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Abstract

Mathematical modeling often helps to provide a systems perspective on gene
regulatory networks. In particular, qualitative approaches are useful when de-
tailed kinetic information is lacking. Multiple methods have been developed
that implement qualitative information in different ways, e.g., in purely discrete
or hybrid discrete/continuous models. In this paper, we compare the discrete
asynchronous logical modeling formalism for gene regulatory networks due to
R. Thomas with piecewise affine differential equation models. We provide a lo-
cal characterization of the qualitative dynamics of a piecewise affine differential
equation model using the discrete dynamics of a corresponding Thomas model.
Based on this result, we investigate the consistency of higher-level dynamical
properties such as attractor characteristics and reachability. We show that al-
though the two approaches are based on equivalent information, the resulting
qualitative dynamics are different. In particular, the dynamics of the piecewise
affine differential equation model is not a simple refinement of the dynamics of
the Thomas model

Keywords: Gene regulatory networks, mathematical modeling, discrete
models, piecewise affine models

1. Introduction

Gene regulation is the result of a complex interplay of molecular components
forming large interaction networks. Mathematical modeling of gene regulatory
networks gives insights into the underlying structure and dynamics of various
biological systems. If information on kinetic parameters is lacking, qualitative
formalisms offer a well-established alternative to the more traditionally used
differential equation models. Using only qualitative information on the network
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structure and the interactions between the components, these approaches allow
obtaining an abstract description of the system’s dynamics.

The discrete formalism of Thomas (1973) (Thomas and D’Ari, 1990) is a
qualitative method describing a gene regulatory network by a discrete function.
Each network component is represented by a variable that takes integer values
representing the different levels of gene activity. The information on how the
behavior of one component is governed by the values of the other components
is captured in a discrete function. The component functions then constitute
the coordinate functions of the update function of the network. To derive the
dynamics of the system, Thomas introduced the asynchronous update method
where only one variable changes per discrete time step, and only by a unit value.
Since the state space is finite, the dynamics can be represented by a directed
graph, the so-called asynchronous state transition graph (STG).

The particularities of the asynchronous update method result in a close
correspondence of the discrete model to certain differential equation systems
(Snoussi, 1989). Differential equation models consisting of step functions retain
a continuous time evolution, yet can be seen as qualitative due to the close
relation of step and discrete functions. Such piecewise affine differential equa-
tion (PADE) models approximate certain ordinary differential equation models
(Glass and Kauffman, 1972, 1973). De Jong et al. (2004) have shown that
they can essentially be captured by a discrete representation which abstracts
the continuous solution trajectories of the differential equations into transitions
between different regions of the phase space. Again, the resulting dynamics can
be represented by a directed graph, the qualitative transition graph (QTG).

In this paper, we aim at clarifying the relation between Thomas and PADE
models by comparing the respective graphs capturing the dynamical behavior.
Several results in this direction already exist. For example, attractors, including
steady states and certain limit cycles, are related (Glass and Kauffman, 1972;
Snoussi, 1989; Snoussi and Thomas, 1993; Chaves et al., 2010; Wittmann et al.,
2009). Our goal here is to present a comprehensive comparison between the
STG and the QTG.

The paper is organized as follows. Sect. 2 presents a discrete modeling ap-
proach based on the Thomas formalism. PADE systems and the qualitative
analysis developed by de Jong et al. (2004) are introduced in Sect. 3. In Sect. 4,
we start comparing the two formalisms. Sect. 5 describes our main result char-
acterizing transitions in the QTG using edges originating in corresponding ver-
tices in the STG. We illustrate the application of this result with examples of
relations between paths and attractors in the two graphs. The conclusion and
perspectives for future work are given in Sect. 6.

This paper is the full version of an extended abstract included in the pro-
ceedings of IPCAT 2012 (Jamshidi et al., 2012).

2. Discrete formalism

Consider a gene network with n regulatory components. In the discrete
modeling approach, the activity level of a component i is modeled by a dis-
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crete variable qi, which takes its values in a finite set of natural numbers Qi =
{0, . . . , pi}, pi ≥ 1. The state space of the discrete model is Q = Q1 × · · · ×Qn,
and the regulatory interactions are captured by a discrete update function f =
(f1, . . . , fn) : Q → Q. The function f uniquely determines the state transi-
tion graph STG(f) = (Q,E), a directed graph with node set Q and edge set
E ⊂ Q × Q. For any j ∈ {1, . . . , n}, q ∈ Q with fj(q) 6= qj , there is an edge
(q, q′) ∈ E, where q′j = qj+sgn(fj(q)−qj) and q′i = qi, for all i ∈ {1, . . . , n}\{j}.
Here, sgn : R→ {−1, 0, 1} denotes the sign function. If f(q) = q, then (q, q) ∈ E
and q is called a fixpoint.

Unless f is Boolean, it is not possible to recover f from G = STG(f). How-
ever, we may obtain from G a unitary update function fG : Q→ Q by setting

fGj (q) = qj +
∑

q′∈AS(q)

(q′j − qj), for j ∈ {1, . . . , n}.

Here AS(q) := {q′ ∈ Q | (q, q′) ∈ E} denotes the set of asynchronous successors
of q in G.

Lemma 1. Let f : Q→ Q be an update function and G = STG(f). Then

STG(f) = STG(fG).

Proof. Let j ∈ {1, . . . , n} and q ∈ Q. By definition of AS(q), there exists at most
one q′ ∈ AS(q) such that |q′j − qj | = 1. This implies sgn(fj(q)− qj) = q′j − qj .
Therefore, sgn(fj(q)− qj) =

∑
q′∈AS(q)(q

′
j − qj), and the result follows.

The unitary update function fG captures the information from the original
update function f contained in G = STG(f). If f is Boolean, f and fG are the
same.

Example 1. For Q = {0, 1} × {0, 1, 2} and the update function f : Q→ Q

q 00 01 02 10 11 12
f(q) 12 12 11 00 10 11

the state transition graph STG(f) is displayed on the left of Fig. 2(a).

3. Piecewise affine differential equations

Next we discuss piecewise affine differential equations (PADE) and the qual-
itative modeling approach introduced by de Jong et al. (2004). While a number
of refinements have been proposed (Batt et al., 2008), we use here the original
approach for the comparison with the Thomas formalism. The focus of this
section is the qualitative dynamics associated with a system of PADEs, i.e.,
the discrete representation of all possible solution trajectories of the PADEs
satisfying certain parameter constraints.
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Consider an n-dimensional phase space Ω = Ω1 × · · · × Ωn ⊂ Rn≥0, where
Ωi = {xi ∈ R | 0 ≤ xi ≤ maxi}, and maxi ∈ R>0. For every continuous variable
xi ∈ Ωi we assume pi ∈ N thresholds θ1i , · · · , θ

pi
i satisfying the ordering

0 < θ1i < · · · < θpii < maxi, for all i ∈ {1, . . . , n}. (1)

In the comparison with the discrete formalism in Sect. 2, the value pi cho-
sen here corresponds to the maximal value pi of the component range Qi
of a discrete model. The union of the threshold hyperplanes is denoted by

Θ :=
⋃

i∈{1,...,n},ji∈{1,...,pi}

{x ∈ Ω |xi = θjii }. We consider a set of PADEs in Ω\Θ

of the form
ẋi = Fi(x)−Gi(x)xi, i ∈ {1, . . . , n}, (2)

where the functions Gi : Ω\Θ → R>0 and Fi : Ω\Θ → R≥0 are linear com-

binations of products of step functions S+(xl, θ
k
l ) =

{
0 if xl < θkl ,
1 if xl > θkl ,

and

S−(xl, θ
k
l ) = 1− S+(xl, θ

k
l ) for l ∈ {1, . . . , n}.

To obtain a discrete representation of the PADE system, the state space is
partitioned into a set of domains.

Definition 1. Consider a set of PADEs of the form (2) with phase space Ω
and thresholds θji . The (n − 1)-dimensional hyperplanes corresponding to the

equations xi = θji , j ∈ {1, . . . , pi}, divide Ω into hyper-rectangular regions called
domains. A domain D ⊂ Ω is defined by D = D1 × · · · ×Dn where every Di is
given by one of the following equations

Di = {xi | 0 ≤ xi < θ1i },
Di = {xi | θki < xi < θk+1

i } for k ∈ {1, . . . , pi − 1},
Di = {xi | θpii < xi ≤ maxi},
Di = {xi | xi = θki } for k ∈ {1, . . . , pi}.

By D we denote the set of all domains in Ω. A domain D ∈ D is called a singular
domain, if there exists i ∈ {1, . . . , n} such that Di = {xi | xi = θki } for some
k ∈ {1, . . . , pi}. The variable xi is then called singular variable. The order of
a singular domain is the number of its singular variables. A domain D ∈ D is
called a regular domain, if it is not a singular domain. The set of regular and
singular domains are denoted by Dr and Ds respectively.

It follows immediately that for any regular domain D ∈ Dr, the functions
Fi(x) and Gi(x) are constant on D. Thus (2) can be written as a linear system
ẋ = FD − GDx, for all x ∈ D, where GD = diag(GD1 , . . . , G

D
n ) is a diagonal

matrix with strictly positive entries and FD = (FD1 , . . . , F
D
n ) a positive vector.

It is easy to see that solutions of (2) starting in a regular domain D converge
monotonically towards the so-called focal point φ(D) := (GD)−1FD.

In agreement with de Jong et al. (2004), we will assume that all focal points
lie in a regular domain. By definition of the regular domains, we can then encode
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the position of each focal point by strict inequalities involving the threshold
values and the components of the focal point. We call these constraints ordering
constraints.

To define a suitable dynamics of (2) on singular domains, the differential
equations can be extended to differential inclusions, and methods presented in
(Filippov, 1988; Gouzé and Sari, 2002; de Jong et al., 2004) give us so-called
Filippov solutions of the differential inclusions. However, our focus here is on
the qualitative dynamics, which does not depend on the particularities of the
Filippov extension. The qualitative analysis of the dynamics on the singular
domains requires the following notions.

Definition 2. Consider a set of PADEs of the form (2) with domain set D. For
every D ∈ Ds of order k, let supp(D) be the (n− k)-dimensional hyperplane in
Ω containing D. If D ∈ Dr, let supp(D) = Ω. The boundary of D in supp(D) is
the set ∂D of all points x ∈ supp(D), such that each ball BD(x, ε) in supp(D)
of center x and radius ε > 0 intersects both D and supp(D)\D. For all D ∈ Ds,
we define the set

R(D) = {D′ ∈ Dr | D ⊂ ∂D′}.
So R(D) is the set of all regular domains that have D in their boundary. With
this relation of singular domains to multiple regular domains we can extend the
dynamics of the regular domains to the singular domains.

Definition 3. Consider a set of PADEs with domain set D. We define the focal
set Ψ(D) for every domain D as follows:

Ψ(D) :=

{
{φ(D)} if D ∈ Dr,
supp(D) ∩ rect({φ(D′) | D′ ∈ R(D)}) if D ∈ Ds,

where φ(D) := (GD)−1FD is the focal point of D for D ∈ Dr and rect(P ) is
the smallest closed hyperrectangular set that contains P ⊂ Ω.

As noted before, the solutions of (2) starting in a regular domain D converge
monotonically towards φ(D). Applying the Filippov extensions, the behavior of
the system in singular domains can be described in relation to the focal points
of adjacent regular domains. Using a hyperrectangular set in defining Ψ(D)
for singular domains results in an overapproximation of the PADE behavior
by the qualitative dynamics we introduce below. The consequences of this
overapproximation and the convergence properties of the focal set are discussed
in detail in (de Jong et al., 2004).

Because we focus on the qualitative dynamics, the possible behaviors in a
domain D can be determined by the relative position of the focal set Ψ(D) with
respect to the domain D.

Definition 4. Consider a set of PADEs of the form (2). Let D ∈ D and e ∈ Ω.
We call the mapping v : D × Ω → {−1, 0, 1}n the relative position vector and
define it as follows

vi(D, e) =

 −1 if ei < xi, for all x ∈ D,
0 if ei = xi, for some x ∈ D,

+1 if ei > xi, for all x ∈ D.
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Let E ⊂ Ω be a non-empty set of points. The set V (D,E) is defined as

V (D,E) := {v(D, e) | e ∈ E}.

Taking into account the above considerations about the behavior of the sys-
tem with respect to the focal points, we can interpret the i-th component of
ν ∈ V (D,Ψ(D)) as a command for the variable xi to increase (νi = 1), to
decrease (νi = −1), or to remain steady (νi = 0) in domain D. Note that
the definition of the domains in D ensures that V (D,D′) is a singleton for all
D,D′ ∈ D.

With this idea in mind, we define the qualitative dynamics via transitions
between domains.

Definition 5. Consider a set of PADEs of the form (2). Let D,D′ ∈ D such
that D′ ⊂ ∂D.

1. There is a transition (D,D′) from D to D′ if

(a) Ψ(D) 6= ∅, and
(b) for V (D,D′) = {w} there exists ν ∈ V (D,Ψ(D)) such that νiwi = 1

for every xi, i ∈ {1, . . . , n} that is a singular variable in D′ but not
in D.

2. There is a transition (D′, D) from D′ to D if

(a) Ψ(D) 6= ∅, and
(b) for V (D′, D) = {w′} there exists ν ∈ V (D,Ψ(D)) such that νiw

′
i 6=

−1 for every xi, i ∈ {1, . . . , n} that is a singular variable in D′ but
not in D.

Definition 5 has been extracted from Propositions 6.4 and 6.5 of de Jong
et al. (2004), which relates the purely qualitative conditions to a definition for
transitions between adjacent domains based on the existence of suitable solution
trajectories of (2).

Following the idea of the discrete state transition graph, we represent the
qualitative dynamics of a PADE system again by a directed graph.

Definition 6. Let A be a system of PADEs of the form (2). The qualitative
transition graph QTG(A) = (D, T ) is a directed graph with D being the set of
domains and T the set of transitions between domains.

As shown in (de Jong et al., 2004), all systems in the class of PADEs satis-
fying the same ordering constraints have the same qualitative transition graph
(QTG). Transitions in the QTG represent possible trajectories of the PADE
system. However, the QTG is an overapproximation of the dynamics of the
PADE, as discussed in (de Jong et al., 2004).

From Def. 5, we can easily see that we do not need the full information
inherent in the ordering constraints to determine the outgoing transitions for
a given domain D. Similar to the sufficiency of the unitary update function
for the construction of the state transition graph, we can utilize just the set
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V (D,Ψ(D)) for all D ∈ D to determine the QTG. For a regular domain D we
have

V (D,Ψ(D)) = {v(D,φ(D))},
by Def. 3. For a singular domain D, the situation is not as clear-cut. How-
ever, Propositions 6.2 and 6.3 in (de Jong et al., 2004) characterize the set
V (D,Ψ(D)) also for singular domains. The characterization is rooted in the
overapproximation of the set of focal points of adjacent regular domains by a
hyperrectangle. The results in (de Jong et al., 2004) are not formulated in terms
of relative position vectors, but they can easily be rephrased. Thus, we derive
the following proposition.

Proposition 2. Consider a set of PADEs of the form (2) and let D ∈ Ds. We
have Ψ(D) 6= ∅ if and only if for all singular variables xi in D we have

min
D′∈R(D)

vi(D,φ(D′)) = −1 and max
D′∈R(D)

vi(D,φ(D′)) = 1. (3)

Let D ∈ Ds and Ψ(D) 6= ∅. Define Vi(D,Ψ(D)) := {νi | ν ∈ V (D,Ψ(D))}.
Then, for all i ∈ {1, . . . , n}, if xi is a singular variable, Vi(D,Ψ(D)) = {0},
and if xi is a non-singular variable

Vi(D,Ψ(D)) = [ min
D′∈R(D)

vi(D
′, φ(D′)), max

D′∈R(D)
vi(D

′, φ(D′))], (4)

where [a, b] = {a, a+ 1, . . . , b− 1, b} denotes the discrete interval for a ≤ b ∈ N.

To determine the transitions of the QTG, we only need to know the set
V (D,Ψ(D)) for all domains D. Obviously, we can derive this set immediately
from v(D,φ(D)) for regular domains D. Easy calculation using Prop. 2 and the
definition of Ψ(D′) for singular domains show that the information inherent in
the set {v(D,φ(D)) | D ∈ Dr} is sufficient to derive V (D′,Ψ(D′)) for a singular
domain D′. We summarize these observations in the following lemma.

Lemma 3. Let A be a set of PADEs. The positions of the focal points in
relation to their corresponding regular domains, i.e., {v(D,φ(D)) | D ∈ Dr}, is
sufficient to calculate QTG(A)=(D, T ).

Conversely, it is easy to see from the definitions that we can derive the
relative position vectors v(D,φ(D)) for regular domains from the QTG.

Example 2. Consider the system of PADEs

ẋ1 = α1 + β1S
+(x1, θ

1
1)S−(x2, θ

1
2)− λ1x1,

ẋ2 = α2 + β2S
+(x1, θ

1
1)S−(x2, θ

2
2) + γ2S

−(x1, θ
1
1)S−(x2, θ

2
2)− λ2x2.

The system has six regular domains with corresponding focal points, e.g., the
focal point of D = [0, θ11) × [0, θ12) being (α1/λ1, (α2 + γ2)/λ2). We impose
the ordering constraints 0 < (α1 + β1)/λ1 < θ11 < α1/λ1 < max1 and 0 <
(α2 + β2)/λ2 < θ12 < α2/λ2 < θ22 < (α2 + γ2)/λ2 < max2. The resulting QTG
is given on the right of Fig. 2(a).
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4. Relating the discrete and the PADE formalism

In this section, we show that the PADE and the discrete formalism contain
the same information in the sense that we can transform a PADE system with
given ordering constraints into a discrete update function and vice versa.

To obtain a discrete update function from a PADE system we can use a
straightforward method originally proposed by Snoussi (1989). First, we dis-
cretize the continuous phase space of the PADE system according to its thresh-
old values.

Definition 7. Let A be a set of PADEs as in (2), where each variable xi has
pi ordered threshold values. Let Q := Q1× · · ·×Qn, where Qi := {0, 1, . . . , pi},
i ∈ {1, . . . , n}. Define the bijective mapping dA : Dr → Q, where

dAi (D) :=


0 if Di = {x ∈ R | 0 ≤ x < θ1i },
q if Di = {x ∈ R | θqi < x < θq+1

i },
pi if Di = {x ∈ R | θpii < x ≤ maxi}.

(5)

Second, we exploit the localization of the focal points in the regular domains
in order to construct an update function on the discretized state space Q that
shares the dynamical properties of the PADE system A. Note that in general
such a focal point may lie on a threshold plane, which by definition has no cor-
responding value in Q. As in the previous section, we exclude the comparatively
small set of PADE systems with focal points on a threshold plane.

Definition 8. Let A be a set of PADEs as in (2) such that all focal points lie
in regular domains and let d = dA be the mapping in (5). Define an update
function fA : Q→ Q by

q 7→ d(Dφ((d−1(q))),

where Dφ(D′) denotes the regular domain containing the focal point φ(D′) of
the regular domain D′.

The function fA is uniquely determined by the ordering constraints for A.
Consequently, the set of PADE systems A satisfying given ordering constraints
can be associated with a single discrete update function fA. Conversely, a
discrete update function can easily be transformed into a PADE system that
shares the same qualitative dynamics.

Definition 9. Let f : Q→ Q be an update function. We denote by PADE (f)
the system of PADEs on Ω :=

∏n
i=1[0,maxi], maxi ∈ R>0 for all i ∈ {1, . . . , n},

of the form ẋi = Fi(x)− xi, i ∈ {1, . . . , n}, where

Fi(x) =
∑
q∈Q

fi(q)

n∏
j=1

S(xj , qj), with

S(xj , qj) =


S+(xj , θ

qj
j )S−(xj , θ

qj+1
j ) if qj ∈ {1, . . . , pj − 1},

S−(xj , θ
1
j ) if qj = 0,

S+(xj , θ
pj
j ) if qj = pj ,
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and θkj = k − 1/2 for j ∈ {1, . . . , n}, k ∈ {1, . . . , pj}.
The choice of threshold values is generic, ensuring an obvious correspon-

dence between the values 0, 1, . . . , pi in Qi, i ∈ {1, . . . , n}, and the intervals
[0, θ1i ), (θki , θ

k+1
i ) for k ∈ {1, . . . , pi − 1}, and (θpii ,maxi]. If we calculate the

regular domains according to the threshold values and their focal points, we
have φ(D) = F (x) = f(d(D)) for all x ∈ D, where d := dPADE(f) and D ∈ Dr.
Equivalently, it holds that φ(d−1(q)) ∈ d−1(f(q)) for q ∈ Q, which immediately
implies that the focal points of PADE (f) satisfy the set of corresponding order-
ing constraints. Therefore we can apply Def. 8 to PADE (f) and by construction
we then have fPADE(f) = f .

In contrast, we generally do not have equality of the PADE systems A and
PADE (fA) due to the normalized form of PADE (fA). However, threshold order
and relative focal point positions obviously coincide, i.e., A and PADE (fA)
satisfy the same ordering constraints. In consequence, the two corresponding
qualitative transition graphs are isomorphic, and only differ in the specific set
of real vectors contained in corresponding domains, i.e., the designation of the
vertices of the QTGs. We summarize the preceding observations in the following
proposition.

Proposition 4. Let f : Q→ Q be an update function and A be a PADE such
that all focal points lie in regular domains. We then have

fPADE(f) = f and therefore STG(fPADE(f)) = STG(f).

and
QTG(A) ∼= QTG(PADE (fA)),

where ’∼=’ denotes graph isomorphism.

Using these two transformations, we can associate a class of PADE systems
characterized by their ordering constraints with a unique discrete update func-
tion, and vice versa. In other words, the information necessary for constructing
the STG resp. QTG is inherent in both representations. In that sense, we can
identify every STG with a QTG and vice versa. However, this does not im-
ply that the resulting qualitative dynamics are the same. In the following, we
analyze differences and similarities between the STG and QTG of a discrete
function resp. the corresponding set of PADE systems.

Example 3. Our update function f from Ex. 1 generates PADE (f) whose
parameter values satisfy the ordering constraints of the PADE system A intro-
duced in Ex. 2. Therefore PADE (f) belongs to the class of PADEs represented
by A. Similarly, if we discretize A using Snoussi’s method, we obtain the update
function f from Ex. 1.

5. Comparing the dynamics

Throughout this section we consider an update function f : Q→ Q and the
PADE system A := PADE (f) representing the class of PADE systems corre-
sponding to f according to the preceding section. In particular, discretization
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of A via the function d := dA yields f . The aim of this section is the comparison
of STG(f) = (Q,E) and QTG(A) = (D, T ).

In the multi-valued other than in the Boolean setting, the state transition
graph STG(f) generally does not carry enough information to reconstruct f .
However, by definition it is possible to derive the unitary update function f̃ :=
fSTG(f). We have already seen that f̃(q) − qj = sgn(fj(q) − qj) for all q ∈
Q, j ∈ {1, . . . , n}. Furthermore, we know from the preceding section that
φ(d−1(q)) ∈ d−1(f(q)). Applying the definition for the relative position vector
vj(d

−1(q), φ(d−1(q))) we immediately obtain the following lemma.

Lemma 5. For all q ∈ Q and j ∈ {1, . . . , n}, we have

vj(d
−1(q), φ(d−1(q))) = f̃j(q)− qj , (6)

and similarly
vj(D,φ(D)) = f̃j(d(D))− dj(D)

for all D ∈ Dr.

Given the right hand side of (6), we are able to reconstruct STG(f) by
definition of the state transition graph, while Lemma 3 ensures that we can
build QTG(A) knowing the relative position vectors given by the left hand side
of the equation. In addition, given STG(f) and QTG(A), we can extract the
unitary update function and the relative position vectors for regular domains.
Consequently, we can construct STG(f) given QTG(A) and vice versa. In the
following we will see that despite this correspondence of STG(f) and QTG(A) it
is difficult to relate the dynamical behaviors that the different graphs represent.

5.1. Edges

The discretization in Sect. 4 implies that the vertices of STG(f) correspond
to the regular domain vertices of QTG(A). However, there is no representation
of the singular domains in the purely discrete setting. To overcome this problem
we associate with every singular domain D the set H(D) ⊂ Q corresponding to
the discretization of those regular domains that have D in their boundary. We
thus introduce the mapping H : D → 2Q

H(D) :=

{
{d(D)}, if D ∈ Dr,
{d(D′) ∈ Q | D′ ∈ R(D)} if D ∈ Ds.

For example, for a singular domain D′ of order one, H(D′) constitutes the set
{d(D), d(D̃)} for the two regular domains D, D̃ adjacent to D′. With this
definition, we are able to state our main result on the correspondences between
edges in QTG(A) = (D, T ) and STG(f) = (Q,E).

Theorem 6. Let D ∈ D and D′ ⊂ ∂D. Denote by I (resp. I ′) the index set of
singular variables in D (resp. D′). Then we have:

(1) Ψ(D) 6= 0 if and only if for all i ∈ I one of the following conditions holds
(where ei = (0, . . . , 1, . . . , 0) denotes the i-th unit vector in Rn):
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(a) there exist q, q′ ∈ H(D) with q′ = q + ei such that (q, q′) ∈ E and
(q′, q) ∈ E.

(b) there exist q, q′ ∈ H(D) with q′ = q + ei such that (q, q′) /∈ E and
(q′, q) /∈ E.

(c) there exist q, q′ ∈ H(D) and q̃, q̃′ ∈ H(D) with q′ = q+ ei, q̃′ = q̃+ ei

such that both (q, q′) ∈ E, (q′, q) /∈ E, and (q̃′, q̃) ∈ E, (q̃, q̃′) /∈ E.

(2) (D,D′) ∈ T if and only if Ψ(D) 6= 0 and for all i ∈ I ′ \ I there exists
q ∈ H(D) and q′ ∈ H(D′) \H(D) with qi 6= q′i and (q, q′) ∈ E.

(3) (D′, D) ∈ T if and only if Ψ(D) 6= 0 and for all i ∈ I ′ \ I there exists
q ∈ H(D) and q′ ∈ H(D′) \H(D) such that qi 6= q′i, q

′
j = qj for all j 6= i

and (q, q′) /∈ E.

Proof. The conditions for the existence of transitions in QTG(A) are basi-
cally the two conditions given in Def. 5 reformulated in the context of edges
of STG(f).

We start by showing that the condition Ψ(D) 6= ∅ is equivalent to condi-
tion (1) in the theorem. If D is a regular domain, then Ψ(D) 6= ∅ by definition
and condition (1) is true by default since I is empty. Therefore, we now assume
D ∈ Ds. We observe |qi − q′i| ≤ 1 for all q, q′ ∈ H(D) and i ∈ {1, . . . , n} by
definition of H(D). In particular, 1+minq̃∈H(D) q̃i = maxq̃∈H(D) q̃i for all i ∈ I.

First, we want to transform the condition Ψ(D) 6= ∅ into a condition ex-
pressed in terms of the unitary update function f̃ . Suppose Di = {xi | xi = θki }
for some i ∈ I. By Prop. 2, a domain D ∈ Ds has a non-empty focal set, i.e.,
Ψ(D) 6= ∅, if for all i ∈ I there exist D′, D′′ ∈ R(D) such vi(D,φ(D′)) = −1
and vi(D,φ(D′′) = 1.

We now look at the condition vi(D,φ(D̃)) = 1 and what it is equivalent to in
terms of the update function. For fixed i ∈ I and due to the adjacency of each
D̃ ∈ R(D) to D, we have for all D̃ ∈ R(D) that vi(D,φ(D̃)) = 1 is equivalent
to

vi(D̃, φ(D̃)) ∈
{
{1} if wi = −1
{0, 1} if wi = 1

, (7)

where V (D, D̃) = {w}. That is if D̃ ∈ R(D) is below the threshold θki
and vi(D,φ(D̃)) = 1, then its focal point is definitely above θki and hence
vi(D̃, φ(D̃)) = 1. If however D̃ is above θki and vi(D,φ(D̃)) = 1, then its fo-
cal point is either within or above D̃i, that is vi(D̃, φ(D̃)) ∈ {0, 1}. Applying
Lemma 5 and the definition of H(D), (7) can be reformulated such that for all
D̃ ∈ R(D), the condition vi(D,φ(D̃)) = 1 is equivalent to

f̃i(d(D̃))− di(D̃) ∈
{
{1} if di(D̃) = minq̃∈H(D) q̃i
{0, 1} if di(D̃) = maxq̃∈H(D) q̃i

. (8)

Analogously, we can derive for all D̃ ∈ R(D) that the condition vi(D,φ(D̃)) =
−1 is equivalent to

f̃i(d(D̃))− di(D̃) ∈
{
{−1, 0} if di(D̃) = minq̃∈H(D) q̃i
{−1} if di(D̃) = maxq̃∈H(D) q̃i

. (9)
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q̃ q̃′

Figure 1: Illustration of the condition (1) of Theorem 6 for a singular domain D. The property
Ψ(D) 6= ∅ translates to edge constraints for outgoing edges of discrete states in H(D). Here
are the three cases in (1) of Theorem 6, where the vertical line denotes the threshold of a
singular variable of D separating either two (in (a) and (b)) or four (in (c)) regular domains.
Permissible edges are depicted as dotted lines, mandatory edges are depicted as solid lines
and the edges that are not allowed are depicted as red lines.

We next show that there exists D̃ ∈ R(D) with vi(D,φ(D̃)) = 1 iff there
exist q, q′ ∈ H(D) with q′ = q + ei such that (q, q′) ∈ E or (q′, q) /∈ E. Suppose
D̃ ∈ R(D) with vi(D,φ(D̃)) = 1. If di(D̃) = minq̃∈H(D) q̃i, let q = d(D̃). Then

f̃i(q)− qi = 1, i.e., for q′ = q + ei, we get (q, q′) ∈ E. If di(D̃) = maxq̃∈H(D) q̃i,

let q′ = d(D̃). Then f̃i(q
′) − q′i 6= −1, i.e., for q = q′ − ei, we have (q′, q) /∈ E.

The reverse direction uses the same arguments. Analogous arguments imply
that there exists D̃ ∈ R(D) with vi(D,φ(D̃)) = −1 iff there exist q, q′ ∈ H(D)
with q′ = q + ei such that (q, q′) /∈ E or (q′, q) ∈ E.

As stated before, we have Ψ(D) 6= ∅ iff there exist D′, D′′ ∈ R(D) such
vi(D,φ(D′)) = −1 and vi(D,φ(D′′) = 1. Logical reformulation leads to the
three cases (a), (b), (c) in condition (1) of the theorem, cf. Fig. 1 for illustration.

Next, we consider conditions (2) and (3) of the theorem, provided that con-
dition (1), and thus Ψ(D) 6= ∅, holds. Condition 1(b) of Def. 5 states that
there exists ν ∈ V (D,Ψ(D)) such that νiwi = 1 for every i ∈ I ′ \ I, where
V (D,D′) = {w}. Let us first remark that wi 6= 0 iff i ∈ I ′ \ I. Moreover,
wi = q′i − qi for all q ∈ H(D), q′ ∈ H(D′) \ H(D) for i ∈ I ′ \ I. Now, let
i ∈ I ′ \I, i.e., wi 6= 0, and choose q ∈ H(D), q′ ∈ H(D′)\H(D) with (q, q′) ∈ E
and qi 6= q′i according to condition (2) of the theorem. Let us assume that
wi = 1, the case wi = −1 can be treated analogously. Then 1 = wi = q′i − qi,
i.e., q′i > qi. It follows that f̃i(q) > qi, and thus maxq̃∈H(D) f̃i(q̃)− q̃i = 1. If D is
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a regular domain, then vi(D,φ(D)) = 1 by Lemma 5. If D is a singular domain,
then 1 ∈ [minq̃∈H(D) f̃i(q̃) − q̃i,maxq̃∈H(D) f̃i(q̃) − q̃i] = Vi(D,Ψ(D)) according
to Prop. 2 and Lemma 5. In both cases, there exists νi ∈ V (D,Ψ(D)) with
νiwi = 1. Since the definition of V (D,Ψ(D)) for regular domains and Prop. 2
allow for a componentwise argument, the existence of a vector ν ∈ V (D,Ψ(D))
with νiwi = 1 for all i ∈ I ′ \ I follows.

To show the reverse statement, assume that there exists ν ∈ V (D,Ψ(D))
with νiwi = 1 for all i ∈ I ′ \ I, and choose i ∈ I ′ \ I. Again we restrict ourselves
to the exemplary case wi = 1. Then νi = 1, and therefore there exists q ∈ H(D)
with f̃i(q)−qi = 1 according to Lemma 5 and Prop. 2. In particular, (q, q′) ∈ E
for q′ ∈ Q with q′i = qi + 1 and q′j = qj for all j 6= i. Then q′ /∈ H(D), since
q′i 6= qi and i /∈ I, but q′ ∈ H(D′), since q′i = qi +wi. Thus, condition (2) of the
theorem holds.

Lastly, we show equivalence of the condition (3) of the theorem and condition
2(b) in Def. 5. Suppose there exists ν ∈ V (D,Ψ(D)) with νiwi 6= −1 for all
i ∈ I ′\I. Let i ∈ I ′\I, then wi 6= 0. Again, we only show the exemplary proof for
the case wi = 1. Then νi 6= −1, and thus maxq̃∈H(D) f̃i(q̃)− q̃i ≥ 0 according to

Prop. 2 and Lemma 5. Then there exists q ∈ H(D) with qi ≤ f̃i(q), which yields
qi ≤ pi for all asynchronous successors p ∈ AS(q). Now, let q′ ∈ H(D′) \H(D)
with q′i 6= qi and q′j = qj for all j 6= i. Since wi = 1, we have q′i < qi. In
particular, q′ cannot be an asynchronous successor of q, i.e., (q, q′) /∈ E.

Conversely, given i ∈ I ′\I and q, q′ according to condition (3) of the theorem,
i.e., q ∈ H(D), q′ ∈ H(D′)\H(D) with qi 6= q′i, qj = q′j for all j 6= i, and (q, q′) /∈
E, then wi = qi − q′i. Again, let us just focus on the case wi = 1, i.e., qi > q′i.
Since (q, q′) /∈ E, we have pi ≥ qi for all p ∈ AS(q), i.e., f̃i(q) − qi ∈ {0, 1}.
It follows from Prop. 2 and Lemma 5 that maxD̃∈R(D) vi(D̃, φ(D̃)) ≥ 0. Thus

we can find ν ∈ V (D,Ψ(D)) with νi 6= −1, and in particular νiwi 6= −1.
Again, the definition of V (D,Ψ(D)) for regular domains and Prop. 2 allow for
a componentwise argument, and we can fulfill condition 2(b) of Def. 5.

Example 4. Using Theorem 6 we can determine in our running example (see
Fig. 2a)) whether the focal set of the singular domain D′ := [θ11]× [θ12] of order
two is empty or not, by looking at the edges within H(D′) := {00, 01, 10, 11}.
For the second variable the edges (00, 01) and (11, 10) satisfy 1(c)of Theorem 6,
while for the first variable the edges (00, 10) and (10, 00) satisfy 1(a), which
means that D′ has a non-empty focal set. The edges (00, 10) and (10, 00) also
mean that the singular domain D := [θ11]× [0, θ12) of order one has a non-empty
focal set. Thus transitions between D and D′ can be determined from the edges
between the states H(D) = {00, 10} and H(D′)\H(D) = {01, 11}. From the
conditions (2) and (3) of Theorem 6, we have that (00, 01) ∈ E corresponds to
(D,D′) ∈ T and (10, 11) /∈ E corresponds to (D′, D) ∈ T respectively.

In the same example the singular domain D̃ := [0, θ11) × [θ22] of order one
has a non-empty focal set as reflected by the edges (01, 02) and (02, 01), which
also imply that 1(a) is satisfied for the second variable of D̃′ := [θ11]× [θ22]. For
the first variable, however, we have that the edges (01, 11) and (02, 12) do not
satisfy any subcase in (1) of Theorem 6, which means that D̃′ has an empty focal
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set. We see that either (01, 11) ∈ E or (02, 12) ∈ E corresponds to (D̃, D̃′) ∈ T
by (2) of Theorem 6. However, both edges (01, 11) and (02, 12) correspond to
(D̃′, D̃) /∈ T because (3) of Theorem 6 is not satisfied.

Looking at the simplest case of the theorem we can see how edges (or miss-
ing edges) between two nodes q, q′ ∈ Q, q 6= q′, in STG(f) = (Q,E) always
correspond to edges in QTG(A) = (D, T ) for the singular domain D′ of order
one with H(D′) = {q, q′}.

Corollary 7. Let D ∈ Dr, and let D′ ⊂ ∂D be a singular domain of order one.
Set q := d(D) and denote by q′ the unique element in the set H(D′) \ H(D).
Then (D,D′) ∈ T if and only if (q, q′) ∈ E, and (D′, D) ∈ T if and only if
(q, q′) /∈ E.

This statement agrees with the observations of Chaves et al. (2010) for
boolean discrete models and with Gouzé and Sari (2002). Thus the basic cor-
respondences of edges known from the literature is also incorporated in our
result. Moreover, Theorem 6 provides the basis for elucidating the correspon-
dences between more complex structures, such as paths or attractors. On the
one hand, it can be used for proof building on local considerations concerning
the edges involved. On the other hand, it provides ideas for the construction of
counterexamples. In the following, we illustrate both uses of the theorem.

5.2. Paths and Attractors

We start by considering reachability properties. In simple cases, we can
find conditions ensuring the existence of corresponding paths. The following
statement applies Cor. 7 repeatedly to show the paths that correspond in the
two graphs.

Proposition 8. There exists a path (D1, . . . , D2k+1) in QTG(A) with Di ∈ Dr
for i ∈ {1, . . . , 2k + 1} odd and Di a singular domain of order one for i ∈
{1, . . . , 2k+1} even, if and only if (q0, q1, . . . , qk) is a path in STG(f) such that
(qj , qj−1) /∈ E for all j ∈ {1, . . . , k} and qi = d(D2i+1) for all i ∈ {0, . . . , k}.

In spite of Prop. 8, we are able to construct examples of paths that do not
correspond in the two graphs.

Example 5. We see in Fig. 2 (a) that state (0,2) is reachable from (1,0) in
the STG via the path indicated in gray. In contrast, all paths starting in the
regular domain corresponding to (1,0) and all adjacent singular domains do not
cross the first threshold plane of the second component. In Fig. 2 (b), we see by
considering reachability of state (1,1) from (0,0) that reachability properties of
the QTG are also not conserved in the corresponding STG.

These two examples illustrate that in general reachability properties are
not conserved between the two graphs. A further important characteristic of
QTG(A) and STG(f) are their respective attractors. The next definition intro-
duces our terminology.
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Figure 2: Corresponding STGs and QTGs. The partitioned phase space of a corresponding
PADE underlying a QTG is shown in fine gray lines (dashed for threshold planes) underneath
the QTG and allows identification of nodes representing singular resp. regular domains. In (a),
STG of Ex. 1 and QTG of Ex. 2. In (b), the STG of a two component Boolean network with
the corresponding QTG right. Heavier gray edges illustrate reachability properties discussed
in the text.

Definition 10. Let G be a directed graph and S a subset of the nodes of G.
The set S is strongly connected if any two nodes in S are connected by a path in
S. The set S is a trap set if there is no path leaving S. An attractor of a graph
is a strongly connected trap set. A steady state is an attractor consisting of a
single node. A simple cycle is an attractor of cardinality greater than one where
every node has only one outgoing edge. A complex attractor is an attractor that
has at least one node which has two or more outgoing edges.

Note that we consider each node set of cardinality one to be strongly con-
nected by default, i.e., not depending on the existence of a loop on the respective
node. The steady states in a discrete state transition graph correspond to the
fixed points of the update function f , and by definition there exists an edge
(q, q) for each fixed point q. In contrast, the steady states of the QTG are, by
definition of the transitions, nodes without outgoing edges. Note that here a
steady state is simply a singleton terminal strongly connected component in a
graph. There is no implicit statement about the stability of such a steady state
included, i.e., it does not necessarily correspond to an asymptotically stable
steady state in a PADE system (see e.g. Snoussi, 1989).

Attractors of cardinality greater than one are often called cyclic. Both com-
plex attractors and simple cycles are then cyclic attractors. We often denote a
simple cycle {s1, . . . , sk} by the path (s1, . . . , sk, s1) traversing the cycle. Sim-
ilar to the reachability properties we are able to find correspondences between
attractors of STG(f) and QTG(A).

Proposition 9. The following relations hold for attractors in QTG(A) and
STG(f).

1. A regular domain D is a steady state in QTG(A) if and only if d(D) is
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a steady state in STG(f). A singular domain D of order one is a steady
state in QTG(A) if and only if H(D) is a simple cycle in STG(f).

2. There is a simple cycle (D1, D2, . . . , D2m, D1) with D2j ∈ Dr for j ∈
{1, . . . ,m} in QTG(A), if and only if (d(D2), d(D4), . . . , d(D2m), d(D2))
is a simple cycle in STG(f).

Proof. 1. The first statement immediately follows from Lemma 5, where a
regular domain D is a steady state if and only if v(D,φ(D)) = 0, which is
equivalent to f(d(D)) = d(D). Now, let {q̃, q̃′} be a simple cycle in STG(f)
and D be the singular domain of order one with H(D) = {q̃, q̃′}. According to
Theorem 6, if there exists an edge from D to a singular domain D′ of higher
order, then we could find q ∈ H(D), q′ ∈ H(D′) \ H(D), i.e., q ∈ {q̃, q̃′} and
q′ /∈ {q̃, q̃′}, with (q, q′) ∈ E, which would be contradictory to H(D) being a
simple cycle. If there exists an edge from D to a regular domain D̃, then, since
H(D) \ H(D̃) = {q} and H(D̃) = {q′} for some q, q′ ∈ H(D) with q 6= q′, we
would have (q′, q) /∈ E according to Theorem 6, which contradicts {q̃, q̃′} being
a simple cycle. In summary, D has no outgoing edges and is a steady state.

If H(D) = {q, q′} is not a simple cycle, then either one of the edges (q, q′),
(q′, q) is missing in STG(f) or there exists an edge leaving H(D). In the first
case, there exists a transition from D to a regular domain, as we can see imme-
diately from Theorem 6. If (q, q′), (q′, q) ∈ E, then condition 1(a) of Theorem 6
holds for D, i.e. Ψ(D) 6= ∅. If we find an additional edge leaving H(D), then
condition (2) of Theorem 6 holds as well, and we find an edge from D to some
singular domain. In any case D is not a steady state.

2. If there is a simple cycle (D1, D2, . . . , D2m, D1) in QTG(A), then (d(D2),
d(D4), . . . , d(D2m), d(D2)) is a simple cycle in STG(f) according to Cor. 7.
If, on the other hand, (d(D2), d(D4), . . . , d(D2m), d(D2)) is a simple cycle in
STG(f), then, again according to Cor. 7, each regular domain D2j has only one
outgoing edge, namely (D2j , D2j+1), where 2m+1 is identified with index 1. For
the singular domains D2j+1 in the cycle, we can derive the existence of only one
outgoing edge, namely (D2j+1, D2j+2), from condition (3) of Theorem 6.

In spite of the findings in Prop. 9 the number of attractors is not necessarily
preserved in general.

Example 6. While in Fig. 2(a) both systems have one attractor, the STG in
Fig. 2(b) exhibits two attractors, a fixed point and a cyclic attractor. How-
ever, the corresponding QTG has only one attractor, namely a steady state
in the upper right node. In Fig. 3(a), the STG has fewer attractors than the
corresponding QTG.

In addition, the relation between the attractor structure is not clear-cut.
While the cyclic attractor of the STG in Fig. 2(a) comprises all nodes of the
STG and contains nodes with multiple outgoing edges, the cyclic attractor in
the QTG is a simple cycle consisting only of two nodes joined by the heavier
gray double edge in the lower part of the graph. In Fig. 2(b) the cyclic attractor
in the STG vanishes in the corresponding QTG. The same happens in Fig. 3(b),
but here an additional steady state can be observed in a singular node.
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(a) (b)

Figure 3: Two examples for networks with two components and three activity levels for each
component. In each case, the STG is depicted on the left, the corresponding QTG on the
right. Depiction of the graphs corresponds to that in Fig. 2, only the explicit labeling of the
STG nodes is omitted. In (a), the STG consists of a single cyclic attractor, while the QTG
has an additional steady state at the lower right singular node depicted by a fat dot. In (b),
both STG and QTG have a steady state in the upper left node, but the STG has an additional
cyclic attractor. The QTG has no cyclic attractor, but an additional singular steady state at
the upper right singular node depicted by a fat dot.

Let us also consider a singular domain D of order greater than 1 which is
a steady state in the QTG. Translating the condition of D having no outgoing
edges obviously imposes constraints on a corresponding STG via Theorem 6.
However, these constraints are generally not strong enough to link D to some
unique structure in the STG.

Example 7. In Fig. 4, we see two examples, where both QTGs contain a sin-
gular domain of order two, which is a steady state. However, the corresponding
STGs differ, the one in (a) consisting of a complex attractor and the one in (b)
consisting of a simple cycle.

So, in general the number, structure and uniqueness of the corresponding
attractors cannot be assured. Nevertheless, we are able to narrow down the
locations of attractors by observing the trap sets. In particular we can show
that hyper-rectangular trap sets correspond in the two graphs.

Proposition 10. Let R := R1×· · ·×Rn ⊂ Q be a discrete hyperrectangle, i.e.,
Ri is an integer interval [ai, bi] ⊂ Qi for all i ∈ {1, . . . , n}. Then R is a trap
set in STG(f) if and only if U := {D | H(D) ⊂ R} is a trap set in QTG(A).

Proof. Let U be a trap set in QTG(A). Let q ∈ R and q′ ∈ Q with (q, q′) ∈
E. Then Theorem 6 ensures that there exists D′ ⊂ ∂D, D := d−1(q), with
(D,D′) ∈ T and H(D′) = {q, q′}. Since U is a trap set, we have D′ ∈ U . Then,
by definition, H(D′) ∈ R, i.e., q′ ∈ R.

Now, let R be a trap set in STG(f). Let D ∈ U and D′ ∈ D with (D,D′) ∈
T . If D ⊂ ∂D′, then H(D′) ⊂ H(D) ⊂ R, and therefore, by definition, D′ ∈ U .
If D′ ⊂ ∂D, then condition (2) of Theorem 6 yields the existence of an edge
(q, q′) ∈ E such that q ∈ H(D), i.e., q ∈ R, and q′ ∈ H(D′) \H(D) with qi 6= q′i
for all indices i indicating singular variables of D′ but not of D. Since R is a
hyperrectangle, we then have H(D′) ⊂ R, that is, D′ ∈ U .
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Figure 4: STGs and QTGs for networks with two components and two activity levels for each
component, the STG shown on the left, the corresponding QTG on the right of each figure.
Both the QTGs in (a) and (b) have a steady state in the singular domain of order two.

The above proposition may be helpful in elucidating the correspondences
of attractors in the STG and the QTG further. Since a trap set always con-
tains at least one attractor, we can relate attractors that we can separate using
hyperrectangles.

Overall, we see that the relations between attractors in corresponding STGs
and QTGs are not clear-cut. The examples illustrate that, in general, neither
number nor character of attractors are preserved.

6. Discussion and perspectives

In summary, the information inherent in the STG of the discrete update
function is sufficient to derive the QTG of the corresponding PADE system and
vice versa. However, despite this correspondence, basic structures between the
two graphs are not preserved. This implies that, contrary to what might be
expected, the QTG of the PADE system is not a straightforward refinement of
the STG of the Thomas model.

Motivated by these findings, there are several directions for future work.
First, we would like to better understand and characterize the network proper-
ties that lead to substantial differences, e.g., in the number of attractors in the
dynamics of the Thomas and the PADE model. Second, we plan to extend the
analysis to closely related formalisms like the refined qualitative representation
of PADE systems (Batt et al., 2008) as well as piecewise multi-affine models
(Kloetzer and Belta, 2009). Also, there exist approaches that allow the inte-
gration of threshold values directly into the Thomas formalism (Thomas et al.,
1995; Richard et al., 2005). Clarifying the relation between the different ap-
proaches may allow one to transfer available results and analysis methods from
one formalism to the other. Furthermore, progress in this direction may be
helpful when deciding on the most suitable and efficient modeling framework in
a concrete application.
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