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Abstract. The authors propose a recycling MINRES scheme for a solution of subsequent
self-adjoint linear systems as appearing, for example, in the Newton process for solving nonlinear
equations. Ritz vectors are automatically extracted from one MINRES run and then used for self-
adjoint deflation in the next. The method is designed to work with a preconditioner and arbitrary
inner products. Numerical experiments with nonlinear Schrödinger equations indicate a substantial
decrease in computation time when recycling is used.
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1. Introduction. Sequences of linear algebraic systems frequently occur in the
numerical solution process of various kinds of problems. Most notable are implicit
time stepping schemes and Newton’s method for solving nonlinear equation systems.
It is often the case that the operators in subsequent linear systems have similar spec-
tral properties or are in fact equal. To exploit this, a common approach is to factorize
the operator once and apply the factorization to the following steps. However, this
strategy typically has high memory requirements and is thus hardly applicable to
problems with many unknowns. Also, it is not applicable if subsequent linear opera-
tors are even only slightly different from each other.

The authors use the idea of an alternative approach that carries over spectral
information from one linear system to the next by extracting approximations of eigen-
vectors and using them in a deflation framework [18, 2, 27, 19]. For a more detailed
overview on the background of such methods, see [8]. The method is designed for
Krylov subspace methods in general and is worked out in this paper for the MIN-
RES method [24] in particular. This is motivated by the fact that all observables of
quantum-dynamical systems are self-adjoint.

The idea of recycling spectral information in Krylov subspace methods is not new.
Notably, Wang, de Sturler, and Paulino proposed the RMINRES method [36] that
includes the extraction of approximate eigenvectors, i.e., Ritz vectors and a modifica-
tion of the MINRES method that includes these vectors in the search space for the
following linear systems (augmentation). The RMINRES method with augmentation
of the search space is mathematically equivalent to the standard MINRES method
applied to a projected linear system [8]. Krylov subspace methods that are applied
to projected linear systems are often called deflated methods. In literature, both aug-
mented and deflated methods have been used in a variety of settings; we refer to the
review article by Simoncini and Szyld [31] for a comprehensive overview.

The method proposed here differs from RMINRES in that it preserves self-
adjointness and allows for arbitrary preconditioners and inner products (see sec-
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schungszentrum MATHEON.

†Departement Wiskunde en Informatica, Universiteit Antwerpen, Middelheimlaan 1, B-2020
Antwerpen, Belgium (nico.schloemer@ua.ac.be). The work of Nico Schlömer was supported by
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tion 2.2). As an added benefit, the approach can also incorporate spectral information
that is explicitly provided. This is of particular interest for problems which are known
to have a small number of eigenvalues that harm the the Krylov convergence, e.g.,
eigenvalues of large or small magnitude. An important field of application here are
nonlinear problems that bear some kind of continuous symmetry, e.g., gauge invari-
ance [17]. Even if distinctly definite, linearizations of these problems around any
nontrivial solution typically have a nontrivial null space, i.e., one or more eigenvalues
which are exactly 0.

As a landmark example for this class of problems, we will consider nonlinear
Schrödinger equations. Nonlinear Schrödinger equations and their variations are used
to describe a wide variety of physical systems, most notably in superconductivity,
quantum condensates, nonlinear acoustics [34], nonlinear optics [10], and hydrody-
namics [22]. Although the existence of steady state solutions is proven in certain
cases, analytic expressions for realistic systems are often impossible to obtain. Hence,
numerical solution methods are of particular importance for gaining insight in the
physics of the system. For the solution of nonlinear Schrödinger equations with New-
ton’s method, a linear system has to be solved with the Jacobian operator for each
Newton update. The Jacobian operator is self-adjoint with respect to a nonstandard
inner product which renders most default approaches unusable. In general, the Jaco-
bian operator is indefinite and thus the MINRES method with the appropriate inner
product is a suitable choice for solving the occurring linear systems. In order to be
applicable in practice, the MINRES method has to be combined with a preconditioner
that is able to limit the number of MINRES iterations to a feasible extent [29]. Due
to the special structure of the nonlinear Schrödinger equation, the Jacobian operator
exhibits one eigenvalue that moves to zero when the Newton iterate converges to a
nontrivial solution and is exactly zero in a solution. Because this situation only occurs
in the last step, no linear system has to be solved with an exactly singular Jacobian
operator but the severely ill-conditioned Jacobian operators in the final Newton steps
lead to convergence slowdown or stagnation in the MINRES method even when a
preconditioner is applied. One important instance of nonlinear Schrödinger equations
is the Ginzburg–Landau equation that models phenomena of certain superconduc-
tors. We propose a recycling MINRES method and show how it can help to improve
the convergence of the MINRES method and thus the overall time consumption of
Newton’s method for the Ginzburg–Landau equation.

The paper is organized as follows: section 2 gives a brief overview on the precon-
ditioned MINRES method for an arbitrary nonsingular linear operator that is self-
adjoint with respect to an arbitrary inner product. The deflated MINRES method is
described in subsection 2.2 while subsection 2.3 presents the computation of Ritz vec-
tors and explains their use in the overall algorithm for the solution of a sequence of self-
adjoint linear systems. In section 3 this algorithm is applied to the Ginzburg–Landau
equation. Subsections 3.1 and 3.2 deal with the numerical treatment of nonlinear
Schrödinger equations in general and the Ginzburg–Landau equation in particular.
In subsection 3.3 numerical results for typical two- and three-dimensional setups are
presented.

2. MINRES.

2.1. Preconditioned MINRES with arbitrary inner product. This sec-
tion presents well-known properties of the preconditioned MINRES method. As op-
posed to ordinary textbook presentations this section incorporates a general Hilbert
space. For K ∈ {R,C} let H be a K-Hilbert space with inner product 〈·, ·〉H and
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induced norm ‖·‖H . Throughout this paper the inner product 〈·, ·〉H is linear in the
first and anti-linear in the second argument and we define L(H) := {L : H −→
H | L is linear and bounded}. We wish to obtain x ∈ H from

Ax = b (2.1)

where A ∈ L(H) is 〈·, ·〉H -self-adjoint and invertible and b ∈ H. The self-adjointness
implies that the spectrum σ(A) is real. However, we do not assume that A is definite.

If an initial guess x0 ∈ H is given, we can approximate x by iterates

xn = x0 + yn with yn ∈ Kn(A, r0) (2.2)

where r0 = b−Ax0 is the initial residual and Kn(A, r0) = span{r0,Ar0, . . . ,An−1r0}
is the nth Krylov subspace generated with A and r0. We concentrate on minimal
residual methods here, i.e., methods that construct iterates of the form (2.2) such
that the residual rn := b−Axn has minimal ‖·‖H -norm, that is

‖rn‖H = ‖b−Axn‖H = ‖b−A(x0 + yn)‖H = ‖r0 −Ayn‖H
= min

y∈Kn(A,r0)
‖r0 −Ay‖H = min

p∈Π0
n

‖p(A)r0‖H (2.3)

where Π0
n is the set of polynomials of degree at most n with p(0) = 1. For a gen-

eral invertible linear operator A, the minimization problem in (2.3) can be solved by
the GMRES method [26] which is equivalent to the MINRES method [24] if A is self-
adjoint because then the Lanczos algorithm can be used to obtain a 〈·, ·〉H -orthonormal
basis of the Krylov subspace Kn(A, r0).

To facilitate subsequent definitions and statements for general Hilbert spaces, we
use a block notation for inner products that generalizes the common block notation
for matrices:

Definition 2.1. For k, l ∈ N and two tuples of vectors X = [x1, . . . , xk] ∈ Hk

and Y = [y1, . . . , yl] ∈ H l the block inner product 〈·, ·〉H : Hk ×H l −→ Kk,l is defined
by

〈X,Y 〉H :=
[
〈xi, yj〉H

]
i=1,...,k
j=1,...,l

.

A block X ∈ Hk can be right-multiplied with a matrix just as in the plain matrix
case:

Definition 2.2. For X ∈ Hk and Z = [zij ]i=1,...,k
j=1,...,l

∈ Kk,l, right multiplication is

defined by

XZ :=

[
k∑

i=1

zijxi

]
j=1,...,l

∈ H l.

Because the MINRES method and the underlying Lanczos algorithm is often
stated for Hermitian matrices only (i.e., for the Euclidean inner product), we recall
very briefly some properties of the Lanczos algorithm for a linear operator that is
self-adjoint with respect to an arbitrary inner product 〈·, ·〉H . If the Lanczos algorithm
with inner product 〈·, ·〉H applied to A and the initial vector v1 = r0/ ‖r0‖H has
completed the nth iteration, the Lanczos relation

AVn = Vn+1Tn (2.4)
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holds, where the elements of Vn+1 = [v1, . . . , vn+1] ∈ Hn+1 form a 〈·, ·〉H -orthonormal
basis of Kn+1(A, r0), i.e., span{v1, . . . , vn+1} = Kn+1(A, r0) and 〈Vn+1, Vn+1〉H =
In+1. The matrix Tn ∈ Rn+1,n is real-valued (even if K = C), symmetric, and
tridiagonal with

Tk = [〈Avi, vj〉H ]i=1,...,n+1
j=1,...,n

.

The nth approximation of the solution of the linear system (2.1) generated with the
MINRES method and the corresponding residual norm, cf. (2.2) and (2.3), can then
be expressed as

xn = x0 + Vnzn with zn ∈ Kn and

‖rn‖H = ‖r0 −AVnzn‖H = ‖Vn+1(‖r0‖H e1 −Tnzn)‖H = ‖‖r0‖H e1 −Tnzn‖2 .

By iteratively computing a QR decomposition of Tn, the minimization problem in
(2.3) can be solved without storing the full matrix Tn and, more importantly, the full
Lanczos basis Vn.

If N := dimH < ∞ and the elements of U ∈ HN form a 〈·, ·〉H -orthonormal
eigenvector basis of H, then AU = UD for the diagonal matrix D = diag(λ1, . . . , λN )
with A’s eigenvalues λ1, . . . , λN ∈ R on the diagonal. Let rU0 ∈ KN be the represen-
tation of r0 in the basis U , i.e., r0 = UrU0 . According to (2.3), the residual norm of
the nth approximation obtained with MINRES can be expressed as

‖rn‖H = min
p∈Π0

n

∥∥p(A)UrU0
∥∥
H

= min
p∈Π0

n

∥∥Up(D)rU0
∥∥
H

= min
p∈Π0

n

∥∥p(D)rU0
∥∥
2

≤
∥∥rU0 ∥∥2 min

p∈Π0
n

‖p(D)‖2 . (2.5)

From
∥∥rU0 ∥∥2 =

∥∥UrU0 ∥∥H = ‖r0‖H and ‖p(D)‖2 = maxi∈{1,...,N} |p(λi)|, we obtain the
well-known MINRES worst-case bound for the relative residual norm [12, 15]

‖rn‖H
‖r0‖H

≤ min
p∈Π0

n

max
i∈{1,...,N}

|p(λi)|. (2.6)

This can be estimated even further upon letting the eigenvalues of A be sorted
such that λ1 ≤ . . . ≤ λs < 0 < λs+1 ≤ . . . ≤ λN for a s ∈ N0. By replacing the
discrete set of eigenvalues in (2.6) by the union of the two intervals I− := [λ1, λs] and
I+ := [λs+1, λN ], one gets

‖rn‖H
‖r0‖H

≤ min
p∈Π0

n

max
i∈{1,...,N}

|p(λi)| ≤ min
p∈Π0

n

max
λ∈I−∪I+

|p(λ)|

≤ 2

(√
|λ1λN | −

√
|λsλs+1|√

|λ1λN |+
√
|λsλs+1|

)[n/2]

, (2.7)

where [n/2] is the integer part of n/2, cf. [12, 15]. Note that this estimate does not
take into account the actual distribution of the eigenvalues in the intervals I− and
I+. In practice a better convergence behavior than the one suggested by the estimate
above can often be observed.

In most applications, the MINRES method is only feasible when it is applied with
a preconditioner. Consider the preconditioned system

M−1Ax = M−1b (2.8)
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where M : H −→ H is a 〈·, ·〉H -self-adjoint, invertible, and positive-definite linear
operator. Note that M−1A is not 〈·, ·〉H -self-adjoint but self-adjoint with respect to
the inner product 〈·, ·〉M defined by 〈x, y〉M := 〈Mx, y〉H = 〈x,My〉H . The MINRES
method is then applied to (2.8) with the inner product 〈·, ·〉M and thus minimizes∥∥M−1b−M−1Ax

∥∥
M. From an algorithmic point of view it is worthwhile to note

that only the application of M−1 is needed and the application of M for the inner
products can be carried out implicitly; cf. [7, chapter 6]. The convergence bound in
(2.7) then refers to the eigenvalues of M−1A and the goal of preconditioning is to
achieve a more favorable spectrum of M−1A with an appropriate M−1.

2.2. Deflated MINRES. In many applications even with the aid of a precon-
ditioner the convergence of MINRES is hampered – often due to the presence of one
or a few eigenvalues close to zero that are isolated from the remaining spectrum. This
case has recently been studied by Simoncini and Szyld [32]. Their analysis and nu-
merical experiments show that an isolated simple eigenvalue can cause stagnation of
the residual norm until a harmonic Ritz value approximates the outlying eigenvalue
well.

Two strategies are well-known in the literature to circumvent the stagnation or
slowdown in the convergence of preconditioned Krylov subspace methods described
above: augmentation and deflation. In augmented methods the Krylov subspace is
enlarged by a suitable subspace that contains useful information about the problem.
In deflation techniques the operator is modified with a suitably chosen projection in
order to “eliminate” components that hamper convergence (e.g., eigenvalues close to
the origin). For an extensive overview of these techniques we refer to the survey article
by Simoncini and Szyld [31]. Both techniques are closely intertwined and even turn
out to be equivalent in some cases [8]. Here, we concentrate on deflated methods and
first give a brief description of the recycling MINRES (RMINRES) method introduced
by Wang, de Sturler, and Paulino [36] before presenting a slightly different approach.

The RMINRES method by Wang, de Sturler, and Paulino [36] is mathematically
equivalent [8] to the application of the MINRES method to the “deflated” equation

P1Ax̃ = P1b (2.9)

where for a given k-tuple U ∈ Hk of linearly independent vectors (which constitute
a basis of the “recycled” space) and C := AU , the linear operator P1 : H −→ H

is defined by P1x := x − C〈C,C〉−1
H 〈C, x〉H for an arbitrary inner product. Note

that, although P1 is a 〈·, ·〉-self-adjoint projection, P1A in general is not. How-
ever, as outlined in [36, section 4] an orthonormal basis of the Krylov subspace can
still be generated with MINRES’ short recurrences and the operator P1A because
Kn(P1A,P1r0) = Kn(P1AP∗

1 ,P1r0). Solutions of equation (2.9) are not unique for
k > 0 and thus x was replaced by x̃. To obtain an approximation xn of the original
solution x from the approximation x̃n generated with MINRES applied to (2.9), an
additional correction has to be applied:

xn = P̃1x̃n + U〈C,C〉−1
H 〈C, b〉H ,

where P̃1 : H −→ H is defined by P̃1x := x−U〈C,C〉−1
H 〈C,Ax〉H . As outlined in [8,

section 5], the RMINRES method may suffer from breakdowns which can be cured

by using the adapted initial guess x̃0 := P̃1x0 + C〈C,C〉−1
H 〈U, b〉H .

Let us now turn to a slightly different deflation technique for MINRES which
we formulate with preconditioning directly. We will use a projection which has been
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developed in the context of the CG method for Hermitian and positive-definite oper-
ators [21, 3, 35]. Under a mild assumption, this projection can also be used in the
indefinite case with the MINRES method. Our goal is to use approximations to eigen-
vectors corresponding to eigenvalues that hamper convergence in order to modify the
operator with a projection. Consider the preconditioned equation (2.8) and assume
for a moment that the elements of U = [u1, . . . , uk] ∈ Hk form a 〈·, ·〉M-orthonormal
basis consisting of eigenvectors of M−1A, i.e., M−1AU = UD with a diagonal matrix
D = diag(λ1, . . . , λk) ∈ Rk,k. Then

〈
U,M−1AU

〉
M = 〈U,U〉MD = D is nonsingular

because we assumed that A is invertible. This motivates the following definition:
Definition 2.3. Let M,A ∈ L(H) be invertible and 〈·, ·〉H-self-adjoint operators

with positive-definite M. Let U ∈ Hk be such that
〈
U,M−1AU

〉
M = 〈U,AU〉H is

nonsingular. We define the projections PM,P : H −→ H by

PMx := x−M−1AU
〈
U,M−1AU

〉−1

M 〈U, x〉M
Px := x−AU〈U,AU〉−1

H 〈U, x〉H .
(2.10)

The assumption in definition 2.3 that
〈
U,M−1AU

〉
M is nonsingular holds if

and only if range(M−1AU) ∩ range(U)⊥M = {0} or equivalently if range(AU) ∩
range(U)⊥H = {0} which is fulfilled for good-enough approximations of eigenvectors.
Applying the projection PM to the preconditioned equation (2.8) yields the deflated
equation

PMM−1Ax̃ = PMM−1b. (2.11)

The following lemma states some important properties of the operator PMM−1A.
Lemma 2.4. Let the assumptions in definition 2.3 hold. Then
1. PMM−1 = M−1P.
2. PA = AP∗ where P∗ is the adjoint operator of P with respect to 〈·, ·〉H ,

defined by P∗x = x− U〈U,AU〉−1
H 〈AU, x〉H .

3. PMM−1A = M−1PA = M−1AP∗ is self-adjoint with respect to 〈·, ·〉M.
4. For each initial guess x̃0 ∈ H, the MINRES method with inner product 〈·, ·〉M

applied to equation (2.11) is well defined at each iteration until it terminates
with a solution of the system.

5. If x̃n is the nth approximation and PMM−1b−PMM−1Ax̃n the correspond-
ing residual generated by the MINRES method with inner product 〈·, ·〉M ap-
plied to (2.11) with initial guess x̃0 ∈ H, then the corrected approximation

xn := P∗x̃n + U〈U,AU〉−1
H 〈U, b〉H (2.12)

fulfills

M−1b−M−1Axn = PMM−1b− PMM−1Ax̃n. (2.13)

(Note that (2.13) also holds for n = 0.)
Proof. 1., 2. and the equation in 3. follow from elementary calculations. Because〈
PMM−1Ax, y

〉
M = 〈PAx, y〉H = 〈Ax,P∗y〉H = 〈x,AP∗y〉H = 〈x,PAy〉H

=
〈
x,PMM−1Ay

〉
M.

holds for all x, y ∈ H, the operator PMM−1A is self-adjoint with respect to 〈·, ·〉M.
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4. has been proved in [8, Theorem 4.1] for GMRES with the Euclidean inner
product which can easily be generalized to arbitrary inner products. GMRES is
mathematically equivalent to MINRES in our case due to the fact that PMM−1A is
self-adjoint.

5. follows from 1. and 3. by direct calculation:

M−1b−M−1Axn = M−1(b−AU〈U,AU〉−1
H 〈U, b〉H)−M−1AP∗x̃n

= M−1Pb− PMM−1Ax̃n = PMM−1b− PMM−1Ax̃n.

Now that we know that MINRES is well-defined when applied to the deflated
and preconditioned equation (2.11) we want to investigate the convergence behavior
in comparison to the original preconditioned equation (2.8).

Lemma 2.5. Let the assumptions in definition 2.3 and N := dimH < ∞ hold.
If σ(M−1A) = {λ1, . . . , λN} is the spectrum of the preconditioned operator M−1A
and for k > 0 the elements of U ∈ Hk form a basis of the M−1A-invariant subspace
corresponding to the eigenvalues λ1, . . . , λk then the following holds:

1. The spectrum of the deflated operator PMM−1A is

σ(PMM−1A) = {0} ∪ {λk+1, . . . , λN}.

2. For n ≥ 0 let xn be the nth corrected approximation (cf. item 5 of lemma 2.4)
of MINRES applied to (2.11) with inner product 〈·, ·〉M and initial guess x̃0.
The residuals rn := M−1b−M−1Axn then fulfill

‖rn‖M
‖r0‖M

≤ min
p∈Π0

n

max
i∈{k+1,...,N}

|p(λi)|. (2.14)

Proof.
1. From the definition of PM in definition 2.3 we directly obtain PMM−1AU =

0 and thus know that 0 is an eigenvalue of PMM−1A with multiplicity at least
k. Let the elements of V ∈ HN−k be orthonormal and such that M−1AV =
VD2 with D2 = diag(λk+1, . . . , λN ). Then 〈U, V 〉M = 0 because M−1A
is self-adjoint with respect to 〈·, ·〉M. Thus PMV = V and the statement
follows from PMM−1AV = VD2.

2. Because the residual corresponding to the corrected initial guess is r0 =
PMM−1(b − Ax̃0) ∈ range(U)⊥M = range(V ), where V is defined as in
1., we have r0 = V rV0 for a rV0 ∈ KN−k. Then with D2 as in 1. we obtain by
using the orthonormality of V similar to (2.5):

‖rn‖M = min
p∈Π0

n

∥∥p(PMM−1A)V rV0
∥∥
M = min

p∈Π0
n

∥∥V p(D2)r
V
0

∥∥
M = min

p∈Π0
n

∥∥p(D2)r
V
0

∥∥
2

≤ ‖r0‖M min
p∈Π0

n

max
i∈{k+1,...,N}

|p(λi)|.

Implementational notes. Item 1 of lemma 2.4 states that PMM−1 = M−1P and
thus the MINRES method can be applied to the linear system

M−1PAx̃ = M−1Pb (2.15)

instead of (2.11). When an approximate solution x̃n of (2.15) is satisfactory then the
correction (2.12) has to be applied to obtain an approximate solution of the original
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vectors other

U k –
C = AU k –
E = 〈U,C〉H or E−1 – k2

(a) Storage requirements.

applications of vector inner solve
A M−1 updates products with E

Construction of C and E k – – k(k + 1)/2 –
Application of P or P∗ – – k k 1
Application of correction – – k 2k 1

(b) Computational cost.

Table 2.1: Storage requirements and computational cost of the projection operators
P and P∗ (cf. definition 2.3 and lemma 2.4).

system (2.1). Note that neither M nor its inverse M−1 show up in the definition
of the operator P or its adjoint operator P∗ which is used in the correction. Thus
the preconditioner M−1 does not have to be applied to additional vectors if deflation
is used. This can be a major advantage since the application of the preconditioner
operator M−1 is the most expensive part in many applications.

The deflation operator P as defined in definition 2.3 with U ∈ Hk needs to store
2k vectors because aside from U also C := AU should be pre-computed and stored.
Furthermore the matrix E := 〈U,C〉H ∈ Kk,k or its inverse has to be stored. The
adjoint operator P∗ needs exactly the same data so no more storage is required. The
construction of C needs k applications of the operator A but – as stated above – no
application of the preconditioner operator M−1. Because E is Hermitian k(k + 1)/2
inner products have to be computed. One application of P or P∗ requires k inner
products, the solution of a linear system with the Hermitian k-by-k matrix E and k
vector updates. We gather this information in table 2.1.

Instead of correcting the last approximation x̃n it is also possible to start with
the corrected initial guess

x0 = P∗x̃0 + U〈U,AU〉−1
H 〈U, b〉H (2.16)

and to use P∗ as a right “preconditioner” (note that P∗ is singular in general). The
difference is mainly of algorithmic nature and will be described very briefly.

For an invertible linear operator B : H −→ H the right preconditioned system
ABy = b can be solved for y and then the original solution can be obtained from
x = By. Instead of x0 the initial guess y0 := B−1x0 is used and the initial residual
r0 = b −ABy0 = b −Ax0 equals the residual of the unpreconditioned system. Then
iterates

yn = y0 + zn with zn ∈ Kn(AB, r0)
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and xn := Byn = x0 + Bzn are constructed such that the residual rn = b − AByn =
b−Axn is minimal in ‖·‖H . If the operator AB is self-adjoint the MINRES method
can again be used to solve this minimization problem. Note that y0 is not needed
and will never be computed explicitly. The right preconditioning can of course be
combined with a positive definite preconditioner as described in the introduction of
section 2.

We now take a closer look at the case B = P∗ which differs from the above descrip-
tion because P∗ is not invertible in general. However, even if the right preconditioned
system is not consistent (i.e., b /∈ range(AP∗)) the above strategy can be used to solve
the original linear system. Let us with x0 from equation (2.16) construct iterates

xn = x0 + P∗yn with yn ∈ Kn(M−1AP∗, r0) (2.17)

such that the residual

rn = M−1b−M−1Axn (2.18)

has minimal ‖·‖M-norm. Inserting (2.17) and the definition of x0 into (2.18) yields
rn = M−1Pb − M−1PAyn with yn ∈ Kn(M−1AP∗, r0) = Kn(M−1PA, r0). The
minimization problem is thus the same as in the case where MINRES is applied to
the linear system (2.15) and because both the operators and initial vectors coincide
the same Lanczos relation holds. Consequently the MINRES method can be applied
for the right preconditioned system

M−1AP∗y = M−1b, x = P∗y (2.19)

with the corrected initial guess x0 from equation (2.16). The key issue here is that
the initial guess is treated as in (2.17). A deflated and preconditioned MINRES
implementation following these ideas only needs the operator P∗ and the corrected
initial guess x0. A correction step at the end then is unnecessary.

2.3. Ritz vector computation. So far we considered a single linear system and
assumed that a basis for the construction of the projection used in the deflated system
is given (e.g. eigenvectors are given). We now turn to a sequence of preconditioned
linear systems

M−1
(i)A(i)x

(i) = M−1
(i) b

(i) (2.20)

where M(i),A(i) : L(H) are invertible and self-adjoint with respect to 〈·, ·〉H , M(i)

is positive definite and x(i), b(i) ∈ H for i ∈ {1, . . . ,M}. To improve the readability
we use subscript indices for operators and superscript indices for elements or tuples
of the Hilbert space H. Such a sequence may arise from a time dependent problem
or a nonlinear equation where solutions are approximated using Newton’s method
(cf. section 3). We now assume that the operator M−1

(i+1)A(i+1) only differs slightly

from the previous operator M−1
(i)A(i). Then it may be worthwhile to extract some

eigenvector approximations from the Krylov subspace and the deflation subspace used
in the solution of the ith system in order to accelerate convergence of the next system
by deflating these extracted approximate eigenvectors.

For explaining the strategy in more detail we omit the sequence index for a
moment and always refer to the ith linear system if not specified otherwise. As-
sume that we used a tuple U ∈ Hk whose elements form a 〈·, ·〉M-orthonormal basis
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to set up the projection PM (cf. definition 2.3) for the ith linear system (2.20).
We then assume that the deflated and preconditioned MINRES method with inner
product 〈·, ·〉M and initial guess x̃0 computed a satisfactory approximate solution
after n steps. The MINRES method then constructed a basis of the Krylov sub-
space Kn(PMM−1A, r0) where the initial residual is r0 = PMM−1(b − Ax̃0). Due
to the definition of the projection we know that Kn(PMM−1A, r0) ⊥M range(U)
and we now wish to compute approximate eigenvectors of M−1A in the subspace
S := Kn(PMM−1A, r0) ∪ range(U). We can then pick some approximate eigenvec-
tors according to the corresponding approximate eigenvalues and the approximation
quality in order to construct a projection for the deflation of the (i+1)st linear system.

Let us recall the definition of Ritz pairs [23]:

Definition 2.6. Let S ⊆ H be a finite dimensional subspace and let B : H −→ H
be a linear operator. (w, µ) ∈ S × C is called a Ritz pair of B with respect to S and
the inner product 〈·, ·〉 if

Bw − µw ⊥〈·,·〉 S.

The following lemma gives insight into how the Ritz pairs of the operator M−1A
with respect to the Krylov subspace Kn(PMM−1A, r0) and the deflation subspace
range(U) can be obtained from data that is available when the MINRES method
found a satisfactory approximate solution of the last linear system.

Lemma 2.7. Let M,A : H −→ H be linear, invertible, and 〈·, ·〉H-self-adjoint
and let M be positive-definite. Furthermore, let U ∈ Hk be such that 〈U,U〉M = Ik
and let PM be defined as in definition 2.3.

Assume that the Lanczos algorithm with inner product 〈·, ·〉M applied to the op-
erator PMM−1A and an initial vector v ∈ range(U)⊥M proceeds to the nth iteration
and the Lanczos relation

PMM−1AVn = Vn+1Tn (2.21)

holds with Vn+1 = [v1, . . . , vn+1] ∈ Hn+1, 〈Vn+1, Vn+1〉M = In+1 and Tn =

[
Tn

0 · · · 0 sn

]
∈

Rn+1,n where sn ∈ R is nonnegative and Tn ∈ Rn,n is tridiagonal, symmetric, and
real-valued. Let S := Kn(PMM−1A, v) ∪ range(U) and w = [Vn, U ]w̃ ∈ S for a
w̃ ∈ Kn+k.

Then (w, µ) ∈ S × R is a Ritz pair of M−1A with respect to S and the inner
product 〈·, ·〉M if and only if[

Tn +BE−1BH B
BH E

]
w̃ = µw̃ (2.22)

where B := 〈Vn,AU〉H and E := 〈U,AU〉H .

Furthermore, the squared ‖·‖M-norm of the residual M−1Aw − µw is

∥∥M−1Aw − µw
∥∥2
M = (Gw̃)H

In+1 B 0

BH F E
0 E Ik

Gw̃ (2.23)
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where

B = 〈Vn+1,AU〉H =

[
B

〈vn+1,AU〉H

]
,

F =
〈
AU,M−1AU

〉
H

and

G =

Tn − µIn 0
E−1BH Ik

0 −µIk

 with In =

[
In
0

]
.

Proof. (w, µ) is a Ritz pair of M−1A with respect to S = range([Vn, U ]) and the
inner product 〈·, ·〉M if and only if

M−1Aw − µw ⊥M S

⇐⇒
〈
s,M−1Aw − µw

〉
M = 0 ∀s ∈ S

⇐⇒
〈
[Vn, U ], (M−1A− µI)[Vn, U ]

〉
Mw̃ = 0

⇐⇒
〈
[Vn, U ],M−1A[Vn, U ]

〉
Mw̃ = µ〈[Vn, U ], [Vn, U ]〉Mw̃

⇐⇒
〈
[Vn, U ],M−1A[Vn, U ]

〉
Mw̃ = µw̃

where the last equivalence follows from the orthonormality of U and Vn and the fact
that range(U) ⊥M Kn(PMM−1A, v) = range(Vn). We decompose the left hand side
as 〈

[Vn, U ],M−1A[Vn, U ]
〉
M =

[〈
Vn,M−1AVn

〉
M

〈
Vn,M−1AU

〉
M〈

U,M−1AVn
〉
M

〈
U,M−1AU

〉
M

]
.

The Lanczos relation (2.21) is equivalent to

M−1AVn = Vn+1Tn +M−1AU〈U,AU〉−1
H 〈AU, Vn〉H (2.24)

from which we can conclude with the 〈·, ·〉M-orthonormality of [Vn+1, U ] that〈
Vn,M−1AVn

〉
M = 〈Vn, Vn+1〉MTn +

〈
Vn,M−1AU

〉
M〈U,AU〉−1

H 〈AU, Vn〉H
= Tn + 〈Vn,AU〉H〈U,AU〉−1

H 〈AU, Vn〉H .

The characterization of Ritz pairs is complete by recognizing thatB =
〈
Vn,M−1AU

〉
M =

〈Vn,AU〉H =
〈
U,M−1AVn

〉H
M and E =

〈
U,M−1AU

〉
M = 〈U,AU〉H .

Only the residual norm equation remains to show. Therefore we compute with (2.24)

M−1Aw − µw = M−1A[Vn, U ]w̃ − µ[Vn, U ]w̃

= [Vn+1,M−1AU,U ]

Tn − µIn 0
E−1BH Ik

0 −µIk

 w̃
= [Vn+1,M−1AU,U ]Gw̃.

The squared residual ‖·‖M-norm thus is∥∥M−1Aw − µw
∥∥2
M = (Gw̃)H

〈
[Vn+1,M−1AU,U ], [Vn+1,M−1AU,U ]

〉
MGw̃
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where
〈
[Vn+1,M−1AU,U ], [Vn+1,M−1AU,U ]

〉
M =

In+1 B 0

BH F E
0 E Ik

 can be shown

with the same techniques as in 1. and 2.

Remark 1. Lemma 2.7 also holds for the (rare) case that Kn(PMM−1A, v) is
an invariant subspace of PMM−1A which we excluded for readability reasons. The
Lanczos relation (2.21) in this case is PMM−1AVn = VnTn which does not change
the result.

Lemma 2.7 shows how a Lanczos relation for the operator PMM−1A (that can
be generated implicitly in the deflated and preconditioned MINRES algorithm, cf. end
of section 2.2) can be used to obtain Ritz pairs of the “undeflated” operator M−1A.
An algorithm for the solution of the sequence of linear systems (2.20) as described
in the beginning of this subsection is given in algorithm 1. Additional to the Ritz
vectors this algorithm can include auxiliary deflation vectors Y (i).

Algorithm 1 Algorithm for the solution of the sequence of linear systems (2.20).

Input: For i ∈ {1, . . . ,M} we have:
• M(i) ∈ L(H) is 〈·, ·〉H -self-adjoint and positive-definite. . preconditioner
• A(i) ∈ L(H) is 〈·, ·〉H -self-adjoint. . operator

• b(i), x
(i)
0 ∈ H. . right hand side and initial guess

• Y (i) ∈ H l(i) for l(i) ∈ N0. . auxiliary deflation vectors (may be empty)
1: W = [ ] ∈ H0 . no Ritz vectors available in first step
2: for i = 1 →M do
3: U = orthonormal basis of span[W,Y (i)] with respect to 〈·, ·〉M(i)

.

4: C = A(i)U , E = 〈U,C〉H , set up P∗ . cf. definition 2.3

5: x0 = P∗x
(i)
0 + UE−1

〈
U, b(i)

〉
H

. corrected initial guess

6: x
(i)
n , Vn+1,Tn,B = MINRES(A(i), b(i),M−1

(i) ,P
∗, x0, ε)

MINRES is applied to M−1
(i)A(i)x

(i) = M−1
(i) b

(i) with inner product

〈·, ·〉M(i)
, right preconditioner P∗, initial guess x0 and tolerance ε > 0,

cf. section 2.2. Then:
• The approximation x

(i)
n fulfills

∥∥∥M−1
(i) b

(i) −M−1
(i)A(i)x

(i)
n

∥∥∥
M(i)

≤ ε.

• The Lanzcos relation M−1
(i)A(i)P∗Vn = Vn+1Tn holds.

• B = 〈Vn, C〉H is generated as a byproduct of the application of P∗.

7: w1, . . . , wm, µ1, . . . , µm, ρ1, . . . , ρm = Ritz(U, Vn+1,Tn,B, C,E,M−1
(i) )

Ritz(. . .) computes the Ritz pairs (wj , µj) for j ∈ {1, . . . ,m} of M−1
(i)A(i)

with respect to span[U, Vn] and the inner product 〈·, ·〉M(i)
, cf. lemma 2.7.

Then:
• w1, . . . , wm form a 〈·, ·〉M(i)

-orthonormal basis of span[U, Vn].

• The residual norms ρj =
∥∥∥M−1

(i)A(i)wj − µjwj

∥∥∥
M(i)

are also re-

turned.

8: W = [wi1 , . . . , wik ] for pairwise distinct i1, . . . , ik ∈ {1, . . . ,m}.
Pick k Ritz vectors according to Ritz value and residual norm.

9: end for
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Applications of Inner Vector
A M−1 M products updates

Orthogonalization – – k k(k + 1)/2 k(k + 1)/2
Setup of P∗ and initial guess x0 k – – k(k + 5)/2 2k
n MINRES iterations n n – n(k + 2) n(k + 7)
Computation of Ritz vectors – k – k2 k(k + n)

Table 2.2: Computational cost for one iteration of algorithm 1 (lines 3–8) with n
MINRES iterations and k deflation vectors. The number of computed Ritz vectors
also is k. Operations that do not depend on the dimension N := dimH are neglected.

Implementational notes. We now comment on the implementational side of the
determination and utilization of Ritz pairs while solving a sequence of linear systems
(cf. algorithm 1). The solution of a single linear system with the deflated and precondi-
tioned MINRES method was discussed in section 2.2. Although the MINRES method
is based on short recurrences due to the underlying Lanczos algorithm – and thus only
needs storage for a few vectors – we still have to store the full Lanczos basis Vn+1

for the determination of Ritz vectors. The Lanczos matrix Tn ∈ Rn+1,n is no issue
because it is tridiagonal and symmetric. However, by employing a “good” precondi-
tioner that limits the number of iterations we are able to satisfy memory constraints
in many applications (cf. section 3.3). Deflation can then be used to further improve
convergence by directly addressing parts of the preconditioned operator’s spectrum.
An annotated version of the algorithm can be found in algorithm 1. Note that the
orthonormalization in line 3 is redundant in exact arithmetic if only Ritz vectors are
used and the preconditioner does not change. An overview of the computational cost
of one iteration of algorithm 1 is given in table 2.2.

3. Application to nonlinear Schrödinger problems. Given an open domain
Ω ⊆ Rd, d ∈ {2, 3}, nonlinear Schrödinger operators are typically derived from the
minimization of the Gibbs energy in a corresponding physical system and have the
form

S(ψ) : X → Y,

S(ψ) := (K + V + g|ψ|2)ψ in Ω
(3.1)

with X ⊆ L2(Ω) being the natural energy space of the problem, Y its dual. If
the domain is bounded, the energy space X may incorporate boundary conditions
appropriate to the physical setting. The linear operator K is assumed to be symmetric
and positive-semidefinite, V : Ω → R be a given scalar potential, and g ∈ R a
given coupling parameter. A state ψ̂ : Ω → C is called a solution of the nonlinear
Schrödinger equation if

S(ψ̂) = 0. (3.2)

Generally, one is only interested in nontrivial solutions ψ̂ 6≡ 0. The function ψ̂ is often
referred to as order parameter and its magnitude |ψ̂|2 typically describes a particle
density or, more general, a probability distribution. Note that, because of

S(exp{iχ}ψ) = exp{iχ}S(ψ) (3.3)
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one solution ψ̂ ∈ X is really just a representative of the physically equivalent solutions
{exp{iχ}ψ̂ : χ ∈ R}.

For the numerical solution of (3.2), Newton’s method is the method of choice.
Given a good-enough initial guess ψ0, the Newton process generates a sequence of
iterates ψk which converges towards a solution ψ̂ of (3.2). In each step k of Newton’s
method, a linear system with the Jacobian J (ψk) of S at ψk needs to be solved. The
linear operator J (ψ) is given by

J (ψ) : X → Y,

J (ψ)ϕ :=
(
K + V + 2g|ψ|2

)
ϕ+ gψ2ϕ.

(3.4)

Despite the fact that states ψ are generally complex-valued, J (ψ) is linear only if
X and Y are defined as vector spaces over the field R with the corresponding inner
product

〈·, ·〉R := <〈·, ·〉L2(Ω) . (3.5)

This matches the notion that the specific complex argument of the order parameter
is of no physical relevancy since |αψ|2 = ||α|ψ|2 for all α ∈ C, ψ ∈ X (compare
with (3.3)).

Moreover, the work in [28] gives a representation of adjoints of operators of the
form (3.4), from which one can derive

Corollary 1. For any given ψ ∈ Y , the Jacobian operator J (ψ) (3.4) is
self-adjoint with respect to the inner product (3.5).

An important consequence of the independence of states of the complex argument
(3.3) is the fact that solutions of (3.10) form a smooth manifold in X. This results in
the linearization (3.4) in solutions always having a nontrivial kernel. Indeed, for any
ψ ∈ X

J (ψ)(iψ) =
(
K + V + 2g|ψ|2

)
(iψ)− giψ2ψ = i

(
K + V + g|ψ|2

)
ψ = iS(ψ), (3.6)

so for nontrivial solutions ψ̂ ∈ X, ψ 6≡ 0, F (ψ̂) = 0, the dimension of the kernel of
J (ψ) is at least 1.

Besides the fact that there is always a zero eigenvalue in a solution ψs and that
all eigenvalues are real, not much more can be said about the spectrum; in general,
J (ψ) is indefinite. The definiteness depends entirely on the state ψ; if ψ is a solu-
tion to (3.1), it is said to be stable or unstable depending whether or not J (ψ) has
negative eigenvalues. Typically, solutions with low energies tend to be stable whereas
highly energetic solutions tend to be unstable. For physical systems in practice, it is
uncommon to see more than ten negative eigenvalues for a given solution state.

3.1. Principal problems for the numerical solution. While the numerical
solution of nonlinear systems itself is challenging, the presence of a singularity in a
solution as in (3.6) adds two major obstacles for using Newton’s method.

• Newton’s method is guaranteed to converge towards a solution x̂ Q-superlin-
early in the area of attraction only if x̂ is nondegenerate, i.e., the Jacobian
in x̂ is regular. If the Jacobian operator does have a singularity, only linear
convergence can be guaranteed.

• While no linear system has to be solved with the exactly singular J (ψ̂), the

Jacobian operator close the solution J (ψ̂ + δψ) will have at least one eigen-
value of small magnitude, i.e., the Jacobian system becomes ill-conditioned
when approaching a solution.
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Several approaches have been suggested to deal with this situation, for a concise
survey of the matter, see [13]. One of the most used strategies is bordering which
suggests extending the original problem S(ψ) = 0 by a so-called phase condition to
pin down the redundancy [1],

0 = S̃(ψ, λ) :=
(
S(ψ) + λy

p(x)

)
. (3.7)

If y and p(·) are chosen according to some well-understood criteria [14], the Jacobian
systems can be shown to be well-conditioned throughout the Newton process. More-
over, the bordering can be chosen in such a way that the linearization of the extended
system is self-adjoint in extended scalar product if the linearization of the original
problem was self-adjoint. This method has been applied to the specialization of the
Ginzburg–Landau equations before [28] (3.10), and naturally generalizes to nonlinear
Schrödinger equations in the same way. The major disadvantage of the bordering ap-
proach, however, is that it is not clear how to precondition the extended system even
if a good preconditioner for the original problem is known. This renders bordering
unfeasible for the discretization of nonlinear PDEs with a large number of unknowns.

In the particular case of nonlinear Schrödinger equations, the loss of speed of
convergence is less severe than in more general settings. Note that there would be no
slowdown at all if the Newton update δψ, given by

J (ψ)δψ = −S(ψ), (3.8)

was consistently orthogonal to the null space iψ̂ close to a solution ψ̂. While this is
not generally true, one is at least in the situation that the Newton update can never
be an exact multiple of the direction of the approximate null space iψ. This is because

J (ψ)(αiψ) = −S(ψ), α ∈ R,

together with (3.6), is equivalent to

αiS(ψ) = −S(ψ)

which can only be fulfilled if S(ψ) = 0, i.e., if ψ is already a solution.
Consequently, loss of Q-superlinear convergence is hardly ever observed in nu-

merical experiments. Figure 3.1, for example, shows the Newton residual for the
two- and three-dimensional test setups, both with the standard formulation and with
the bordering 3.7 as proposed in [28]. Of course, the Newton iterates follow differ-
ent trajectories, but the important thing to note is that in both plain and bordered
formulation, the speed of convergence close the solution is comparable.

The more severe restriction is in the numerical difficulty of solving the Jacobian
systems in each Newton step due to the increasing ill-posedness of the problem as
described above. However, although the Jacobian has a nontrivial near-null space
close to a solution, the problem is well-defined at all times. This is because, by self-
adjointness, its left near-null space coincides with the right near-null space, span{iψ̂},
and the right-hand-side in (3.8), −S(ψ), is orthogonal to iψ for any ψ:

〈iψ, S(ψ)〉R = 〈iψ,K(ψ)〉R + 〈iψ, V (ψ)〉R +
〈
iψ, g|ψ|2ψ

〉
R

= < (i〈ψ,Kψ〉2) + < (i〈ψ, V ψ〉2) + <
(
gi
〈
|ψ|2, |ψ|2

〉
2

)
= 0. (3.9)
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The numerical problem is hence caused only by the fact that one eigenvalue approaches
the origin as the Newton iterates approach a solution. The authors propose to handle
this difficulty on the level of the linear solves for the Newton updates using the
deflation framework developed in section 2.

3.2. The Ginzburg–Landau equation. One important instance of nonlinear
Schrödinger equations (3.1) is the Ginzburg–Landau equation that models supercur-
rent density for extreme-type-II superconductors. Given an open, bounded domain
Ω ⊆ Rd, d ∈ {2, 3}, the equations are

0
!
=

Kψ − ψ(1− |ψ|2),

n · (−i∇−A)ψ.
(3.10)

The operator K is defined as

K : X → Y,

Kϕ := (−i∇−A)2ϕ.
(3.11)

with the magnetic vector potential A ∈ H2
Rd(Ω) [5]. The operator K describes the

energy of a charged particle under the influence of a magnetic field B = ∇×A, and
can be shown to be Hermitian and positive-semidefinite; the eigenvalue 0 is assumed
only for A ≡ 0 [29]. Solutions ψ̂ of (3.10) describe the density |ψ̂|2 of electric charge

carriers and fulfill 0 ≤ |ψ̂|2 ≤ 1 pointwise [16]. For two-dimensional domains, they
typically exhibit isolated zeros referred to as vortices; in three dimensions, lines of
zeros are the typical solution pattern (see figure 3.2).

Discretization. For the numerical experiments in this paper, a finite-volume-type
discretization is employed [4, 29]. Let Ω(h) be a discretization of Ω with a triangu-
lation {Ti}mi=1,

⋃m
i=1 Ti = Ω(h), and the node-centered Voronoi tessellation {Vk}nk=1,⋃n

k=1 Vk = Ω(h). Let further ei,j denote the edge between two nodes i, j. The
discretized problem is then to find ψ(h) ∈ Cn such that

∀k ∈ {1, . . . , n} : 0 =
(
S(h)ψ(h)

)
k
:=
(
K(h)ψ(h)

)
k
− ψ

(h)
k

(
1− |ψ(h)

k |2
)
, (3.12)

where the discrete kinetic energy operator K(h) is defined by

∀φ(h), ψ(h) ∈ Cn :
〈
K(h)ψ(h), φ(h)

〉
=∑

edges ei,j

αi,j

[(
ψ
(h)
i − Ui,jψ

(h)
j

)
φ
(h)

i +
(
ψ
(h)
j − Ui,jψ

(h)
i

)
φ
(h)

j

]
(3.13)

with the discrete inner product〈
ψ(h), φ(h)

〉
:=

n∑
k=1

|Vk|ψ(h)
k φ

(h)

k

and edge coefficients αi,j ∈ R [29]. The magnetic vector potential A is incorporated
in the so-called link variables,

Ui,j := exp

(
−i

∫ xi

xj

ei,j ·A(w) dw

)
.
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along the edges ei,j of the triangulation.
Remark 2. In matrix form, the operator K(h) is represented as a product K(h) =

D−1K̂ of the diagonal matrix D−1, Di,i = |Vi|, and a Hermitian matrix K̂.
This discretization preserves a number of invariants of the problem, e.g., gauge

invariance of the type ψ̃ := exp{iχ}, Ã := A+∇χ with a given χ ∈ C1(Ω). Moreover,
the discretized energy operator K(h) is Hermitian and positive-definite [29]. The
discretized Jacobian operator is self-adjoint with respect to the discrete inner product

〈
ψ(h), φ(h)

〉
R
:= <

(
n∑

k=1

|Vk|ψ
(h)

k φ
(h)
k

)
(3.14)

and the statements (3.6), (3.9) about the null space carry over from the continuous
formulation.

Remark 3 (Real-valued formulation). There is a vector space isomorphism α :
Cn → R2n between R2n and Cn as vector space over R given by the basis mapping

α(e
(n)
j ) = e

(2n)
j , α(ie

(n)
j ) = e

(2n)
n+j .

In particular, note that the dimension of Cn
R is 2n. The isomorphism α is also iso-

metric with the natural inner product 〈·, ·〉R of Cn
R, since for any given pair φ, ψ ∈ Cn

one has 〈(
<φ
=φ

)
,

(
<ψ
=ψ

)〉
= 〈<φ,<ψ〉+ 〈=φ,=ψ〉 = 〈φ, ψ〉R .

Moreover, linear operators over Cn
R generally have the form Lψ = Aψ+Bψ with some

A,B ∈ Cn×n and because of

Lw = λw ⇔ (αLα−1)αw = λαw,

the spectral properties also exactly convey to its real-valued image αLα−1.
This equivalence can be relevant in practice as quite commonly, the original com-

plex-valued problem in Cn is implemented in terms R2n. Using the natural inner
product in this space will yield the expected results without having to take particular
care of the inner product.

3.3. Numerical experiments. The numerical experiments are performed with
the following two setups.

Test setup 1 (2D). The circle Ω2D := {x ∈ R2 : ‖x‖2 < 5} and the mag-
netic vector potential A(x) := m × (x − x0)/‖x − x0‖3 with m := (0, 0, 1)T and
x0 := (0, 0, 5)T, corresponding to the magnetic field generated by a dipole at x0 with
orientation m. A Delaunay triangulation for this domain was created using Trian-
gle [30], bearing 3299 points. With the discrete equivalent of ψ0(x) = cos(πx) as
initial guess, the Newton process converges after 27 iterations with a residual of less
than 10−10 in the discretized norm (see figure 3.1). The final state is illustrated in
figure 3.2.

Test setup 2 (3D). The three-dimensional L-shape

Ω3D := {x ∈ R3 : ‖x‖∞ < 5}\R3
+,

discretized using Gmsh [11] with 72166 points. The chosen magnetic vector field is
constant B3D(x) := 3−1/2(1, 1, 1)T, represented by the vector potential A3D(x) :=
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Fig. 3.1: Newton residual history for the two-dimensional setup 1 (left) and three-
dimensional setup 2 (right), each with bordering ( ) and without ( ) With initial
guesses ψ2D

0 (x) = cos(πy) and ψ3D
0 (x) = 1, respectively, the Newton process delivered

the solutions as highlighted in figure 3.2 in 22 and 27 steps, respectively.
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(b)), argψ at the back sides of the
cube.

Fig. 3.2: Solutions of the test problems as found in the Newton process illustrated in
figure 3.1.
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1
2B3D × x. With the discrete equivalent of ψ0(x) = 1, the Newton process converges
after 22 iterations with a residual of less than 10−10 in the discretized norm (see
figure 3.1). The final state is illustrated in figure 3.2.

For both of representative setups, a Newton run was performed where the linear
systems (3.8) were solved using MINRES to exploit self-adjointness of J (h). Note that
it is critical here to use the natural inner product of the system, (3.14). All of the
numerical experiments incorporate the preconditioner proposed in [29] that is shown
to bound the number of Krylov iterations needed to reach a certain relative residual
by a constant independently of the number n of unknowns in the system.

Remark 4. Neither of the above test problems have initial guesses which sit
in the cone of attraction of the solution they eventually converge to. As typical for
local nonlinear solvers, the iterations which do not directly correspond with the final
convergence are sensitive to effects introduced by the discretization or round-off errors.
It will hence be difficult to reproduce the shown solutions without exact information
about the point coordinates in the discretization mesh. Nevertheless, the numerical
results hold true for any converging Newton iteration, independently of their final
state.

Figure 3.3 shows the relative residuals for all Newton steps in both the two- and
the three-dimensional setup. Note that the residual curves late in the Newton process
(dark gray) exhibit plateaus of stagnation which are attributed to the low-magnitude
eigenvalue associated with the near-null space vector iψ(h).

Figure 3.3b incorporates deflation of said vector via the framework as described in
section 2. The incorporation of the preconditioner and the customized inner product
3.14 is crucial here. Clearly, the stagnation effects are remedied and a significantly
lower number of iterations is necessary to reduce the residual norm to 10−10. While
this comes with extra computational cost per step (cf. table 2.1), this cost is negligible
compared to the considerable convergence speedup.

Remark 5. Note that the initial guess x̃0 is adapted according to (2.16) before
the beginning the iteration. Because of that, the initial relative residual ‖b−Ax0‖/‖b−
Ax̃0‖ cannot generally be expected to equal 1 even if x̃0 = 0. In the particular case of
U = iψ, however, we have

x0 = P∗x̃0 + U 〈U, J(ψ)U〉−1
R 〈U,−S(ψ)〉R = P∗x̃0

since 〈iψ,S(ψ) = 0 (3.9), and the initial relative residual does equal 1 if x̃0 = 0 (cf.
figure 3.3b). Note that this is not true anymore when more deflation vectors are added
(cf. figure 3.3c).

As indicated in section 2, the idea of deflation can be taken further by noting that,
towards the end of the Newton process, a series of very similar linear systems needs
to be solved. This leads to the idea of extracting spectral information of the previous
MINRES iteration use for deflation in the present process. For the experiments,
those 12 Ritz vectors from the MINRES iteration in Newton step k which belong
to the Ritz values of smallest magnitude were added for deflation in Newton step
k+1. As displayed in figure 3.3c, the number of necessary Krylov iterations is further
decreased roughly by a factor of 2. Note also that in particular, the characteristic
plateaus corresponding with the low-magnitude eigenvalue to not anymore occur. This
is particularly interesting since no information about the approximate null space was
explicit specified, but automatically extracted from previous Newton steps.

Technically, one could go ahead and extract even more Ritz vectors for deflation in
the next step. However, at some point the extra cost associated with the extraction of



20

0 50 100 150

100

10−2

10−4

10−6

10−8

10−10

MINRES iteration

‖r
‖/

‖b
‖

0 50 100 150 200 250

MINRES iteration

(a) Without deflation.

0 50 100 150

100

10−2

10−4

10−6

10−8

10−10

MINRES iteration

‖r
‖/
‖b
‖

0 50 100 150 200 250

MINRES iteration

(b) Deflation of the vector iψ.
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(c) Deflation of 12 Ritz vectors corresponding to the Ritz values of smallest magnitude.

Fig. 3.3: MINRES convergence histories of all Newton steps for the 2D problem (left)
and 3D problem (right). The color of the curve corresponds to the Newton step: light
gray is the first Newton step while black is the last Newton step.
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Fig. 3.4: Wall-times Tp needed for MINRES solves for the test setups with deflation of
those p Ritz vectors from the previous Newton step which correspond to the smallest
Ritz values. As in the figure 3.3, light gray lines correspond to steps early in the
Newton process. All times are displayed relative to the computing time T0 without
deflation. The dashed line at Tp/T0 = 1 marks the threshold below which deflation
pays off.

the Ritz vectors (table 2.2) and the application of the projection operator (table 2.1)
will not justify a further increase of the deflation space. The efficiency threshold
will be highly dependent on the cost of the preconditioner. Moreover, it is in most
situations impossible to predict just how the deflation of a particular set of vectors
influences the residual behavior in a Krylov process. For this reason, one has to reside
to numerical experiments to estimate the optimal dimension of the deflation space.
Figure 3.4 shows, again for all Newton steps in both setups, the wall time of the
Krylov iterations as in figure 3.3 relative to the solution time without deflation. The
experiments show that deflation in the first few Newton steps does not accelerate the
computing speed. This is due to the fact that the Newton updates are still significantly
large and the subsequent linear systems are too different from each other to take profit
from carrying over spectral information. As the Newton process advances and the
updates become smaller, the subsequent linear systems become similar and deflation
of a number of vectors becomes profitable. Note, however, that there is a point at
which the computational cost of extraction and application of the projection exceeds
the gain in Krylov iterations. For the two-dimensional setup, this value is around
12 while in the three-dimensional case, the minimum roughly stretches from 10 to 20
deflated Ritz vectors. In both cases, a reduction of effective computation time by 40%
could be achieved.

Remark 6. Note that throughout the numerical experiments performed in this
paper, the linear systems were solved in up to the relative residual of 10−10. In prac-
tice, however, one would employ a relaxation scheme as given in, e.g., [6, 25]. Those
schemes commonly advocate a relaxed relative tolerance ηk in regions of slow con-
vergence, and a more stringent condition when the speed of convergence accelerates
toward a solution, e.g.,

ηk = γ

(
‖Fk‖

‖Fk−1‖

)α
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with some γ > 0, α > 1. In the specific case of nonlinear Schrödinger equations, this
means that deflation of the near-null vector iψ (cf. figure 3.3b) becomes little effective
if ηk is higher than where the stagnation plateau appears. The speedup associated
with deflation with a number of Ritz vectors (cf. figure 3.3c), however, is effective
throughout the Krylov iteration and would hence not be influenced by a premature
abortion of the process.

Remark 7. As opposed to the CG method, there is no consensus on what im-
plementation of the MINRES procedure is least prone to round-off errors. In general,
the MINRES iteration can be unstable to the point of complete stagnation well above
machine precision [33] (see the stagnating process in figure 3.3a). This is attributed
to the implicit loss of orthogonality of the Ritz vectors due to round-off errors and can
thus remedied by storing all computed Ritz vectors and reorthogonalizing against the
set in each MINRES iteration. This essentially leads to the GMRES process.

All numerical experiments in this paper have been conducted with and without
explicit reorthogonalization and despite the observation of a loss of orthogonality in
the Ritz vectors, the convergence speedup with Ritz vectors from the previous step was
not noticeably affected.

Remark 8. The methods described and developed in this paper are implemented
in the Python package pynosh [9] made available under a free and open source license
(GNU General Public License 3). All experimental results presented in this section
can be reproduced from the data published with the source code.

4. Conclusions. For the solution of a sequence of self-adjoint linear systems
such as occurring in Newton process for a large class of nonlinear problems, the au-
thors propose a MINRES scheme that takes into account spectral information from
the previous linear systems. Central to the approach is the cheap extraction of Ritz
vectors (section 2.3) out of a MINRES iteration and the application of the projec-
tion (2.10). As opposed to similar recycling methods previously suggested [36], the
present one consistently preserved self-adjointness of the projected operator, explicitly
incorporates the use of a preconditioner, and allows for inner products other than the
default `2-inner product.

These properties are then crucial for the application to nonlinear Schrödinger
equations (section 3): The occurring linearization is self-adjoint with respect to a
nonstandard inner product (3.14), and the computation in a three-dimensional set-
ting is not feasible without a preconditioner. The authors could show that for the
particular case of the Ginzburg–Landau equations, the deflation strategy reduces the
effective run time of a linear solve by up to 40% (cf. figure 3.3c). Moreover, the defla-
tion strategy was shown to automatically handle the singularity of the problem that
otherwise leads to numerical instabilities.

It is expected that the strategy will perform similarly for other nonlinear problems.
While adding a number of vectors to the deflation will always lead to faster Krylov
convergence, it only comes with extra computational cost in extracting the Ritz vector
and applying the projection operator. The optimal number of deflated Ritz vectors is
highly problem-dependent, in particular the computational cost of the preconditioner,
and can thus hardly be determined a priori.

The proposed strategy naturally extends to problems which are not self-adjoint
by choosing, e.g., GMRES as the hosting Krylov method. For asymmetric problems,
however, the effects of altered spectra on the Krylov convergence is far more involved
than in the self-adjoint case [20]. This also makes the choice of Ritz vectors for
deflation difficult.
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[28] N. Schlömer, D. Avitabile, and W. Vanroose, Numerical bifurcation study of supercon-
ducting patterns on a square, SIAM Journal on Applied Dynamical Systems, 11 (2012),
pp. 447–477.
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