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W. Römisch

Abstract Piecewise linear convex functions arise as integrands in stochastic pro-
grams. They are Lipschitz continuous on their domain, but donot belong to tensor
product Sobolev spaces. Motivated by applying Quasi-MonteCarlo methods we
show that all terms of their ANOVA decomposition, except theone of highest order,
are smooth if the underlying densities are smooth and certain geometric condition
is satisfied. The latter condition is generically satisfied in the normal case.

1 Introduction

During the last decade much progress has been achieved inQuasi-Monte Carlo
(QMC) theoryfor computing multidimensional integrals. Appropriate function spa-
ces of integrands were discovered that allowed to improve the classical convergence
rates. It is referred to the monographs [27, 18] for providing an overview of the
earlier work and to [17, 2, 13] for presenting much of the morerecent achievements.
In particular, certain reproducing kernel Hilbert spacesFd of functions f : [0,1]d →
R became important for estimating the quadrature error (see [7]). If the integral
Id( f ) =

∫

[0,1]d f (x)dx defines a linear continuous functional onFd andQn,d( f ) de-
notes a Quasi-Monte Carlo method for computingId( f ), i.e.,

Qn,d( f ) =
1
n

n

∑
j=1

f (x j) (n∈ N)

for some sequencexi ∈ [0,1)d, i ∈ N, the quadrature erroren(Fd) allows the repre-
sentation
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en(Fd) = sup
f∈Fd ,‖ f‖≤1

∣

∣Id( f )−Qn,d( f )
∣

∣= sup
‖ f‖≤1

|〈 f ,hn〉|= ‖hn‖ (1)

according to Riesz’ theorem for linear bounded functionals. Therepresenter hn ∈Fd

of the quadrature error is of the form

hn(x) =
∫

[0,1]d
K(x,y)dy− 1

n

n

∑
i=1

K(x,xi) (∀x∈ [0,1]d),

whereK : [0,1]d × [0,1]d → R denotes the kernel ofFd. It satisfies the conditions
K(·,y) ∈ Fd and〈 f ,K(·,y)〉= f (y) for eachy∈ [0,1]d and f ∈ Fd, where〈·, ·〉 and
‖ · ‖ denote inner product and norm inFd.
In particular, the weighted tensor product Sobolev space [25]

Fd = W
(1,...,1)

2,mix ([0,1]d) =
d

⊗

i=1

W1
2 ([0,1]) (2)

equipped with the weighted norm‖ f‖2
γ = 〈 f , f 〉γ and inner product (see Section 2

for the notation)

〈 f ,g〉γ = ∑
u⊆{1,...,d}

γ−1
u

∫

[0,1]|u|

∂ |u|

∂xu f (xu,1−u)
∂ |u|

∂xu g(xu,1−u)dxu, (3)

and a weighted Walsh space consisting of Walsh series (see [2, Example 2.8] and
[1]) are reproducing kernel Hilbert spaces.
They became important for analyzing the recently developedrandomized lattice
rules (see [26, 12, 14] and [1, 2]) and allowed for deriving optimal error estimates
of the form

en(Fd)≤C(δ )n−1+δ (n∈ N,δ ∈ (0, 1
2]), (4)

where the constantC(δ ) does not depend on the dimensiond if the weightsγu satisfy
suitable conditions.
Unfortunately, a number of integrands do not belong to such tensor product Sobolev
or Walsh spaces and are even not of bounded variation in the sense of Hardy and
Krause. The latter condition represents the standard requirement on an integrand
f to justify Quasi-Monte Carlo algorithms via the Koksma-Hlawka theorem [18,
Theorem 2.11].
Often integrands are non-differentiable like those in option pricing models [31] or
max-type functions in general. It has been discovered in [5,6] that the so-called
ANOVA decomposition (see Section 2) of such integrands may have a smoothing
effect in the sense that many ANOVA terms are smooth if the underlying densities
are sufficiently smooth.
In this paper we show that such a smoothing effect occurs alsoin case of piecewise
linear convex functions. More precisely, we show that all ANOVA terms except the
one of highest order of such functions are infinitely differentiable if the densities are
sufficiently smooth and a geometric property is satisfied. This geometric property is



ANOVA decomposition of convex piecewise linear functions 3

generic if the underlying densities are normal. Since piecewise linear convex func-
tions appear as the result of optimization processes, our results apply to linear two-
stage stochastic programs and (slightly) extend the main result of [10]. Hence, the
results justify earlier studies of QMC methods in stochastic programming [3, 9, 21]
and motivate that the recently developed randomized lattice rules [26, 2] may be
efficient for stochastic programming models if their truncation dimension is small.
The paper starts by recalling the ANOVA decomposition in Section 2 and convex
piecewise linear functions in Section 3. Section 4 containsthe main results on the
smoothing effect of the ANOVA decomposition of convex piecewise linear func-
tions, followed by discussing the generic character of the geometric property (Sec-
tion 5) and dimension reduction (Section 6) both in the normal case.

2 ANOVA decomposition and effective dimension

The analysis of variance (ANOVA) decomposition of a function was first proposed
as a tool in statistical analysis (see [8] and the survey [29]). Later it was often used
for the analysis of quadrature methods mainly on[0,1]d. Here, we will use it onRd

equipped with a probability measure given by a density function ρ of the form

ρ(ξ ) =
d

∏
j=1

ρ j(ξ j) (∀ξ = (ξ1, . . . ,ξd) ∈ R
d) (5)

with continuous one-dimensional marginal densitiesρ j onR. As in [6] we consider
the weightedLp space overRd, i.e.,Lp,ρ(R

d), with the norm

‖ f‖p,ρD =















(

∫

Rd

| f (ξ )|pρ(ξ )dξ
)

1
p

if 1 ≤ p<+∞,

ess sup
ξ∈Rd

ρ(ξ )| f (ξ )| if p=+∞.

Let I = {1, . . . ,d} and f ∈ L1,ρ(R
d). The projectionPk, k∈ D, is defined by

(Pk f )(ξ ) :=
∫ ∞

−∞
f (ξ1, . . . ,ξk−1,s,ξk+1, . . . ,ξd)ρk(s)ds (ξ ∈ R

d).

Clearly, the functionPk f is constant with respect toξk. For u⊆ I we use|u| for its
cardinality,−u for I \u and write

Pu f =
(

∏
k∈u

Pk

)

( f ),

where the product sign means composition. Due to Fubini’s theorem the ordering
within the product is not important andPu f is constant with respect to allξk, k∈ u.
The ANOVA decomposition off ∈ L1,ρ(R

d) is of the form [30, 15]
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f = ∑
u⊆I

fu (6)

with fu depending only onξ u, i.e., on the variablesξ j with indices j ∈ u. It satisfies
the propertyPj fu = 0 for all j ∈ u and the recurrence relation

f /0 = PI ( f ) and fu = P−u( f )− ∑
v⊆u

fv .

It is known from [15] that the ANOVA terms are given explicitly in terms of the
projections by

fu = ∑
v⊆u

(−1)|u|−|v|P−v f = P−u( f )+ ∑
v⊂u

(−1)|u|−|v|Pu−v(P−u( f )), (7)

whereP−u andPu−v mean integration with respect toξ j , j ∈ D \ u and j ∈ u\ v,
respectively. The second representation motivates thatfu is essentially as smooth as
P−u( f ) due to the Inheritance Theorem [6, Theorem 2].
If f belongs toL2,ρ(R

d), the ANOVA functions{ fu}u⊆I are orthogonal in the
Hilbert spaceL2,ρ(R

d) (see e.g. [30]).
Let the variance off be defined byσ2( f ) = ‖ f −PI ( f )‖2

L2
. Then it holds

σ2( f ) = ‖ f‖2
2,ρ − (PI ( f ))2 = ∑

/06=u⊆I

‖ fu‖2
2,ρ =: ∑

/06=u⊆I

σ2
u( f ).

To avoid trivial cases we assumeσ( f ) > 0 in the following. The normalized ratios
σ2

u ( f )
σ2( f )

serve as indicators for the importance of the variableξ u in f . They are used to
define sensitivity indices of a setu⊆ I for f in [28] and the dimension distribution
of f in [19, 16].
For smallε ∈ (0,1) (ε = 0.01 is suggested in a number of papers), theeffective
superposition (truncation) dimension dS(ε) ∈ I (dT(ε) ∈ I ) is defined by

dS(ε) = min
{

s∈ I : ∑
0<|u|≤s

σ2
u ( f )

σ2( f )
≥ 1− ε

}

dT(ε) = min
{

s∈ I : ∑
u⊆{1,...,s}

σ2
u ( f )

σ2( f )
≥ 1− ε

}

.

Note thatdS(ε)≤ dT(ε) and it holds (see [30, 4])

max
{∥

∥

∥
f − ∑

|u|≤dS(ε)
fu
∥

∥

∥

2,ρ
,

∥

∥

∥
f − ∑

u⊆{1,...,dT (ε)}
fu
∥

∥

∥

2,ρ

}

≤
√

εσ( f ).
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3 Convex piecewise linear functions

Convex piecewise linear functions appear as optimal value functions of linear pro-
grams depending on parameters in right-hand sides of linearconstraints or in the
objective function. In general, they are nondifferentiable and not of bounded varia-
tion in the sense of Hardy and Krause (for the latter see [20]). On the other hand,
such functions enjoy structural properties which make themattractive for variational
problems.
As in [22, Section 2.I] a functionf fromR

d to the extended reals̄R is calledpiece-
wise linearon D = dom f = {ξ ∈ R

d : f (ξ ) < ∞} if D can be represented as the
union of finitely many polyhedral sets relative to each of which f (ξ ) is given by
f (ξ ) = a⊤ξ +α for somea∈ R

d andα ∈ R.

Proposition 1. Let f : Rd → R̄ be proper, i.e., f(ξ ) > −∞ and D= dom f be
nonempty. Then the function f is convex and piecewise linearif and only if it has a
representation of the form

f (ξ ) =
{

max{a⊤1 ξ +α1, . . . ,a⊤ℓ ξ +αℓ} , ξ ∈ D,

∞ , ξ 6∈ D,
(8)

for someℓ ∈ N, aj ∈ R
d andα j ∈ R, j = 1, . . . , ℓ. Moreover, D is polyhedral and, if

intD is nonempty, D may represented as the union of a finite collection of polyhedral
sets Dj , j = 1, . . . , ℓ, such thatintD j 6= /0 and intD j ∩ intD j ′ = /0 when j 6= j ′.

Proof. The two parts of the results are proved as Theorem 2.49 and Lemma 2.50 in
[22, Section 2.I]. �

Example 1.(Linear two-stage stochastic programs)
We consider the linear optimization problem

min
{

c⊤x+EP[q
⊤y(ξ )] : Wy(ξ )+T(ξ )x= h(ξ ), x∈ X, y(ξ )≥ 0,∀ξ ∈ R

d
}

,

wherec ∈ R
m, q ∈ R

m̄, W is a m̄× r matrix, T(ξ ) a m× r matrix, h(ξ ) ∈ R
r for

eachξ ∈ R
d, X is convex and polyhedral inRm, P is a probability measure onRd

andEP denotes expectation with respect toP. We assume thatT andh are affine
functions ofξ . The above problem may be reformulated as minimizing a convex
integral functional with respect tox, namely,

min
{

c⊤x+
∫

Rd
Φ(h(ξ )−T(ξ )x)P(dξ ) : x∈ X

}

, (9)

whereΦ is the optimal value function assigning to each parametert ∈ R
r an ex-

tended real number byΦ(t) = inf{q⊤y : Wy= t,y≥ 0} for eacht ∈ R
d. The value

Φ(t) = −∞ appears if there existsd ∈ R
m̄, d 6= 0 such thatWd= 0 andd ≥ 0 and

Φ(t) = +∞ means infeasibility, i.e.,{y ∈ R
m̄ : Wy= t,y ≥ 0} is empty. The inte-

grand in (9) isf (ξ ) = c⊤x+Φ(h(ξ )−T(ξ )x) for everyx∈ X.
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Now, we assume that domΦ = {t ∈ R
d : Φ(t)<+∞} and that the dual polyhedron

D = {z∈ R
r : W⊤z≤ q} is nonempty. ThenΦ(t) > −∞ holds for allt ∈ R

r and
the original primal as well as the dual linear program max{t⊤z : z∈D} are solvable
due to the duality theorem. Ifv j , j = 1, . . . , l , denote the vertices ofD , it holds

Φ(t) = max
j=1,...,l

t⊤v j (t ∈ domΦ = R
r),

i.e., the integrandf (·) is convex and piecewise linear onD = R
d for everyx ∈ X.

For more information on stochastic programming see [23, 24].

In the following, we assume thatf is piecewise linear convex whose polyhedral
domainD = dom f has nonempty interior. LetD j , j = 1, . . . , ℓ, be the polyhedral
subsets ofD according to Proposition 1 such that

f (ξ ) = a⊤j ξ +α j (∀ξ ∈ D j)

holds for somea j ∈ R
d, α j ∈ R, j = 1, . . . , ℓ. For eachi ∈ {1, . . . ,d} there exist

finitely many(d−1)-dimensional intersectionsHi j , j = 1, . . . , j(i), of Di with other
polyhedral setsDk, k∈ {1, . . . ,d}\{i}. These polyhedral sets are subsets of finitely
many (d− 1)-dimensional affine subspaces ofR

d. We renumber them byHi , i =
1, . . . ,k(ℓ,D).

4 ANOVA decomposition of convex piecewise linear functions

We consider a piecewise linear convex functionf and assume that its domainD =
dom f has nonempty interior. Furthermore, we assume that the support Ξ of the
probability measure is contained inD and its densityρ is of the form (5). For any
k∈ I = {1, . . . ,d} we denote thekth coordinate projection ofD by πk(D), i.e.,

πk(D) = {ξk ∈ R : ∃ξ j , j ∈ I , j 6= k, such thatξ = (ξ1, . . . ,ξd) ∈ D}.

Next we intend to compute projectionsPk( f ) for k ∈ I . For ξ ∈ D we setξ̄ k =
(ξ1, . . . ,ξk−1,ξk+1, . . . ,ξd), andξ̄ k

s =(ξ1, . . . ,ξk−1,s,ξk+1, . . . ,ξd) for s∈ πk(D). We
know that

ξ̄ k
s ∈

ℓ
⋃

j=1

D j = D (10)

for everys∈ πk(D) and assumeρk(s) = 0 for everys∈R\πk(D). Hence, we obtain
by definition of the projection

(Pk f )(ξ̄ k) =

∫ ∞

−∞
f (ξ̄ k

s )ρk(s)ds=
∫ ∞

−∞
fx(ξ1, . . . ,ξk−1,s,ξk+1, . . . ,ξd)ρk(s)ds.
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Due to (10) the one-dimensional affine subspace{ξ̄ k
s : s∈ R} intersects a finite

number of the polyhedral setsD j . Hence, there existp= p(k)∈N∪{0}, si = sk
i ∈R,

i = 1, . . . , p, and j i = jki ∈ {1, . . . , ℓ}, i = 1, . . . , p+1, such thatsi < si+1 and

ξ̄ k
s ∈ D j1 ∀s∈ (−∞,s1]∩πk(D)

ξ̄ k
s ∈ D j i ∀s∈ [si−1,si ] (i = 2, . . . , p)

ξ̄ k
s ∈ D jp+1 ∀s∈ [sp,+∞)∩πk(D).

By settings0 := −∞, sp+1 := ∞, we obtain the following explicit representation of
Pk f .

(Pk f )(ξ̄ k) =
p+1

∑
i=1

∫ si

si−1

(a⊤j i ξ̄
k
s +α j i )ρk(s)ds (11)

=
p+1

∑
i=1

(( d

∑
j=1
j 6=k

a j i jξ j +α j i

)

∫ si

si−1

ρk(s)ds+a j ik

∫ si

si−1

sρk(s)ds
)

=
p+1

∑
i=1

(( d

∑
j=1
j 6=k

a j i jξ j +α j

)

(ϕk(si)−ϕk(si−1)) (12)

+a j ik(ψk(si)−ψk(si−1))
)

(13)

Here,ϕk is the one-dimensional distribution function with densityρk, ψk the corre-
sponding mean value function andµk the mean value, i.e.,

ϕk(u) =
∫ u

−∞
ρk(s)ds, ψk(u) =

∫ u

−∞
sρk(s)ds, µk =

∫ +∞

−∞
sρk(s)ds.

Next we reorder the outer sum to collect the factors ofϕk(si) and ψk(si), and a
remainder.

(Pk f )(ξ̄ k) =
p

∑
i=1

(( d

∑
j=1
j 6=k

(a j i j −a j i+1 j)ξ j +(α j i −α j i+1)
)

ϕk(si)+ (14)

(a j ik−a j i+1k)ψk(si)
)

+
d

∑
j=1
j 6=k

a jp+1 jξ j +α jp+1 +a jp+1kµk.

As the convex functionf is continuous on intD, it holds

a⊤j i ξ̄
k
s +α j i = a⊤j i+1

ξ̄ k
s +α j i+1

and, thus, the pointssi , i = 1, . . . , p, satisfy the equations
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d

∑
j=1
j 6=k

ξ j(a j i+1 j −a j i j)+si(a j i+1k−a j ik)+α j i+1 −α j i = 0 (i = 1, . . . , p).

This leads to the explicit formula

si =
1

a j ik−a j i+1k

( d

∑
j=1
j 6=k

ξ j(a j i+1 j −a j i j)+α j i+1 −α j i

)

if a j ik 6= a j i+1k. (15)

for i = 1, . . . , p. Hence, allsi , i = 1, . . . , p, are linear combinations of the remaining
componentsξ j , j 6= k, of ξ if the following geometric conditionis satisfied: Allkth
components of adjacent vectorsa j are different from each other, i.e., all polyhedral
setsH j are subsets of(d−1)-dimensional subspaces that are not parallel to thekth
coordinate axis inRr or, with other words, not parallel to the canonical basis element
ek (whose components are equal toδik, i = 1, . . . ,d).
To simplify notation we setwi = a j i −a j i+1 andvi = α j i −α j i+1. If the above geo-
metric condition is satisfied, we obtain the following representation ofPk f :

(Pk f )(ξ̄ k) =
p

∑
i=1

wik

(

−si(ξ̄ k)ϕk(si(ξ̄ k))+ψk(si(ξ̄ k))
)

(16)

+
d

∑
j=1
j 6=k

a jp+1 jξ j +α jp+1 +a jp+1kµk (17)

si = si(ξ̄ k) =− 1
wik

( d

∑
j=1
j 6=k

wi j ξ j +vi

)

. (18)

Hence, the projection represents a sum of products of differentiable functions and
of affine functions ofξ k.

Proposition 2. Let f be piecewise linear convex having the form

f (ξ ) = a⊤j ξ +α j (∀ξ ∈ D j). (19)

Let k∈ I and assume that vectors aj belonging to adjacent polyhedral sets Dj have
different kth components. Then the kth projection Pk f is twice continuously differ-
entiable. The projection Pk f belongs to Cs+1(Rd) if the densityρk is in Cs−1(R)
(s∈ N). Pk f is infinitely differentiable if the densityρk is in C∞(R).

Proof. Let l ∈ I , l 6= k. The projectionPk f is partially differentiable with respect to
ξl and it holds
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∂Pk f
∂ξl

(ξ̄ k) =
p

∑
i=1

wik
∂

∂ξl

(

−si(ξ̄ k)ϕk(si(ξ̄ k))+ψk(si(ξ̄ k))
)

+a jp+1l

=
p

∑
i=1

wil
(

ϕk(si(ξ̄ k))+si(ξ̄ k)ϕ ′
k(si(ξ̄ k))−ψ ′

k(si(ξ̄ k))
)

+a jp+1l

=
p

∑
i=1

wil ϕk(si(ξ̄ k))+a jp+1l

due to (16)–(18) andϕ ′
k(s) = ρk(s) andψ ′

k(s) = sρk(s). Hence, the behavior of all
first order partial derivatives ofPk f only depends on thekth marginal distribution
functions. The first order partial derivatives are continuous and again partially dif-
ferentiable. The second order partial derivatives are of the form

∂ 2Pk f
∂ξl ∂ξr

(ξ̄ k) =
p

∑
i=1

−wil wir

wik
ρk(si(ξ̄ k))

and, thus, only depend on the marginal densityρk. Hence,Pk f is twice continuously
differentiable asρk is continuous. Ifρk ∈ Cs−1(R) for somes∈ N, Pk f belongs to
Cs+1(Rd). If ρk ∈C∞(R), Pk f is in C∞(Rd). �

Our next example shows that the geometric condition imposedin Proposition 2 is
not superfluous.

Example 2.Let us consider the function

f (ξ ) = max{ξ1,−ξ1,ξ2} (∀ξ = (ξ1,ξ2) ∈ R
2)

on D = R
2, i.e., we haveα1 = α2 = α3 = 0 anda1 = (1,0)⊤, a2 = (−1,0)⊤ and

a3 = (0,1)⊤. The decomposition ofD according to Proposition 1 consists of

D1 = {ξ ∈ R
2 : ξ1 ≥ 0,ξ2 ≤ ξ1}, D2 = {ξ ∈ R

2 : ξ1 ≤ 0,ξ2 ≤−ξ1},
D3 = {ξ ∈ R

2 : ξ2 ≥ ξ1,ξ2 ≥−ξ1}.

All polyhedral sets are adjacent and the second component oftwo of the vectorsa j ,
j = 1,2,3, coincides. Hence, the geometric condition in Proposition 2 is violated.
Indeed, the projectionP2 f is of the form

(P2 f )(ξ1) = |ξ1|
∫ |ξ1|

−∞
ρ(ξ2)dξ2+

∫ +∞

|ξ1|
ξ2ρ(ξ2)dξ2

and, thus, nondifferentiable onR (see also [10, Example 3]).

The previous result extends to more general projectionsPu.

Proposition 3. Let /0 6= u ⊆ I, f be given by (19) and the vectors aj belonging to
adjacent polyhedral sets Dj have different kth components for some k∈ u. Then the
projection Pu f is continuously differentiable. The projection Pu f is infinitely differ-
entiable ifρk ∈C∞

b (R). Here, the subscript b at C∞b (R) indicates that all derivatives
of functions in that space are bounded onR.
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Proof. If |u|= 1 the result follows from Proposition 2. Foru= {k, r} with k, r ∈ I ,
k 6= r, we obtain from the Leibniz theorem [6, Theorem 1] forl 6∈ u

Dl Pu f (ξ u) =
∂

∂ξl
Pu f (ξ u) = Pr

∂
∂ξl

Pk f (ξ u)

and from the proof of Proposition 2

Dl Pu f (ξ u) =
p

∑
i=1

wil

∫

R

ϕk(si(ξ̄ k))ρr(ξr)dξr +a jp+1l

If u contains more than two elements, the integral on the right-hand side becomes a
multiple integral. In all cases, however, such an integral is a function of the remain-
ing variablesξ j , j ∈ I \ u, whose continuity and differentiability properties corre-
spond to those ofϕk andρk. This can be shown using Lebesgue’s theorem asϕk and
all densitiesρ j , j ∈ u, and their derivatives are bounded onR. �

The following is the main result of this section.

Theorem 1. Let u⊂ I, f given by (19) and the vectors aj belonging to adjacent
polyhedral sets Dj have different kth components for some k∈ −u= I \u. Then the
ANOVA term fu is infinitely differentiable ifρk ∈C∞

b (R).

Proof. According to formula (7) it holds

fu = P−u( f )+ ∑
v⊂u

(−1)|u|−|v|Pu−v(P−u( f ))

and Proposition 3 implies thatP−u f is infinitely differentiable. The result follows
from the Inheritance Theorem [6, Theorem 2] applied toPu−v(P−u( f )) for each
v⊂ u. �

Corollary 1. Let f be given by (19) and the following geometric condition (GC) be
satisfied: All(d−1)-dimensional subspaces containing(d−1)-dimensional inter-
sections of adjacent polyhedral sets Dj are not parallel to any coordinate axis. Then
the ANOVA approximation

fd−1 := ∑
u⊂D

fu (20)

of f is infinitely differentiable if all densitiesρk, k∈ I, belong to C∞
b (R).

Proof. The result follows immediately from Theorem 1 when applyingit to all
nonempty strict subsets ofI . �

Remark 1.Under the assumptions of Corollary 1 all ANOVA termsfu are at least
continuously differentiable ifρ is continuous and|u| ≤ d−1. Hence, the function
fd−1 is inC1(Rd) (C∞(Rd)) if eachρk, k∈ I , belongs toC(R) (C∞

b (R)). On the other
hand, it holds

f = fd−1+ fI and ‖ f − fd−1‖2
L2

= ‖ fI‖2
L2
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according to (6) and Proposition 1. Hence, the question arises: For which convex
piecewise linear functionsf is theL2-norm of fI small or, in terms of the truncation
dimensiondT of f , is dT smaller thand.

5 Generic smoothness in the normal case

We consider the convex, piecewise linear function

f (ξ ) = max{a⊤1 ξ +α1, . . . ,a
⊤
ℓ ξ +αℓ} (∀ξ ∈ R

d)

on domf = R
d and assume thatξ is normal with meanµ and nonsingular covari-

ance matrixΣ . Then there exists an orthogonal matrixQ such that∆ = QΣ Q⊤ is a
diagonal matrix. Then thed-dimensional random vectorη given by

ξ = Qη +µ or η = Q⊤(ξ −µ)

is normal with zero mean and covariance matrix∆ , i.e., has independent compo-
nents. The transformed function̂f

f̂ (η) = f (Qη +µ) = max
j=1,...,ℓ

{a⊤j (Qη +µ)+α j}= max
j=1,...,ℓ

{(Q⊤a j)
⊤η +a⊤j µ +α j}

is defined on the polyhedral setQ⊤D−Q⊤µ and it holds

f̂ (η) = (Q⊤a j)
⊤η +a⊤j µ +α j for eachη ∈ Q⊤(D j −µ).

We consider now the original polyhedral subsetsHi being intersections of two of the
adjacent polyhedral setsD j , j = 1, . . . , ℓ, and subsets of(d−1)-dimensional affine
subspacesLi . The orthogonal matrixQ⊤ causes a rotation of the setsHi and the
corresponding affine subspacesLi . However, there are only countably many orthog-
onal matricesQ such that the geometric condition (GC) (see Corollary 1) on the
subspaces isnot satisfied. When equipping the linear space of all orthogonald×d
matrices with the standard norm topology, the set of all orthogonal matricesQ that
satisfy the geometric condition, is aresidual set, i.e., the countable intersection of
open dense subsets. A property for elements of a topologicalspace is calledgeneric
if it holds in a residual set. This proves

Corollary 2. Let f be a piecewise linear convex function ondom f = R
d and let

ξ be normally distributed with nonsingular covariance matrix. Then the infinite
differentiability of the ANOVA approximation fd−1 of f (given by (20)) is a generic
property.

Proof. Let µ be the mean vector andΣ be the nonsingular covariance matrix ofξ .
Let Q be the orthogonal matrix satisfyingQΣ Q⊤ = ∆ = diag(σ2

1 , . . . ,σ2
d ) andρ be

the normal density with meanµ and covariance matrix∆ . Thenσ j > 0, j = 1, . . . ,d,
andρ is equal to the product of all one-dimensional marginal densities ρk, where
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ρk(t) =
1√

2πσk
exp

(

− (t −µk)
2

2σ2
k

)

(k= 1, . . . ,d),

and allρk belong toC∞
b (R). Hence, the result follows from Corollary 1. �

6 Dimension reduction of piecewise linear convex functions

In order to replace a piecewise linear convex functionf by the sumfd−1 of ANOVA
terms until orderk≤ d−1, we need that the efficient truncation dimensiondT of f is
at leastk. Hence, one is usually interested in determining and reducing the efficient
dimension. This topic is discussed in a number of papers, e.g., [3, 16, 19, 28, 30, 32].
In thenormal casethere exist universal (i.e., independent on the structure of f ) and
problem dependent principles for dimension reduction.
A universal principle for dimension reduction isprincipal component analysis
(PCA). In PCA one uses the decompositionΣ = UPU⊤

P of Σ with the matrix
UP = (

√
λ1u1, . . . ,

√

λdud), the eigenvaluesλ1 ≥ ·· · ≥ λd > 0 of Σ in decreasing
order and the corresponding orthonormal eigenvectorsui , i = 1, . . . ,d, of Σ . Sev-
eral authors report an enormous reduction of the efficient truncation dimension in
financial models if PCA is used (see, for example, [30, 31]). However, PCA may
become expensive for larged and the reduction effect depends on the eigenvalue
distribution.
Severaldimension reduction techniquesexploit the fact that a normal random vector
ξ with meanµ and covariance matrixΣ can be transformed byξ = Bη + µ and
any matrix B satisfyingΣ = BB⊤ into a standard normal random vectorη with
independent components. The following equivalence principle is proved as Lemma
1 in [32].

Proposition 4. Let Σ be a d× d nonsingular covariance matrix and A be a fixed
d×d matrix such that AA⊤ = Σ . Then it holdsΣ = BB⊤ if and only if B is of the
form B= AQ with some orthogonal d×d matrix Q.

To apply the proposition, one may chooseA = LC, where LC is the standard
Cholesky matrix, orA=UP. Then any other decomposition matrixB with Σ =BB⊤

is of the formB= AQ with some orthogonal matrixQ.
A dimension reduction approach now consists in determininga good orthogonal
matrix Q such that the truncation dimension is minimized by exploiting the struc-
ture of the underlying integrandf . Such an approach is proposed in [11] for linear
functions and refined and extended in [32].
Piecewise linear convex functions are of the form

f (ξ ) = G(a⊤1 ξ +α1, . . . ,a
⊤
ℓ ξ +αℓ), (21)

whereG(t1, . . . , tℓ) = max{t1, . . . , tℓ}. Hence,f is as considered in [32] shortly after
Theorem 3. The transformed function is
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f̂ (η) = f (Bη+µ) =G(B⊤a1)
⊤η1+a⊤1 µ+α1, . . . ,(B

⊤aℓ)
⊤ηd+a⊤ℓ µ+αℓ). (22)

In order to minimize the truncation dimension off̂ in (22), the following result is
recorded from [32, Theorem 2] (see also Proposition 1 in [11]).

Proposition 5. Let ℓ= 1. If the matrix Q= (q1, . . . ,qd) is determined such that

q1 =± A⊤a1

‖A⊤a1‖
and Q is orthogonal, (23)

the transformed function is

f̂ (η) = G(‖A⊤a1‖η1+a⊤1 µ +α1).

and has efficient truncation dimension dT = 1.

The orthogonal columnsq2, . . . ,qd may be computed by the Householder transfor-
mation. In case 1< ℓ≤ d it is proposed in [32] to determine the orthogonal matrix
Q= (q1, . . . ,qd) by applying an orthogonalization technique to the matrix

M = (A⊤a1, . . . ,A
⊤aℓ,bℓ+1, . . . ,bd), (24)

where we assume that thea1, . . . ,aℓ are linearly independent andbℓ+1, . . . ,bd are
selected such thatM has rankd. It is shown in [32, Theorem 3] that then the function
f̂ depends only onη1, . . . ,ηℓ. The practical computation may again be done by the
Householder transformation applied toM in (24).
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