ANOVA decomposition of convex piecewise
linear functions

W. Romisch

Abstract Piecewise linear convex functions arise as integrandsoichssstic pro-
grams. They are Lipschitz continuous on their domain, butatdoelong to tensor
product Sobolev spaces. Motivated by applying Quasi-M@deo methods we
show that all terms of their ANOVA decomposition, exceptdne of highest order,
are smooth if the underlying densities are smooth and cegadmetric condition
is satisfied. The latter condition is generically satisfiethie normal case.

1 Introduction

During the last decade much progress has been achiev@diasi-Monte Carlo
(QMC) theoryfor computing multidimensional integrals. Appropriatetion spa-
ces of integrands were discovered that allowed to improgeldssical convergence
rates. It is referred to the monographs [27, 18] for provgdam overview of the
earlier work and to [17, 2, 13] for presenting much of the meent achievements.
In particular, certain reproducing kernel Hilbert spaBg®f functionsf : [0,1]4 —

R became important for estimating the quadrature error (8pe If the integral
la(f) = fo,q0 f(x)dx defines a linear continuous functional Bp andQnq(f) de-
notes a Quasi-Monte Carlo method for computiggf ), i.e.,

Sl

Qua(1) =23 () (neN)
=1

for some sequence < [0,1)%, i € N, the quadrature erra(Fq) allows the repre-
sentation

Humboldt-University Berlin, Institute of Mathematics, Berl@ermany,
e-mail: romisch@math.hu-berlin.de



2 W. Romisch

en(Fg)= sup |la(f)—Qna(f)[= sup[{f,hn)| = hnl] (1)
feFq,||fll<1 [Ifll<1

according to Riesz’ theorem for linear bounded functionBterepresenter he Fy
of the quadrature error is of the form

rww=A;Pmwa—ﬁikum><Wemﬂ%,

whereK : [0,1]9 x [0,1]9 — R denotes the kernel d,. It satisfies the conditions
K(-,y) € Fqg and(f,K(-,y)) = f(y) for eachy € [0,1]¢ and f € Fy, where(-,-) and

|l -|| denote inner product and normIiy.

In particular, the weighted tensor product Sobolev spabg [2

d
Fg = 73w (10.1) = @W([0,1)) 2)
i=1

equipped with the weighted norfjf Hf, = (f, f), and inner product (see Section 2
for the notation)

<f > - 71/ ﬂf(xu 17U)ﬂ (XU 17U)d)éj (3)
= ug{lz...,d} W oy ox4 xu 9 ’

and a weighted Walsh space consisting of Walsh series (s&x@nple 2.8] and
[1]) are reproducing kernel Hilbert spaces.
They became important for analyzing the recently develapediomized lattice
rules (see [26, 12, 14] and [1, 2]) and allowed for derivingropl error estimates
of the form

en(Fa) <C()n° (neN,5€(0,3)), 4)

where the constafi(d) does not depend on the dimenstbifithe weightsy, satisfy
suitable conditions.

Unfortunately, a number of integrands do not belong to senhdr product Sobolev
or Walsh spaces and are even not of bounded variation in tiee s Hardy and
Krause. The latter condition represents the standard negent on an integrand
f to justify Quasi-Monte Carlo algorithms via the Koksma-hlka theorem [18,
Theorem 2.11].

Often integrands are non-differentiable like those in@pfpricing models [31] or
max-type functions in general. It has been discovered ir6[3hat the so-called
ANOVA decomposition (see Section 2) of such integrands neela smoothing
effect in the sense that many ANOVA terms are smooth if theedgithg densities
are sufficiently smooth.

In this paper we show that such a smoothing effect occursimisase of piecewise
linear convex functions. More precisely, we show that all@W\ terms except the
one of highest order of such functions are infinitely differable if the densities are
sufficiently smooth and a geometric property is satisfieds glrometric property is
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generic if the underlying densities are normal. Since pigse linear convex func-
tions appear as the result of optimization processes, suttseapply to linear two-
stage stochastic programs and (slightly) extend the maintref [10]. Hence, the
results justify earlier studies of QMC methods in stocltggtogramming [3, 9, 21]
and motivate that the recently developed randomized ¢attites [26, 2] may be
efficient for stochastic programming models if their truth@a dimension is small.
The paper starts by recalling the ANOVA decomposition int®ac2 and convex
piecewise linear functions in Section 3. Section 4 cont#ilesmain results on the
smoothing effect of the ANOVA decomposition of convex pietee linear func-
tions, followed by discussing the generic character of #engetric property (Sec-
tion 5) and dimension reduction (Section 6) both in the ndicaae.

2 ANOVA decomposition and effective dimension

The analysis of variance (ANOVA) decomposition of a funeotigas first proposed
as a tool in statistical analysis (see [8] and the survey)[2%ter it was often used
for the analysis of quadrature methods mainlyj@r]?. Here, we will use it orR¢
equipped with a probability measure given by a density fiongb of the form

d
p(&)=[]Pi(&) (V&= (&,....8) €RY) (5)

=1

with continuous one-dimensional marginal densipgenR. As in [6] we consider
the weighted%;, space oveRY, i.e.,.%;, ,(RY), with the norm

(FIFE)Po(E)AE)” 1< p<+eo
Rd
ess sup(&)|1(&)| if p=+o.

EcRrd

||pr.,pD =

Letl = {1,...,d} andf € .Z ,(RY). The projectiorf, k € D, is defined by

AN = [ 1B s G EAIds (€ €RY,

Clearly, the functiorff is constant with respect #. Foru C | we uselu| for its
cardinality,—u for | \ u and write

Puf = H( (f)7

(R
where the product sign means composition. Due to Fubinésittm the ordering
within the product is not important arig} f is constant with respect to &, k € u.
The ANOVA decomposition of € .#; ,(RY) is of the form [30, 15]
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f:%fu (6)

with f, depending only 0", i.e., on the variable&; with indicesj € u. It satisfies
the propertyP; f, = 0 for all j € uand the recurrence relation

fo=R(f) and fu:P_u(f)—Zf\,.

It is known from [15] that the ANOVA terms are given expligitin terms of the
projections by

f, = Z (—D)M=Mp_,f = P_y(f) + z (—1)MMRy_y(Pou(T)), (7)

veu vCu

whereP_, and R,y mean integration with respect §, j e D\uandj € u\y,
respectively. The second representation motivatesfthiatessentially as smooth as
P_u(f) due to the Inheritance Theorem [6, Theorem 2].

If f belongs to.%5,(RY), the ANOVA functions{fy}uci are orthogonal in the
Hilbert space?, ,(RY) (see e.g. [30]).

Let the variance of be defined bys?(f) = || f —R(f)[|Z,- Then it holds

o?(f) =[5, — (A(f)*= full3, =: ; ag(f).
04ucCl 0£uCl

To avoid trivial cases we assungg f) > 0 in the following. The normalized ratios

g@gg serve as indicators for the importance of the varid@dlen f. They are used to
define sensitivity indices of a satC | for f in [28] and the dimension distribution
of f in[19, 16].

For smalle € (0,1) (¢ = 0.01 is suggested in a number of papers), ¢ffective
superposition (truncation) dimensiog(@) € | (dr(¢) €1) is defined by

I . ai(f)
ds(e) = mln{se [ '0<%§502(f) > l—e}
- _ o (f) B
dr(e) = mm{sel .ug{g..,s} o2() >1 s}.

Note thatds(¢) < dy (&) and it holds (see [30, 4])

f— z fu

max{Hf? 2" uc{L Tt (e)y 2P

|ul<ds(e)

} < Vea(h).

Z,pv’
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3 Convex piecewise linear functions

Convex piecewise linear functions appear as optimal valaetions of linear pro-
grams depending on parameters in right-hand sides of lic@astraints or in the
objective function. In general, they are nondifferentgabhd not of bounded varia-
tion in the sense of Hardy and Krause (for the latter see [ZD}) the other hand,
such functions enjoy structural properties which make th&ractive for variational
problems. B

As in [22, Section 2.1] a functiori from R to the extended real® is calledpiece-
wise linearon D = domf = {& € RY: f(&) < «} if D can be represented as the
union of finitely many polyhedral sets relative to each of ebhf (§) is given by
f(§)=a'& + a for someac RY anda € R.

Proposition 1. Let f: RY — R be proper, i.e., f§) > — and D= domf be
nonempty. Then the function f is convex and piecewise lifi@ad only if it has a
representation of the form

T T ‘
f(E){max{a1£+alo;...,a€€+aé}:gégz ®)

for somef € N, a; € RY and ajeR, j=1,...,L. Moreover, D is polyhedral and, if
intD is nonempty, D may represented as the union of a finite ¢mteof polyhedral
sets D, j=1,...,4, such thaintD; # 0 andintD; N intDj; = O when j# j'.

Proof. The two parts of the results are proved as Theorem 2.49 andnlae?rb0 in
[22, Section 2.1]. O

Example 1(Linear two-stage stochastic programs)
We consider the linear optimization problem

min{chJrEp[qu(E)] WY(E) +T(&)x=h(E),xe X, y(§) > O,VE ¢ Rd},

wherec € R™, g € R™, W is amx r matrix, T(&) amx r matrix, h(§) € R" for
eaché € RY, X is convex and polyhedral iR™, P is a probability measure dR¢
andEp denotes expectation with respectRoWe assume thak andh are affine
functions of. The above problem may be reformulated as minimizing a conve
integral functional with respect tq namely,

min{ch+/Rd P(h(E) ~ T(E)P(E)  xe X}, ©)

where @ is the optimal value function assigning to each parameteR" an ex-
tended real number b@(t) = inf{q"y: Wy=t,y > 0} for eacht € RY. The value
®(t) = — appears if there existbe R™, d # 0 such thaw d= 0 andd > 0 and
®(t) = +o means infeasibility, i.,e{y € R™: Wy=t,y > 0} is empty. The inte-
grand in (9) isf (&) = c'x+ ®@(h(&) — T(&)x) for everyx € X.
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Now, we assume that do#n= {t € R9: &d(t) < +} and that the dual polyhedron
9 ={ze R":W'z< q} is nonempty. Therd(t) > —oo holds for allt € R" and
the original primal as well as the dual linear program ftax: z€ 2} are solvable
due to the duality theorem.\#, j = 1,...,1, denote the vertices @#, it holds

o(t) = _rnlaxltTvj (t € domd =R"),
i=1,...,

i.e., the integrand (-) is convex and piecewise linear @= RY for everyx € X.
For more information on stochastic programming see [23, 24]

In the following, we assume thdt is piecewise linear convex whose polyhedral
domainD = domf has nonempty interior. Ledj, j = 1,....¢, be the polyhedral
subsets ob according to Proposition 1 such that

f(§)=a/&+aj (V&eDj)

holds for somes; € RY, aj R, j=1,...,¢ For eachi € {1,...,d} there exist
finitely many(d — 1)-dimensional intersectiortsj, j =1,..., j(i), of D; with other
polyhedral set®y, k€ {1,...,d}\ {i}. These polyhedral sets are subsets of finitely
many (d — 1)-dimensional affine subspaces®f. We renumber them bif;, i =
1,...,k(¢,D).

4 ANOVA decomposition of convex piecewise linear functions

We consider a piecewise linear convex functioand assume that its domain=
domf has nonempty interior. Furthermore, we assume that theosugpof the
probability measure is contained ihand its density is of the form (5). For any
kel ={1,...,d} we denote th&th coordinate projection dd by 7% (D), i.e.,

(D) ={&cR:3&, jel,j#k, suchthat = (&,...,&) € D}.

Next we intend to compute projectioik(f) for k € I. For £ € D we seté_k =

(flv ceey Ek—la Ek+1a e 7Ed)! andESk: (Elv Ty Ek—l;s7 Ek+lv RS Ed) for sE TE((D) We
know that

_ ¢
ge|JDj=D (10)
j=1

for everys € 1i(D) and assumgy(s) = 0 for everyse€ R\ 15 (D). Hence, we obtain
by definition of the projection

ANE = [ 1Eoods= [ e 158 Epdsds



ANOVA decomposition of convex piecewise linear functions 7

Due to (10) the one-dimensional affine subsp@é_é: s € R} intersects a finite
number of the polyhedral selly. Hence, there exigi= p(k) € NU{0}, s =S € R,
i=1..,pandji=jke{1,....¢},i=1,...,p+1, such thag < s,; and

E_é‘ e Dj, Vse (—o,5]N1%(D)

{é‘ €Dy, Vsels1,8] (i=2...,p
&k e Dj,., VSE [Sp,+)NTE(D).
By settingsy := —, Sp1 := %, we obtain the following explicit representation of
R f.
— p+1
ANE =3 [ @&+ ay)pdods (11)
S-1
P+1 d s s
= i; (( éajijfj +0’Ji) /Silpk(s)der ajik/SA SPk(S)dS)
J
p+tl d
= 3 (2 a8+ @) @#(s) - os-) (12)
AR w2
g i(s) — Yk(5-1))) (13)

Here, ¢« is the one-dimensional distribution function with dengiy Y the corre-
sponding mean value function apgd the mean value, i.e.,

u +o0
/Pk (s)ds  ¢x(u / spk(s)ds uk—/_ spk(s)ds

Next we reorder the outer sum to collect the factorspefs) and yx(s), and a
remainder.

_ p,, d
(RF)(E) = 21 (( 2 (@i = 8.4)¢) + (4 - aji+1))¢k(3) + (14)
R
d
(Qjik— aii+1k)wk(3)) + ZI Qp,1j &)+ Ajpa + . k-
]=
i#k

As the convex functiorf is continuous on irD, it holds
T zk T zk
a;, ést+aj = ajiHEs +jiy

and, thus, the points, i = 1,..., p, satisfy the equations
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d

Z €5 (@ipai — &jij) + 8k —Ajk) + 0y, —0; =0 (i=1,....p).
ik

This leads to the explicit formula

1 d .
= m( ,Z §i(@i,1j — i) + Ajq — aji) i aj#aj, k. (19)
j#k

fori=1,...,p. Hence, alls, i =1,..., p, are linear combinations of the remaining
componentsj, j # k, of & if the following geometric conditions satisfied: Allkth
components of adjacent vecta@gsare different from each other, i.e., all polyhedral
setsH; are subsets dfd — 1)-dimensional subspaces that are not parallel tcthe
coordinate axis ifR" or, with other words, not parallel to the canonical basiselst
& (whose components are equaldg i = 1,....d).
To simplify notation we set; = aj; — a;;,, andv; = aj; — aj;,. If the above geo-
metric condition is satisfied, we obtain the following reggetation o f:

_ p _ _ _
(BO(E = 3 wic( =399 (E) +ls() (16)
d
+ Zajpmfj + .y @y, ki (17)
7k
_ 1 d
SZS(Ek):_WTk(ZWijEj‘FVi) (18)
7k

Hence, the projection represents a sum of products of diffeable functions and
of affine functions ofk.

Proposition 2. Let f be piecewise linear convex having the form
f(§)=aj&+a; (VEeDj). (19)

Let ke I and assume that vectors Belonging to adjacent polyhedral sets Bave
different kth components. Then the kth projectigh B twice continuously differ-
entiable. The projection® belongs to ¢t1(RY) if the densitypy is in C(R)
(s N). Rf is infinitely differentiable if the densify is in C*(R).

Proof. Letl €1, 1 = k. The projectiori f is partially differentiable with respect to
& and it holds
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R f = - )

iy Zw.k - ( >¢k<s<sk>>+wk<s<sk>>) +ajp.
= ZW" (B(S(E) + S (E)DL(S (E9) — U(s(EX) +ay,..
= Zwll ¢k +alp+1|

due to (16)—(18) ang(s) = p«(s) and g (s) = sp«(s). Hence, the behavior of all
first order partial derivatives d#f only depends on thkth marginal distribution
functions. The first order partial derivatives are contusiand again partially dif-
ferentiable. The second order partial derivatives are @fohm

02H<f _ _
FIIAN )=i: W p(si(E9)

and, thus, only depend on the marginal dengityHence f f is twice continuously
differentiable agy is continuous. Ifo, € CS~1(R) for somes € N, R f belongs to
CSTL(RY). If p € C*(R), Rf is inC®(RY). O
Our next example shows that the geometric condition impasé&toposition 2 is
not superfluous.

Example 2Let us consider the function

f(&) = max{&, —&1,&} (V€= (81,&) €R?)

onD =R?, i.e., we haver; = ap = a3 = 0 anda; = (1,0)", a, = (—-1,0)" and
ag = (0,1)". The decomposition dd according to Proposition 1 consists of

D1 ={ECcR?:£>0,6E< &), Da={EcR?:&<0,E< &),
D3 ={EcR?: &> 8,86 > &)

All polyhedral sets are adjacent and the second componéwbadf the vectors;,
j = 1,2,3, coincides. Hence, the geometric condition in Propasifias violated.
Indeed, the projectioR: f is of the form

(Py)(81) = | & / p(ENE+ [ Eap(E2)dEs

&4l

and, thus, nondifferentiable d (see also [10, Example 3]).
The previous result extends to more general projectfyns

Proposition 3. Let® # u C I, f be given by (19) and the vectors belonging to
adjacent polyhedral sets jthave different kth components for some &. Then the
projection R f is continuously differentiable. The projectiopfHs infinitely differ-
entiable ifo, € CJ'(R). Here, the subscript b atfIR) indicates that all derivatives
of functions in that space are boundedkn



10 W. Romisch

Proof. If |u| = 1 the result follows from Proposition 2. Far= {k,r} with k,r €I,
k £ r, we obtain from the Leibniz theorem [6, Theorem 1] lfef u

DIRLF(EY) = d%Puf(E“) _ Prd%af@“)

and from the proof of Proposition 2

P —
DIRF(EY) = 3w [ 9x(s(E)pr )06 + 2y,

If u contains more than two elements, the integral on the rightdlside becomes a
multiple integral. In all cases, however, such an integral function of the remain-
ing variableséj, j € | \ u, whose continuity and differentiability properties cerre
spond to those apx andpy. This can be shown using Lebesgue’s theoremgyand
all densitiesp;, j € u, and their derivatives are boundedgn O

The following is the main result of this section.

Theorem 1. Let uc I, f given by (19) and the vectors &#elonging to adjacent
polyhedral sets Dhave different kth components for some ku =1\ u. Then the
ANOVA term { is infinitely differentiable i € CJ (R).

Proof. According to formula (7) it holds

fu=Pu(f)+ S (=M MR, y(P-y(f))

vCu

and Proposition 3 implies th&_,f is infinitely differentiable. The result follows
from the Inheritance Theorem [6, Theorem 2] appliedPjoy(P_y(f)) for each
vCu.

Corollary 1. Let f be given by (19) and the following geometric conditiGiC] be
satisfied: All(d — 1)-dimensional subspaces containifdy— 1)-dimensional inter-
sections of adjacent polyhedral setg &e not parallel to any coordinate axis. Then
the ANOVA approximation
fg1:= fu (20)
2

of f isinfinitely differentiable if all densities, k € I, belong to G (R).

Proof. The result follows immediately from Theorem 1 when applyihgo all
nonempty strict subsets of O

Remark 1Under the assumptions of Corollary 1 all ANOVA termsare at least
continuously differentiable ip is continuous andu| < d — 1. Hence, the function
fa_1isinCY(RY) (C*(RY)) if eachpy, k € 1, belongs ta(R) (CZ(R)). On the other
hand, it holds

f=faat+f and |f—faslf, =,
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according to (6) and Proposition 1. Hence, the questioresiriBor which convex
piecewise linear functions is thelL,-norm of f; small or, in terms of the truncation
dimensiondr of f, is dy smaller thard.

5 Generic smoothnessin the normal case

We consider the convex, piecewise linear function
f(§)=max{a £ +ay,....a) E+a;} (VEeRY)

on domf = RY and assume that is normal with mearu and nonsingular covari-
ance matrixz. Then there exists an orthogonal maibsuch thal = Q> Q' is a
diagonal matrix. Then thé-dimensional random vectay given by

E=Qn+p or n=Q'(E—p)

is normal with zero mean and covariance mattixi.e., has independent compo-
nents. The transformed functidn

is defined on the polyhedral s8t D — Q' i and it holds

f(n)=(Q"aj))"n+aju+a; foreachn € Q"(Dj— p).

We consider now the original polyhedral subdétdeing intersections of two of the
adjacent polyhedral seB;j, j = 1,...,/, and subsets qid — 1)-dimensional affine
subspaces;. The orthogonal matriXQ" causes a rotation of the sets and the
corresponding affine subspadgesHowever, there are only countably many orthog-
onal matriceQ such that the geometric condition (GC) (see Corollary 1)ten t
subspaces isot satisfied. When equipping the linear space of all orthogdnatl
matrices with the standard norm topology, the set of allatmnal matrice$) that
satisfy the geometric condition, israsidual seti.e., the countable intersection of
open dense subsets. A property for elements of a topologpeae is calledeneric

if it holds in a residual set. This proves

Corollary 2. Let f be a piecewise linear convex function domf = RY and let
& be normally distributed with nonsingular covariance matrirhen the infinite
differentiability of the ANOVA approximatiory_f; of f (given by (20)) is a generic

property.

Proof. Let u be the mean vector ari be the nonsingular covariance matrix&f
Let Q be the orthogonal matrix satisfyif@> Q" = A = diag(oZ, ...,03) andp be
the normal density with megm and covariance matri&. Theno; >0,j=1,...,d,
andp is equal to the product of all one-dimensional marginal dexssoy, where
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_ 1 (t— o) _
pr(t) = \/Z—TakeXp<—T‘k2) (k=1,....d),

and allp, belong toCy (R). Hence, the result follows from Corollary 1. O

6 Dimension reduction of piecewise linear convex functions

In order to replace a piecewise linear convex functidsy the sumfy_, of ANOVA
terms until ordek < d— 1, we need that the efficient truncation dimendigrof f is

at leastk. Hence, one is usually interested in determining and redutie efficient
dimension. This topic is discussed in a number of papers,[8,d.6, 19, 28, 30, 32].
In thenormal casehere exist universal (i.e., independent on the structfifg and
problem dependent principles for dimension reduction.

A universal principle for dimension reduction @incipal component analysis
(PCA). In PCA one uses the decompositi@n= UpUp of 5 with the matrix
Up = (\/Hul,...,\/)Tdud), the eigenvalued; > --- > Aq > 0 of X in decreasing
order and the corresponding orthonormal eigenveaigrs= 1,....d, of >. Sev-
eral authors report an enormous reduction of the efficiemtctition dimension in
financial models if PCA is used (see, for example, [30, 31pwelver, PCA may
become expensive for largkand the reduction effect depends on the eigenvalue
distribution.

Severadimension reduction techniquesploit the fact that a normal random vector
& with meanu and covariance matriX can be transformed b§ = Bn + u and
any matrix B satisfying> = BB' into a standard normal random vectgprwith
independent components. The following equivalence golads proved as Lemma
1in[32].

Proposition 4. Let ~ be a dx d nonsingular covariance matrix and A be a fixed
d x d matrix such that AA= >. Then it holds> = BB' if and only if B is of the
form B= AQ with some orthogonal & d matrix Q.

To apply the proposition, one may choofe= Lc, whereLc is the standard
Cholesky matrix, oA = Up. Then any other decomposition matBwith ~ =BB'

is of the formB = AQ with some orthogonal matrig.

A dimension reduction approach now consists in determimirggod orthogonal
matrix Q such that the truncation dimension is minimized by expigitihe struc-
ture of the underlying integrantl Such an approach is proposed in [11] for linear
functions and refined and extended in [32].

Piecewise linear convex functions are of the form

f(§)=G(aj & +ay,....a & +ay), (21)

whereG(ty,...,t) = maxX{ty,...,t,}. Hence,f is as considered in [32] shortly after
Theorem 3. The transformed function is
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f(n)=f(Bn+p) =GB ar) 'm+af u+ai,...,[B a) na+a/ u+a). (22)

In order to minimize the truncation dimension bin (22), the following result is
recorded from [32, Theorem 2] (see also Proposition 1 in)[11]

Proposition 5. Let¢ = 1. If the matrix Q= (qy,...,qq) is determined such that
T

Ay
=+
= ATay

and Q is orthogonal, (23)

the transformed function is
f(n) =G(|A || +af p+as).

and has efficient truncation dimension & 1.

The orthogonal columngy, ...,qq may be computed by the Householder transfor-
mation. In case X ¢ < ditis proposed in [32] to determine the orthogonal matrix
Q=(qs,...,qq) by applying an orthogonalization technique to the matrix

M :(ATalv'";ATa[ab(-‘rl)"'?bd)? (24)

where we assume that tle, ..., a, are linearly independent arigl, 1,...,bq are
selected such th# has ranld. It is shown in [32, Theorem 3] that then the function
fdepends only oms,...,ny. The practical computation may again be done by the
Householder transformation appliedNbin (24).
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