows are urgently needed in a

wide range of application fields. But, as a matter of fact, nearly all available discretization methods
violate a fundamental property of incompressible flows: assuming vanishing normal velocities at

the boundary of the underlying domain Ω, a change of the exterior force f → f + ∇ψ in the

momentum balance equations should change the flow by (u, p) → (u, p+ ψ) [2]. In other words,
the flow should not be affected at all, and the additional irrotional force ∇ψ should be balanced

completely by the pressure gradient. The origin of the problem lies in the discretization of the
exterior force term

∫
Ω f ·vdx in a variational formulation. Assuming that we are able to decompose

the exterior force f ∈ L2(Ω)d by a Helmholtz decomposition into a divergence-free part w and an

irrotational part∇φ, i.e., f = w+∇φ, and assuming vanishing normal velocities for the divergence-
free velocity v, we would obtain

∫
Ω f · vdx =

∫
Ω w · vdx , since irrotational and divergence-free

fields are orthogonal in the L2 scalar product. But unfortunately, the Helmholtz decomposition of

the exterior force f is difficult to obtain in a discrete setting, and the failure of most discretization
schemes w.r.t. f → f + ∇ψ 6⇒ (u, p) → (u, p + ψ) results in the simple fact that discretely

divergence-free velocities vh in conforming discretizations or, correspondingly, reconstructions of

discretely divergence-free velocities in nonconforming discretizations are generally not divergence-
free, i.e., their distributional divergence is either not in L2(Ω) or does not vanish. Therefore, we
obtain for the discretization of the exterior force

∫
Ω f · vhdx 6=

∫
Ω w · vhdx . Indeed, in many

coupled flow situations the contribution of the irrotational part ∇φ in f can be much larger than
the divergence-free part [2], and the numerical computations of such problems are spoiled by large

numerical errors. Moreover, also the nonlinear convection term (u ·∇)u, the Coriolis term 2Ω×u
or the nonlinear convection term (∇× u)× u in the rotational formulation of the Navier-Stokes

equations may have a large irrotational part in an incompressible flow, exciting exactly the same
kind of numerical errors.

The numerical inaccuracies emanating from f → f + ∇ψ 6⇒ (u, p) → (u, p + ψ) are well-
experienced in the scientific community and several techniques have been proposed, in order to

circumvent the problem, most prominently the so-called grad-div stabilization in conforming mixed
finite elements. Other approaches solve auxiliary problems, in order to overcome the problem. But

the solution of auxiliary problems is expensive, and mitigates the problem only. Although there
are few really divergence-free methods, like the Scott-Vogelius element or some divergence-free
Discontinuous Galerkin methods, they are expensive and rarely used in practice.

Instead, in this short note it is proposed to start from existing convergent discretizations and to

enhance their numerical accuray by introducing appropriate divergence-free reconstructions. The
divergence-free reconstruction has to enter the discrete variational formulation wherever a vectorial
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L2 scalar product with a velocity test function appears. Hence, e.g., the exterior force f has to

be discretized in a discrete weak formulation as
∫
Ω f ·Rh(vh)dx . The reconstruction Rh has to

map discretely divergence-free velocities vh with vanishing normal velocities onto divergence-free
vector fields in {v ∈ L2(Ω)d : ∇·v = 0∧v ·n = 0}. In this note, this approach is demonstrated for

a extension of the classical MAC scheme to unstructured Delaunay grids[1, 3]. Here, the discrete

velocities are the normal velocity components orthogonal to the triangle edges, and the triangles
of the mesh are the control volumes for the discrete divergence operator. The classical H(div)-

conforming Raviart-Thomas finite element of lowest order is applied, in order to lift the discrete

normal velocity components to a full velocity Rh(vh) ∈ H(div). As an illustration, we present
numerical results for the incompressible Stokes equations −ν∆u+∇p = f , ∇·u = 0. The problem

is posed on the domain Ω = [0, 1]2 and has homogeneous Dirichlet boundary conditions. In the

numerical example, the continuous solution u = (2(x−1)2x2(y−1)y(2y−1),−2(2x−1)(x−1)x(y−
1)2y2)T , p = x3 +y3− 1

2
is approximated by two different finite volume schemes that are described

below. The computations are done for two different viscosities ν ∈ {1, 10−7}. The forcing is given
by f = −ν∆u+∇p. Therefore, the smaller is ν, the more dominant is the irrotational part of f in

the sense of the Helmholtz decomposition. From Table 1 we indeed recognize that the new scheme

mesh size ν = 1: ‖Ihu− uh‖0 ν = 1: ‖Ihu− uh,divfree‖0 ν = 10−7: ‖Ihu− uh‖0 ν = 10−7: ‖Ihu− uh,divfree‖0
1
4

3.28 · 10−3 1.97 · 10−3 9.86 · 102 1.97 · 10−3

1
8

8.80 · 10−4 6.99 · 10−4 1.36 · 102 6.99 · 10−4

1
16

2.54 · 10−4 2.19 · 10−4 3.49 · 101 2.19 · 10−4

1
32

7.49 · 10−5 6.78 · 10−5 5.96 · 100 6.78 · 10−5

Table 1. Numerical comparison of two finite volume schemes for the incom-

pressible Stokes equations. In columns 2 and 4, the results for the unmodified

scheme are presented. In columns 3 and 5, the results of the new scheme
with a divergence-free reconstruction of the velocity are given. The results are

measured in the L2 norm of the velocity and show the differences between an

interpolation of the exact velocity Ihu and the discrete solutions uh and
uh,divfree.

with a divergence-free reconstruction of the discrete velocity performs better for small viscosities

ν. Since this scheme fulfills the property f → f +∇ψ ⇒ (u, p)→ (u, p+ ψ) in a discrete sense,
the results for the discrete velocity are completely independent of ν (columns 3 and 5), i.e., the

results are independent of the irrotational part of f . Since the unmodified scheme (columns 2

and 4) does not fulfill this property, the numerical results are different for different values of ν.
For small values of ν, the unmodified scheme without a divergence-free reconstruction performs

poorly (column 4), see also Picture 1.

Figure 1. Numerical results on the mesh with mesh size 1
8

for the two finite

volume schemes, ν = 10−7. Reconstructions of the discrete velocity are pre-
sented for the unmodified scheme (left) and for the scheme with divergence-free

reconstruction (right)
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2. Definition of the scheme

Definition 2.1 (Acute triangulation of Ω). Assuming that Ω ⊂ R2 is a polygonal bounded and

connected domain, an acute triangular mesh of Ω is defined by M = (V, E, T ) such that:

(1) The set T is a finite set of disjoint (open) triangles such that
⋃
T∈T T = Ω. We denote

by hM the largest diameter of all triangles. For all T ∈ T the circumcenters xT of T
are located within T .

(2) The set V consists of the vertices of all the triangles. For all y ∈ V, we denote by

Vy the Voronoi box around the vertex y ∈ V, defined as Vy = {x ∈ Ω, |x − y| <
|x− y′| for all y′ ∈ V,y′ 6= y}.

(3) The set E consists of all the edges of the triangles. We denote by xσ the midpoint of σ.

For every edge σ ∈ E, we define a fixed orientation, which is given by an unit vector tσ parallel

to σ, and we define nσ as the normal vector to σ, obtained from tσ by a rotation with angle π/2
in the counterclockwise sense. For every T ∈ T , we denote by ET the set of edges of the triangle
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Figure 2. Notations for the mesh: Left: the Voronoi box associated to a
vertex. Right: Zoom on a diamond.

T . tTσ denotes the unit vector parallel to σ oriented in the counterclockwise sense around T .

By nTσ we denote the unit vector normal to σ and outward to T , and by DT,σ the cone with
basis σ and vertex xT . Analogously, Ey describes all the edges adjacent to the vertex y ∈ V.

By Vy we denote the Voronoi box around the vertex y ∈ V. By σ⊥ we denote the Voronoi face

perpendicular to σ. By tyσ we denote a unit vector tangential to tσ , but pointing outward w.r.t.
the Voronoi box Vy , and nyσ denotes its counterclockwise rotation. Last but not least, we denote

by xT,σ the vertex of triangle T which is opposite to the edge σ ∈ ET .
Now the discretization is given as follows. The discrete pressure space is denoted by XT =

RT . It represents the pressures at the circumcenters of the elements. For the velocity space

we use the notations XE and ẊE . XE represents the space of normal velocities approximating

the continuous velocity u · nσ . ẊE is a subspace of XE with vanishing normal velocities at the
boundary ∂Ω. The normal velocities of the space XE are located at the midpoints of all the

Voronoi faces σ⊥. We define roty v = 1
|Vy |

∑
σ∈Ey |σ

⊥|vσnσ · nyσ for all v ∈ XE , y ∈ V and

divT v = 1
|T |
∑
σ∈ET |σ|vσnσ · nTσ for all v ∈ XE , T ∈ T , see again Figure 2 for the notations,

and write: find (u, pT ) ∈ ẊE ×XT such that∑
y∈V
|Vy |ν roty u roty w −

∑
T∈T

|T |pT divT w =
∑
σ∈E

2wσ

∫
Dσ

f · nσdx, ∀w ∈ ẊE(1)

divT u = 0, ∀T ∈ T .

Assuming f ∈ R(Ω)2, the convergence of this scheme was proven in [1]. In the new, second scheme,
the discrete differential operators remain unchanged, and only the right hand side is replaced by

a divergence-conforming Raviart-Thomas reconstruction, i.e.,∑
T∈T

∑
σ∈ET

∫
T
f ·
(
wσ(−nTσ · nσ)

x− xT,σ

|(xσ − xT,σ) · nσ |

)
dx.
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