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Abstract. We consider convex optimization problems with kth order stochastic dominance
constraints for k ≥ 2. We discuss distances of random variables that are relevant for the dominance
relation and establish quantitative stability results for optimal values and solution sets in terms of
a suitably selected probability metrics. Moreover, we provide conditions ensuring that the optimal
value function is Hadamard directionally differentiable. Finally, we discuss some implications of
the results for empirical (Monte Carlo, sample average) approximations of dominance constrained
optimization models.

1. Introduction. We analyze convex optimization models with stochastic dom-
inance constraints of second and higher order formulated as follows:

(1.1) min{f(x) : x ∈ D, G(x, ξ) �(k) Y }.

Here D is a nonempty closed convex subset of Rm, Ξ is a closed subset of Rs, f :
R

m → R is a convex function. The mapping G : Rm ×R
s → R is continuous, concave

with respect to the first argument and satisfies the linear growth condition

(1.2) |G(x, z)| ≤ K(B)max{1, ‖z‖} (x ∈ B, z ∈ Ξ)

for every bounded subset B ⊂ R
m and some constant K(B) (depending on B). Fur-

ther, ξ denotes a s-dimensional random vector with support Ξ and Y is a real random
variable on some probability space. The relation �(k) is the stochastic dominance of
order k, k ∈ N. The constraint G(x, ξ) �(k) Y is our main focus. It indicates that the
random variable G(x, ξ) is stochastically larger than the random variable Y , which
plays the role of a benchmark outcome with an acceptable probability distribution.
We assume that k ≥ 2 and that both ξ and Y have finite moments of order k − 1.
The stability properties of such models with respect to perturbations of the underly-
ing probability distributions is an important issue as in many practical situations the
distributions of Y and ξ are modeled on the basis of observations or experiments. Our
goal is to study stability and sensitivity of the optimal value and the optimal solutions
of these problems when the probability distributions involved are approximated. We
establish conditions for stability and sensitivity of the optimal value, as well as limit
theorems of its empirical estimates.

The relation of stochastic dominance is a fundamental concept of statistics, deci-
sion theory, and economics. A random variable X dominates another random variable
Y in the k-order, which we write X �(k) Y , if

(1.3) E[u(X)] ≥ E[u(Y )]

for every nondecreasing function u(·) from a certain set of functions, called a gener-
ator of the order �(k). The precise definition and equivalent characterizations of the
relation are given in Section 2.
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Stochastic dominance originated from the theory of majorization [17]. This re-
lation was introduced to statistics in [25] and further developed in the context of
statistical inference in [24, 2]. Numerous studies on statistical inference for stochastic
dominance are available; we refer to [9, 18] and the references ibid. The stochastic
dominance relation expresses risk-aversion, which is the basis of its popularity in eco-
nomic studies. It plays a fundamental role in the inequality and poverty analysis for
comparison of income distributions and investment decisions (see, e.g.,[12, 23, 26, 43]).
In [30, 45, 46], stochastic dominance has been applied in the area of agriculture and in-
surance. We refer the reader to the monographs [27, 40] for an overview on stochastic
orders and the stochastic dominance relation in particular.

The study of optimization problems with stochastic dominance constraints has
been initiated in [5] and continued in several papers, e.g., [6], [8]. An optimization
model with stochastic dominance constraints has been applied to financial optimiza-
tion in [7] and to electricity market models in [1, 15, 14]. In [15, 14], two-stage
problems with stochastic ordering constraints on the recourse function were consid-
ered. Stability results with respect to perturbations of the underlying probability
distribution are obtained in [4] for optimization problems with first order stochas-
tic dominance constraints. The recent paper [19] studies stability of optimization
problems with second order stochastic dominance constraints and, in particular, the
behavior of empirical approximations for such models.

In the present paper, we consider second and higher order dominance constraints
simultaneously and, in contrast to [19], we show stability with respect to distances
of probability distributions that are associated with such models in a natural way.
As in [4], we also study sensitivity of the optimal value function with respect to
the probability measures involved. More precisely, we establish Hadamard directional
differentiability of the optimal value function with respect to the underlying measures.
This property allows to apply the delta method for deriving limit theorems of optimal
values if limit theorems for the random inputs are available. This approach is used to
derive a limit theorem for empirical (Monte Carlo or sample average) approximations
of kth order stochastic dominance models.

Throughout the paper, N denotes the set of natural numbers and R
n stands for

the n-dimensional real Euclidean space, n ∈ N. Given a probability space (Ω,F ,P),
the space of random variables with finite k-th moments defined on Ω is denoted by
Lk(Ω,F ,P). For a closed subset Ξ of a Euclidean space, P(Ξ) denotes the set of all
Borel probability measures on Ξ. The expected value of a real random variableX is de-
noted by E(X). The Banach space of real-valued continuous functions over a compact
set B equipped with the norm ‖·‖∞ is denoted by C(B), where ‖f‖∞ = supx∈B |f(x)|
for f ∈ C(B). The notation Ck(Rn) stands for the set of k-times continuously differ-
entiable real-valued functions defined on R

n.

Our paper is organized as follows. In section 2 we review the definitions of stochas-
tic dominance, suitable probability metrics and some relations among them. In sec-
tion 3, we establish Lipschitz-continuity properties of the optimal value, the feasible
set, and the set of optimal solutions of the dominance constrained optimization prob-
lem, when the distributions subjected to perturbation. Section 4 contains optimality
conditions for convex optimization problems with dominance constraints, which are
used to establish Hadamard directional differentiability of the optimal value map-
ping. The implication of our results for the empirical approximations of optimization
problems with dominance constraints are discussed in section 5.
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2. Stochastic dominance constraints and metrics. Given a probability
space (Ω,F ,P) and a scalar random variable X defined on it, the real function

F
(1)
X = FX denotes the probability distribution function of X, i.e.,

(2.1) F
(1)
X (η) = P({X ≤ η}) =

∫ η

−∞

PX(dt) (∀η ∈ R).

Here PX = P ◦ X−1 denotes the probability measure on R induced by X. For any
k ∈ N, we define recursively

(2.2) F
(k+1)
X (η) =

∫ η

−∞

F
(k)
X (t)dt (∀η ∈ R).

The kth degree stochastic dominance (kSD) relation �(k) is defined by

(2.3) X �(k) Y ⇔ F
(k)
X (η) ≤ F

(k)
Y (η) (∀η ∈ R)

for any pair (X,Y ) of real random variables for which F
(k)
X and F

(k)
Y are finite. If X

and Y belong to Lk−1(Ω,F ,P), then these functions are finite due to the representa-
tion

(2.4) F
(k+1)
X (η) =

1

k!

∫ η

−∞

(η − t)kPX(dt) =
1

k!
‖max{0, η −X}‖kk (∀η ∈ R),

which is valid for any X ∈ Lk(Ω,F ,P) and k ≥ 1. The norm ‖ · ‖k in Lk is defined by

‖X‖k =
(
E(|X|k)

) 1
k (∀k ≥ 1).

Moreover, the function F
(k)
X is nondecreasing for k ≥ 1 and convex for k ≥ 2. These

and further properties of F
(k)
X are discussed, e.g., in [28, 35].

For every k ∈ N, the stochastic dominance relation �(k) introduces a partial order
in Lk−1(Ω,F ,P), which is not generated by a convex cone in that space (see [5]).

In Section 3, we use distances of real random variables that are relevant for kth
degree stochastic dominance constraints. Suitable distances are the Rachev metrics
(see [34, Section 4.4]) defined by

(2.5) Dk,p(X,Y ) :=





(∫
R

∣∣F (k)
X (η)− F

(k)
Y (η)

∣∣pdη
) 1

p

for 1 ≤ p <∞

sup
η∈R

∣∣F (k)
X (η)− F

(k)
Y (η)

∣∣ for p = ∞

for all X and Y in Lk−1(Ω,F ,P) and k ∈ N. Moreover, it holds

(2.6) Dk,p(X,Y ) = ζk,p(X,Y ) := sup
g∈Dk,p

∣∣∣∣
∫

R

g(t)PX(dt)−
∫

R

g(t)PY (dt)

∣∣∣∣

if E(Xi) = E(Y i), i = 1, . . . , k − 1 ([31, Lemma 17.1.1]). Here, Dk,p denotes the set
of continuous functions g : R → R that have measurable kth order derivatives g(k) on
R such that

∫

R

|g(k)(x)| p

p−1 dx ≤ 1 (p ∈ (1,∞]) or ess sup
x∈R

|g(k)(x)| ≤ 1 (p = 1).
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We note that the condition E(Xi) = E(Y i), i = 1, . . . , k−1, is implied by the finiteness
of ζk,p(X,Y ), since Dk,p contains all polynomials of degree k − 1. Conversely, if X
and Y belong to Lk−1 and E(Xi) = E(Y i), i = 1, . . . , k − 1, holds, then the distance
Dk,p(X,Y ) is finite.
The metric ζk,p is an ideal metric of order r = k − 1 + 1

p
, which means that

ζk,p(cX, cY ) ≤ |c|rζk,p(X,Y )

holds for all real random variables X and Y and real numbers c 6= 0. The following
estimates are known for the metrics ζk,p, k ∈ N and p ∈ [1,∞]:

ζk,p(X,Y ) ≤ ζ1,p(X,Y )(2.7)

ζ1,p(X,Y ) ≤ ck,pζk,p(X,Y )
1

p(k−1)+1 (p <∞)(2.8)

ζ1,∞(X,Y ) ≤ Ckζk,∞(X,Y )
1
k ,(2.9)

where ck,p (only depending on k and p) and Ck (only depending on k) are positive
constants. The estimate (2.7) follows by definition, (2.8) is proved as Theorem 9 in
[20, Sect. 3.10] and (2.9) in [31, Lemma 17.1.8].

The distance Dk,∞ is known as stop-loss metric of order k in risk theory (e.g.,
[13]) and the distance ζk,1 was introduced in [47, 48] and further discussed in [31,
Part IV] and [33, Chapter 6]. We note that ζ1,1 and ζ1,∞ correspond to the first order
Fortet-Mourier and Kolmogorov metric, respectively.

The following estimates are valid for the ideal metrics ζk,1 (see [48, Section 1.4]):

π(PX , PY )
1+k ≤ Ĉk ζk,1(X,Y )(2.10)

∣∣E(Xk)− E(Y k)
∣∣ ≤ k ! ζk,1(X,Y )(2.11)

for some constant Ĉk > 0, where π denotes the Prohorov distance metrizing the topol-
ogy of weak convergence of probability measures on R. Hence, a sequence of random
variables converges with respect to ζk,1 iff their probability distributions converge
weakly according to (2.10) and their kth moments converge due to (2.11).

Finally, we mention that so-called quasi-semidistances are developed in Chapter
8 of the recent monograph [35] that metrize the dual of the kth order stochastic
dominance. The distances considered here appear in [35] as upper bounds of the
relevant quasi-semidistances.

3. Stability results. If the pair (ξ, Y ) belongs to Lk−1 × Lk−1 the stochastic
dominance relation (2.3) allows the following equivalent reformulation of the opti-
mization model (1.1)

(3.1) min
{
f(x) : x ∈ D, F

(k)
G(x,ξ)(η) ≤ F

(k)
Y (η), ∀η ∈ R

}

as semi-infinite optimization problem. The feasible set is convex and closed as we
verify next.

Proposition 3.1. The general assumptions in Section 1 imply that the feasible
set of (3.1) defined as

(3.2) X (ξ, Y ) =
{
x ∈ D : F

(k)
G(x,ξ)(η) ≤ F

(k)
Y (η), ∀η ∈ R

}

is closed and convex.
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Proof. We notice that F
(k)
X monotonically decreases when X increases a.s. Fur-

thermore, the mappingX 7→ F
(k)
X is convex by virtue of [28, Proposition 3]. Therefore,

the composition mapping x 7→ F
(k)
G(x,ξ) is convex due to the concavity of the function

G(·, ξ). This proves the convexity of X (ξ, Y ). We recall that

F
(k)
G(x,ξ)(η)=

1

(k − 1)!
‖max{0, η −G(x, ξ)}‖k−1

k−1 =
1

(k − 1)!
‖Zx‖k−1

k−1,

where Zx = max{0, η − G(x, ξ)}. For a convergent sequence xn ∈ X (ξ, Y ) and
limn→∞ xn = x̄, we obtain that Zxn converges a.s. to Zx̄ = max{0, η −G(x̄, ξ)}. As
almost sure convergence together with (1.2) implies convergence in (k − 1)th mean,
we obtain that

lim
n→∞

F
(k)
G(xn,ξ)(η) = F

(k)
G(x̄,ξ)(η) for all η ∈ R.

Thus, F
(k)
G(x̄,ξ)(η) ≤ F

(k)
Y (η) and x̄ ∈ X (ξ, Y ).

Clearly, Proposition 3.1 remains valid if R in (3.1) is replaced by a compact
interval I of R. Following [5], we focus on the relaxed problem

(3.3) max
{
f(x) : x ∈ D, F

(k)
G(x,ξ)(η) ≤ F

(k)
Y (η), ∀η ∈ I

}
.

We denote the optimal value of (3.3) by v(ξ, Y ) and its solution set by S(ξ, Y ). Note
that all these quantities depend only on the probability distribution Pξ and PY of
ξ and Y . The latter means that we may write X (Pξ, PY ), v(Pξ, PY ) and S(Pξ, PY )
instead of X (ξ, Y ), v(ξ, Y ) and S(ξ, Y ). In this section we prefer the latter notation,
while in Section 4 we focus on sensitivity with respect to probability distributions.

For deriving our stability results in what follows, we utilize the kth order uniform
dominance condition (kudc) at the pair (ξ, Y ), which is introduced in [5] as a con-
straint qualification condition. Problem (3.3) satisfies kudc at (ξ, Y ) if a point x̄ ∈ D

exists such that

(3.4) min
η∈I

(
F

(k)
Y (η)− F

(k)
G(x̄,ξ)(η)

)
> 0 .

Condition (3.4) is the Slater condition for (3.3) (see also [16, 19]).
We use the following distances for measuring perturbations in Lk−1 × Lk−1. For

two pairs (ξ, Y ) and (ξ̃, Ỹ ), we define

dk((ξ, Y ), (ξ̃, Ỹ )) = ℓk−1(ξ, ξ̃) + Dk,∞(Y, Ỹ ),

where k ≥ 2 is the degree of the stochastic dominance relation and ℓk−1 is the Lk−1-
minimal distance (or Wasserstein distance of order k − 1) defined by

ℓk−1(ξ, ξ̃) := inf
{
‖ζ − ζ̃‖k−1 : Pζ = Pξ, Pζ̃ = Pξ̃

}
.

We may write ℓk−1(Pξ, Pξ̃) and Dk,∞(PY , PỸ ) instead of ℓk−1(ξ, ξ̃) and Dk,∞(Y, Ỹ ),
respectively.

Our first stability result states a quantitative continuity property of the feasible
set mapping with respect to the distance dk, where the Pompeiu-Hausdorff metric
(denoted dH) is employed to measure the distance of (bounded) sets.
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Proposition 3.2. Let D be compact and assume that the function G satisfies

|G(x, z)−G(x, z̃)| ≤ LG‖z − z̃‖

for all x ∈ D, z, z̃ ∈ Ξ and some constant LG > 0. Furthermore, we assume that the
kth order uniform dominance condition is satisfied at the pair (ξ, Y ).
Then there exist constants L > 0 and δ > 0 such that

(3.5) dH(X (ξ, Y ),X (ξ̃, Ỹ )) ≤ Ldk((ξ, Y ), (ξ̃, Ỹ )),

whenever the pair (ξ̃, Ỹ ) is chosen such that dk((ξ, Y ), (ξ̃, Ỹ )) < δ.

Proof. First we consider the set-valued mapping F

F(x) =

{ {
r ∈ R : F

(k)
G(x,ξ)(η) ≤ F

(k)
Y (η) + r, ∀η ∈ I

}
if x ∈ D

∅ if x 6∈ D

from R
m to R. The graph of F and the range of F are of the form

gphF =

{
(x, r) ∈ D × R : max

η∈I

(
F

(k)
G(x,ξ)(η)− F

(k)
Y (η)

)
≤ r

}

F(Rm) =

[
inf
x∈D

max
η∈I

(
F

(k)
G(x,ξ)(η)− F

(k)
Y (η)

)
,+∞

)
.

In particular, gphF is convex and closed and 0 belongs to the interior of F(Rm) due
to the uniform dominance condition. The Robinson-Ursescu theorem [37, Theorem

9.48] then implies the existence of δ̂ > 0 and a, b ∈ R+ such that

(3.6) d(x,F−1(r)) ≤ (a‖x− x̃‖+ b)d(r,F(x))

holds whenever |r| ≤ δ̂, x ∈ D and x̃ ∈ F−1(0) = X (ξ, Y ). As D is bounded, setting
L̂ := a diamD + b in (3.6) we obtain the estimate

(3.7) d(x,F−1(r)) ≤ L̂d(r,F(x)) = L̂max

{
0,max

η∈I

(
F

(k)
G(x,ξ)(η)− F

(k)
Y (η)

)
− r

}

whenever |r| ≤ δ̂ and x ∈ D. Hence, (3.7) implies for any x ∈ X (ξ̃, Ỹ )

d(x,X (ξ, Y ))= d(x,F−1(0)) ≤ L̂max

{
0,max

η∈I

(
F

(k)
G(x,ξ)(η)− F

(k)
Y (η)

)}

≤ L̂max

{
0,min

η∈I

(
F

(k)

Ỹ
(η)− F

(k)

G(x,ξ̃)
(η)

)
+max

η∈I

(
F

(k)
G(x,ξ)(η)− F

(k)
Y (η)

)}

≤ L̂

(
max
η∈I

∣∣∣F (k)

G(x,ξ̃)
(η)− F

(k)
G(x,ξ)(η)

∣∣∣+ Dk,∞(Y, Ỹ )

)
.

Furthermore, the equivalence of x ∈ F−1(r(x)) and x ∈ X (ξ̃, Ỹ ) holds if

r(x) := max
η∈I

(F
(k)
G(x,ξ)(η)− F

(k)
Y (η))−max

η∈I
(F

(k)

G(x,ξ̃)
(η)− F

(k)

Ỹ
(η)).

For any x ∈ D, we have the estimate

|r(x)| ≤ max
η∈I

∣∣∣F (k)
G(x,ξ)(η)− F

(k)

G(x,ξ̃)
(η)

∣∣∣+ Dk,∞(Y, Ỹ ).
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Hence, we obtain from (3.7) for any x ∈ X (ξ, Y )

d(x,X (ξ̃, Ỹ )) = ≤ L̂max

{
0,max

η∈I

(
F

(k)
G(x,ξ)(η)− F

(k)
Y (η)

)
− r(x)

}

≤ L̂max

{
0,max

η∈I

(
F

(k)

G(x,ξ̃)
(η)− F

(k)

Ỹ
(η)

)}

≤ L̂

(
max
η∈I

∣∣∣F (k)

G(x,ξ̃)
(η)− F

(k)
G(x,ξ)(η)

∣∣∣+ Dk,∞(Y, Ỹ )

)
.

In a final step, we derive an estimate for

max
η∈I

∣∣∣F (k)

G(x,ξ̃)
(η)− F

(k)
G(x,ξ)(η)

∣∣∣ .

for any x ∈ D. To this end, we consider the real function t → max{0, η − t}k−1 for
fixed η ∈ I. The function is differentiable for k > 2 and we obtain from the mean
value theorem for any η ∈ I:

∣∣max{0, η − t}k−1−max{0, η − t̃ }k−1
∣∣≤(k − 1)max{|η − t|, |η − t̃ |}k−2|t− t̃ |
≤KI(k − 1)max{1, |t|, |t̃ |}k−2|t− t̃ |(3.8)

for some constant KI ≥ 1 (depending on I) and all t, t̃ ∈ R. Clearly, (3.8) also holds
for k = 2. We set g(x, ξ, η) := max{0, η − G(x, ξ)} and obtain from (3.8) and (1.2)
for all x ∈ D, η ∈ I and random vectors ξ̃:

∣∣F (k)
G(x,ξ)(η)− F

(k)

G(x,ξ̃)
(η)

∣∣≤ 1

(k − 1)!

∣∣‖g(x, ξ, η)‖k−1
k−1 − ‖g(x, ξ̃, η)‖k−1

k−1

∣∣

≤ 1

(k − 1)!
E
∣∣g(x, ξ, η)k−1 − g(x, ξ̃, η)k−1

∣∣

≤ KI

(k − 2)!
E[max{1, |G(x, ξ)|, |G(x, ξ̃)|}k−2|G(x, ξ)−G(x, ξ̃)|]

≤ LGKI

(k − 2)!
E[(K(D)max{1, ‖ξ‖, ‖ξ̃‖})k−2‖ξ − ξ̃‖]

Next we use Hölder’s inequality (with p = k − 1 and q = k−1
k−2 ) to obtain

E[max{1, ‖ξ‖, ‖ξ̃‖}k−2‖ξ − ξ̃‖] ≤
(
E
[
max{1, ‖ξ‖, ‖ξ̃‖}k−1

]) k−2
k−1

(
E
[
‖ξ − ξ̃‖k−1

]) 1
k−1

= ‖max{1, ‖ξ‖, ‖ξ̃‖}‖k−2
k−1‖ξ − ξ̃‖k−1

≤
(
1 + ‖ξ‖k−1 + ‖ξ̃‖k−1

)k−2‖ξ − ξ̃‖k−1.

Altogether, we arrive at the estimate

∣∣F (k)
G(x,ξ)(η)− F

(k)

G(x,ξ̃)
(η)

∣∣ ≤ LGKI(K(D))k−2

(k − 2)!

(
1 + ‖ξ‖k−1 + ‖ξ̃‖k−1

)k−2‖ξ − ξ̃‖k−1,

Let L(k) denote the leading constant at the right-hand side of the final estimate.
Then the Pompeiu-Hausdorff distance allows the estimate

dH(X (ξ, Y ),X (ξ̃, Ỹ )) ≤ L̂(1 + L(k))
(
1 + ‖ξ‖k−1 + ‖ξ̃‖k−1

)k−2
dk((ξ, Y ), (ξ̃, Ỹ ))
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if the pair (ξ̃, Ỹ ) ∈ Lk−1 × Lk−1 satisfies the inequality

(3.9) (1 + L(k))
(
1 + ‖ξ‖k−1 + ‖ξ̃‖k−1

)k−2
dk((ξ, Y ), (ξ̃, Ỹ )) < δ̂.

Finally, we select δ > 0 such that the the condition dk((ξ, Y ), (ξ̃, Ỹ )) < δ implies that
the estimate (3.9) is valid. By setting

L := L̂(1 + L(k))
(
1 + ‖ξ‖k−1 + δ

)k−2

we arrive at the desired estimate (3.5).
It is worth noting that for large k the Lipschitz modulus L(k) of the ℓk−1 part of dk

in (3.5) (and later also in (3.12)) gets smaller if ‖ξ‖k−1 grows at most exponentially
with k. Hence, higher order stochastic dominance constraints may have improved
stability properties.

If D is compact, the solution set S(ξ, Y ) of (3.1) is nonempty for all pairs (ξ, Y ) ∈
L2
k−1. In order to derive quantitative continuity property of the solution set mapping

(ξ, Y ) → S(ξ, Y ), a growth condition of the objective function on a neighborhood
of the original solution set is needed. To this end, we consider the (nondecreasing)
growth function ψ(ξ,Y ) of the objective of (3.3)

(3.10) ψ(ξ,Y )(τ) := inf{f(x)− v(ξ, Y ) : d(x, S(ξ, Y )) ≥ τ, x ∈ X (ξ, Y )}
and the associated function

(3.11) Ψ(ξ,Y )(θ) := θ + ψ−1
(ξ,Y )(2θ) (θ ∈ R+),

where we set ψ−1
(ξ,Y )(t) = sup{τ ∈ R+ : ψ(ξ,Y )(τ) ≤ t}. Clearly, Ψ(ξ,Y ) is increasing

and Ψ(ξ,Y )(0) = 0 (see also [37, Theorem 7.64]). The following is the main stability
result of our paper.

Theorem 3.3. Let D be compact and assume that the function G satisfies

|G(x, z)−G(x, z̃)| ≤ LG‖z − z̃‖
for all x ∈ D, z, z̃ ∈ Ξ and some constant LG > 0. Furthermore, we assume that the
kth order uniform dominance condition is satisfied at (ξ, Y ).
Then there exist positive constants L and δ such that

|v(ξ, Y )− v(ξ̃, Ỹ )| ≤ Ldk((ξ, Y ), (ξ̃, Ỹ ))(3.12)

sup
x∈S(ξ̃,Ỹ )

d(x, S(ξ, Y )) ≤ Ψ(ξ,Y )(Ldk((ξ, Y ), (ξ̃, Ỹ )))(3.13)

whenever dk((ξ, Y ), (ξ̃, Ỹ )) < δ. The function Ψ(ξ,Y ) is defined in (3.11).
The ideas for proving (3.12) and (3.13) go back to [21] and [37, Chapter 7.J] (see

also [38, Theorem 9]). For the convenience of the reader a proof of Theorem 3.3 is
provided in the appendix of this paper.

We note that the results may be extended in a straightforward way to the case
that a finite number of kth order dominance constraints, i.e.,

F
(k)
Gj(x,ξ)

(η) ≤ F
(k)
Yj

(η) (∀η ∈ R, j = 1, . . . , J, J ∈ N)

are present in (3.1). The stability results remain valid if the following extended
uniform dominance condition ([6])

(3.14) min
j=1,...,J

min
η∈I

(
F

(k)
Y (η)− F

(k)
G(x̄,ξ)(η)

)
> 0

8



is valid for some x̄ ∈ D. Moreover, Theorem 3.3 also extends to the case that the
objective f in (3.1) is replaced by an expectation function of the form E(g(·, ξ)) where
g is a real-valued function defined on R

m×R
s, convex in the first variable and Lipschitz

continuous with respect to ξ.

4. Optimal value sensitivity. Next, we study directional differentiability prop-
erties of the optimal value of (3.3) with respect to the probability distributions Pξ

and PY of ξ and Y , respectively. To this end, we consider the Banach space Y = C(I),
the closed convex cone

K = {y ∈ Y : y(η) ≥ 0, ∀η ∈ I} ⊂ Y,

the convex-analysis-indicator functions ID and IK of D and K, and the function
ϕ : Rm × Y × P(Ξ)× P(R) → R̄ given by

ϕ(x, y;Pξ, PY ) := f(x) + ID(x) + IK(G(x;Pξ, PY ) + y) ,

where G : Rm × P(Ξ)× P(R) → Y is given by

G(x;Pξ, PY )(η) = F
(k)
Y (η)− F

(k)
G(x,ξ)(η)

=

∫

R

max{0, η − t}k−1

(k − 1)!
PY (t)−

∫

Ξ

max{0, η −G(x, z)}k−1

(k − 1)!
Pξ(dz)(4.1)

for every x ∈ R
m and η ∈ I. Note that the domain of ϕ(·, ·;Pξ, PY ) is nonempty and

that ϕ(·, ·;Pξ, PY ) is lower semicontinuous and convex.
We also note that the definition of G(x, ·, ·) can be extended from pairs of proba-

bility measures to pairs of finite nonnegative measures having finite moments of order
k−1, and even to pairs of finite signed measures via the Hahn-Jordan decomposition.
Hence, we may also extend the domain of ϕ(x, y; ·, ·) to such pairs of measures for
every (x, y) ∈ R

m × Y.
Denote dual pairing between of Y and Y∗ by 〈·, ·〉. Here Y∗ is isometrically

isomorph to the space rca(I) of regular countably additive measures µ on I having
finite total variation |µ|(I), and the dual pairing is given by

〈µ, y〉 =
∫

I

y(η)µ(dη) (∀y ∈ Y, µ ∈ rca(I)).

The next result enables us to state our main result.
Lemma 4.1. Let k ≥ 2 and I = [a, b]. For each nonnegative µ ∈ rca(I) there

exists u ∈ Uk−1 such that the identity

(4.2) 〈µ, F (k)
X 〉 =

∫

I

F
(k)
X (η)µ(dη) = −E[u(X)]

holds for every X ∈ Lk−1. Here, Uk−1 denotes the set of all functions u ∈ Ck−1(R),
for which there exists a nonnegative, nonincreasing, left-continuous, bounded function
ϕ : I → R such that

u(k−1)(t) = (−1)kϕ(t) for almost all t ∈ I = [a, b],

u(k−1)(t) = (−1)kϕ(a) for t < a,

u(t) = 0 for t ≥ b,

u(i)(b) = 0 for i = 1, . . . , k − 2,
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where the symbol u(i) denotes the ith derivative of u. In particular, the functions
u ∈ Uk−1 are nondecreasing and concave on R.

Proof. Let µ ∈ rca(I) be nonnegative. Then µ is extended to the Borel field of
R by assigning measure 0 to Borel sets not intersecting I. The function u ∈ Uk−1 is
then defined as in the proof of [5, Theorem 7.1] by putting

u(k−1)(t) = (−1)kµ([t, b]) for almost all t ≤ b,

u(t) = 0, for t ≥ b,

u(i)(b) = 0, for i = 1, . . . , k − 2.

As in the proof of [5, Theorem 7.1] one obtains for any X ∈ Lk−1

〈µ, F (k)
X 〉 = (−1)k

∫ b

−∞

F
(k)
X (η)du(k−1)(t) = −

∫ b

−∞

u(t)dFX(t) = −E[u(X)]

via integration by parts k − 1 times.
Define the Lagrange-like function: L : Rm × Uk−1 → R as follows:

L(x, u;Pξ, PY ) := f(z)−
∫

Ξ

u(G(x, z))Pζ(dz) +

∫

R

u(t)PZ(dt)

We formulate optimality conditions for problem (3.1).
Theorem 4.2. Let k ≥ 2 and I = [a, b]. Assume the kth order uniform domi-

nance condition for problem (3.1) at (ξ, Y ). If a feasible point x̂ ∈ D is an optimal
solution of (3.1) then a function û ∈ Uk−1 exists so that

L(x̂, û;Pξ, PY ) = min
x∈D

L(x, û, Pξ, PY )(4.3)
∫

Ξ

û(G(x̄, z))Pζ(dz) =

∫

R

û(t)PZ(dt)(4.4)

If x̂ satisfies the dominance constraint and (4.3)-(4.4) for some function û ∈ Uk−1,
then x̂ solves (3.1). Furthermore, the dual problem to (3.1) at (ξ, Y ) is

(4.5) max
u∈Uk−1

[
inf
x∈D

[
f(x) + E (u(G(x; ξ)))− E (u(Y ))

]]

and the duality relation holds.
Proof. We note that problem (3.1) can be cast in the setting of Example 4 on

p. 26 of [36]) by considering the dominance constraint as a constraint in the space of
continuous functions: G(x;Pξ, PY ) ∈ K ⊂ Y. The polar cone of K is

K− = {µ ∈ rca(I) : 〈µ, y〉 ≤ 0, ∀y ∈ K} = {µ ∈ rca(I) : µ ≤ 0}.
The Lagrangian Λ associated with problem (3.1) can be formulated as follows:

Λ(x, µ;Pξ, PY ) =





f(x) + 〈µ,G(x;Pξ, PY )〉 if x ∈ D, µ ∈ K−,

−∞ if x ∈ D, µ 6∈ K−,

+∞ if x 6∈ D.

The optimality conditions for problem (3.1) state that if a feasible point x̂ is an
optimal solution, then a measure µ̂ ∈ K− exists, so that

Λ(x̂, µ̂;Pξ, PY ) = min
x∈D

Λ(x, µ̂;Pξ, PY )(4.6)

〈µ̂,G(x̂;Pξ, PY )〉 = 0.(4.7)
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The dual problem has the following form (cf. [36, (5.13)])

(4.8) max
{

inf
x∈D

{f(x) + 〈µ,G(x;Pξ, PY )〉} : µ ∈ K−

}
,

Using Lemma 4.1, we associate a function û ∈ Uk−1 with the measure µ̂ and reformu-
late the Lagrangian Λ to the following form:

Λ(x, µ̂;Pξ, PY ) = L(x, û;Pξ, PY ) = f(x) +

∫

Ξ

u(G(x, z))Pζ(dz)−
∫

R

u(t)PZ(dt)

whenever x ∈ D and µ ∈ K− The optimality conditions and the dual problem are
reformulated using û and the new Lagrangian has the desired form. The duality
relation holds due to the convexity of the problem.

The optimal value of problem (3.3) has the representation

(4.9) v(Pξ, PY ) = inf
x∈Rm

ϕ(x, 0;Pξ, PY ).

Next, we derive conditions such that the optimal value function v given by (4.9)
is Hadamard directionally differentiable at (Pξ, PY ), where we equip the space P(Ξ)×
P(R) with the distance

dk((Pξ̃, PỸ ), (Pξ, PY )) = Dk,∞(Pξ, Pξ̃) + Dk,∞(PY , PỸ ).

More precisely, we consider the subset of P(Ξ)×P(R), where the distance dk is finite.
The following is the main result of this section.

Theorem 4.3. Let D be compact and k ≥ 2. Assume that the kth order uniform
dominance condition is satisfied at (ξ, Y ) and that the solution of problem (3.1) is
unique. Then the optimal value function v has the following directional derivative of
Hadamard type at (Pξ, PY ) into direction (Pζ , PZ)

v′(Pξ, PY ;Pζ , PZ) = lim
n→∞

1

tn

(
v(Pξ + tnPζn , PY + tnPZn

)− v(Pξ, PY )
)

for all sequences (tn) and ((Pζn , PZn
) converging to 0+ and (Pζ , PZ) (with respect to

dk), respectively. The Hadamard directional derivative is of the form

(4.10) v′(Pξ, PY ;Pζ , PZ) = sup
u ∈ U∗

k−1

{∫

R

u(t)PZ(dt)−
∫

Ξ

u(G(x̄, z))Pζ(dz)
}
,

where {x̄} = S(Pξ, PY ) and U∗
k−1 denotes the set of solutions to problem (4.5).

Proof. We consider the following auxiliary function optimal value function

(4.11) w(y) := inf
x∈Rm

ϕ(x, y;Pξ, PY )

is convex on Y. As the set D is nonempty and compact, ϕ is proper and the func-
tion w is proper and lower semicontinuous as well. Furthermore, for any x ∈ D a
point ȳ exists such that G(x;Pξ, PY ) = ȳ ∈ intK. Thus, int dom (w) is nonempty.
Consequently, w is continuous on int dom (v). Hence, for any ȳ ∈ int dom (w), the
convex subdifferential ∂w(ȳ) is nonempty, convex, bounded and weakly ∗ compact in
the topological dual Y∗ of Y. Furthermore, w is Hadamard directionally differentiable
at ȳ and the following formula holds (see, [36, Theorem 17]):

lim
tn→0+
dn→d

1

tn

(
w(ȳ + tndn)− w(ȳ)

)
= w′(ȳ, d) = sup

µ∈∂w(ȳ)

〈µ, d〉 (∀d ∈ Y).
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Here, ∂w(ȳ) is the solution set S∗(Pξ, PY ) of the dual (4.8).
Now, let (tn) be a sequence tending to 0+, and Pζ , PZ be contamination measures

such that for any random variables ζ and Z having probability distributions Pζ and
PZ respectively, it holds ζ, Z ∈ Lk−1. Additionally, we require

(4.12) lim
n→∞

dk((Pζn , PZn
), (Pζ , PZ)) = lim

n→∞
Dk,∞(Pζn , Pζ) + Dk,∞(PZn

, PZ)
)
= 0.

Using the definition (4.1) of G we get for any x ∈ D

ϕ(x, 0, Pξ + tnPζn , PY + tnPZn
) = f(x) + ID(x) + IK

(
G(x;Pξ + tnPζn , PY + tnPZn

)
)

= f(x) + ID(x) + IK
(
G(x;Pξ, PY ) + tnyn(x)

)

= ϕ(x, tnyn(x), Pξ, PY )

where yn(x) = G(x;Pζn , PZn
) for x ∈ D. Due to (3.13) in Theorem 3.3 there exist

x̄n in S(Pξ + tnPζn , PY + tnPZn
) such that the sequence (x̄n) converges to x̄. Due

to (4.12) the sequence (yn(x̄n)) converges to y = G(x̄;Pζ , PZ) ∈ Y (see the proof of
Proposition 3.2). Hence, we obtain

(4.13)

lim
n→∞

1

tn

(
v(Pξ + tnPζn , PY + tnPZn

)− v(Pξ, PZ)
)

= lim
n→∞

1

tn
(w(tnyn(x̄n))− w(0)) = sup

µ∈∂w(0)

〈µ, y〉

= sup
µ∈ S∗(Pξ, PY )

〈µ,G(x̄;Pζ , PZ)〉.

Using Lemma 4.1 again we pass to the dual problem (4.5) and transform the
right-hand side of (4.13) to obtain

v′(Pξ, PY ;Pζ , PZ) = lim
n→∞

1

tn

(
v(Pξ + tnPζn , PY + tnPZn

)− v(Pξ, PY )
)

= sup
u ∈ U∗

k−1

{E[u(Z)]− E[u(G(x̄, ζ))]}

where U∗
k−1 denotes the set of solutions to problem (4.5).

Theorem 4.3 is very similar to the directional differentiability result [4, Corol-
lary 3.7] for optimal values of optimization problems with first order dominance con-
straints, but provides Hadamard directional differentiability in case of kth order dom-
inance constraints with k ≥ 2. We note that Theorem 4.3 extends in a straightforward
way to the case of a finite number of kth order dominance constraints if the extended
uniform dominance condition (3.14) is valid.

Under the assumptions of Theorem 4.3, the solution set of problem (4.8) is weakly∗

compact, which implies the existence of a measure µ̃ for which the supremum at the
right-hand side of (4.13) is attained. A function ũ ∈ U∗

k−1 corresponds to this measure
according to Lemma 4.1. We call this function a shadow utility function and obtain
the following corollary.

Corollary 4.4. Under the assumptions of Theorem 4.3, a shadow utility func-
tion ũ exists such that the Hadamard-directional derivative of the optimal value func-
tion v at (Pξ, PY ) in direction (Pζ , PZ) has the form

v′(Pξ, PY ;Pζ , PZ) =

∫

R

ũ(t)PZ(dt)−
∫

Ξ

ũ(G(x̄, z))Pζ(dz)
}
,

where {x̄} = S(Pξ, PY ) and ũ is a solution of problem (4.5).
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5. Empirical approximations of optimization models with kth order

dominance constraints. We assume that a sequence (ξn, Yn) of independent and
identically distributed random vectors on some probability space with values in Ξ×R

are given such that Pξ1 = Pξ and PY1
= PY . Let P

(n)
ξ and P

(n)
Y denote the (random)

empirical measures

P
(n)
ξ =

1

n

n∑

i=1

δξi and P
(n)
Y =

1

n

n∑

i=1

δYi
(n ∈ N),

where δz denotes the unit mass at z in Ξ or R. Inserting the empirical measures into
(3.3) instead of Pξ and PY , respectively, leads to the empirical approximation of (3.3)

(5.1)

min f(x)

s.t.

n∑

i=1

[
max{0, η −G(x, ξi(·))}

]k−1

≤
n∑

i=1

[
max{0, η − Yi(·)}

]k−1

, ∀η ∈ I,

x ∈ D.

for any n ∈ N. We note that the dominance constraints in (5.1) for k = 2 may
be reformulated as in [6, Section 5] or in [22]. Here, we are only interested in the
asymptotic behavior of the empirical approximations (5.1) for n tending to ∞.

We begin with properties of the empirical process

Eng :=
√
n
(
P

(n)
ξ × P

(n)
Y − Pξ × PY

)
g =

1√
n

n∑

i=1

(
δξi × δYi

− Pξ × PY

)
g

=
1√
n

n∑

i=1

(
g(ξi, Yi)−

∫

Ξ

∫

R

g(z, t)Pξ(dz)PY (dt)
)

(5.2)

evaluated at g belonging to some class Γk of real-valued measurable functions on Ξ×R.
Here, Pξ × PY denotes the product measure. Boundedness or convergence properties
of the empirical process depend on the size of the class Γ measured in terms of certain
covering or bracketing numbers in L2(Ξ×R, Pξ×PY ). To introduce the latter concept,

we consider the space L2 to be equipped with the usual norm ‖g‖2 = (P |g|2) 1
2 , where

P = Pξ × PY . The bracketing number N[ ](ε,Γ,L2(Ξ× R, P )) is the minimal number
of brackets [l, u] = {f ∈ L2(Ξ× R, P ) : l ≤ f ≤ u} with ‖l − u‖2 < ε needed to cover

the class Γ. We define the closed convex subset D̂ of D by setting

D̂ =
{
x ∈ D : G(x, Pξ, PY ) ∈ K

}
,

where the mapping G is defined in (4.1).
Under the assumptions of Theorem 4.3, a shadow utility û ∈ Uk−1 exists due to

Corollary 4.4. It holds

v(Pξ, PY ) = inf
x∈D̂

L(x, û;Pξ, PY ).

We introduce a function class Γk for optimization models with k-th order dominance
constraints as follows:

Γk =
{
gx : gx(z, t) = f(x) + û(G(x, z))− û(t)

)
, (z, t) ∈ Ξ×Υ, x ∈ D̂

}
,
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where û ∈ U∗
k−1 is any shadow utility for this problem.

Proposition 5.1. Assume that the function G(·, z) is Lipschitz continuous with
a uniform modulus LG (not depending on z ∈ Ξ) and the assumptions of Theorem 4.3.
Let D and the supports Ξ = supp(Pξ) and Υ = supp(PY ) of Pξ and PY be compact.
Then the class Γk is a Donsker class, i.e., the empirical process {Eng : g ∈ Γk} given
by (5.2) converges in distribution to a Gaussian limit process G (with zero mean) in
the space ℓ∞(Γk) (of bounded functions on Γk) equipped with supremum norm.

Proof. All functions gx are real-valued and bounded for every x ∈ D̂ due to
the compactness of the set Ξ × Υ and the continuity of the functions involved. The
function f is convex and, therefore, it is Lipschitz continuous over the compact set
D̂ with Lipschitz constant Lf . Owing to the continuity of the function G(x, ·) and

the compactness of Ξ, the image G(D̂,Ξ) is contained in a compact interval [a, b].
The function û is concave and, hence, Lipschitz continuous on any compact interval
[a, b] ⊂ R. Denoting its Lipschitz modulus by Lu, we obtain the following sequence
of inequalities.

|gx(z, t)− gx̃(z, t)| ≤
∣∣f(x) + û(G(x, z))− û(t)− f(x̃)− û(G(x̃, z)) + û(t)

∣∣
≤ |f(x)− f(x̃)|+

∣∣û(G(x, z))− û(G(x̃, z))
∣∣

≤ (Lf + LuLG)‖x− x̃‖

Using [44, Example 19.7], we infer that

N[ ](ε,Γk,L2(Ξ×Υ, P )) ≤ C̄ε−m

holds for some constant C̄ > 0 (depending on the diameter of D). Hence, the following
bound holds for the bracketing integral:

J[ ](1,Γk,L2(Ξ×Υ, P )) =

∫ 1

0

√
logN[ ](ε,Γk,L2(Ξ×Υ, P ))dε

≤
∫ 1

0

√
log C̄ε−mdε ≤

√
log C̄ +

√
m

∫ 1

0

ε−
1
2 dε .

We conclude that the bracketing integral is finite and the result follows from [44,
Theorem 19.5].

The next result on the functional delta method is Theorem 7.59 in [42]. For
further background on the delta method we refer to [44, Section 20] and to [39].

Proposition 5.2. Let B1 and B2 be Banach spaces equipped with their Borel
σ-fields and B1 be separable. Let (Xn) be random elements of B1, h : B1 → B2 be a
mapping and (τn) be a sequence of positive numbers tending to infinity as n→ ∞. If
for some θ ∈ B1 the sequence (τn(Xn − θ)) converges in distribution to some random
element X of B1 and h is Hadamard directionally differentiable at µ, it holds

τn(h(Xn)− h(θ))
d−→ h′(θ;X) ,

where
d−→ denotes convergence in distribution.

Now, we are ready to prove a limit theorem for the optimal values v(P
(n)
ξ , P

(n)
Y )

of the empirical approximations (5.1) to (3.3).
Theorem 5.3. Under the assumptions of Theorem 4.3 and Proposition 5.1, the

optimal values v(P
(n)
ξ , P

(n)
Y ), n ∈ N, satisfy the limit theorem

√
n
(
v(P

(n)
ξ , P

(n)
Y )− v(Pξ, PY )

) d−→ E[û(Z)]− E[û(G(x̄, ζ))]}
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where {x̄} = S(Pξ, PY ), û ∈ U∗
k−1 as defined in Theorem 4.2 and (ζ, Z) are normally

distributed with zero mean.
Proof. We consider the separable Banach space B1 = C(D) of real-valued con-

tinuous functions on D, B2 = R and the infimal mapping h : C(D) → R defined by
h(g) = infx∈D g(x). As h is concave and Lipschitz continuous (with modulus 1), it
is Hadamard directionally differentiable. In particular, we consider the continuous
function g,

g(x) = (Pξ × PY )gx = L(x, û;Pξ, PY )

and its infimum

v(Pξ, PY ) = inf
x∈D̂

L(x, û;Pξ, PY ).

The Hadamard directional derivative

h′(g; d) = min{d(y); y ∈ argmin
x∈D̂

g(x)}

of h evaluated at g into direction d, d(x) = (Pζ ×PZ)gx is just v′(Pξ, PY ;Pζ , PZ) and
is evaluated in Theorem 4.3.

The limit theorem follows from Proposition 5.1, where the random variable Xn

(with values in C(D̂)) is given by Xn(x) = (P
(n)
ξ × P

(n)
Y )gx, θ is θ(x) = (Pξ × PY )gx

and τn =
√
n. The role of X in Proposition 5.2 is played by the Gaussian limit process

G in Proposition 5.1.
The latter result allows to apply resampling techniques, in particular, subsampling

(cf. [29]) to determine asymptotic confidence intervals for the optimal value v(Pξ, PY )
in case of kth order dominance constraints (as in [11, Section 5] for the optimal value
of mixed-integer two-stage stochastic programs).

Appendix. Proof. (Theorem 3.3)
Let the pair (ξ̃, Ỹ ) ∈ L2

k−1 be such that

δ̂ := dk((ξ, Y ), (ξ̃, Ỹ )) < δ ,

where δ > 0 is the corresponding constant from Proposition 3.2. Now, let x ∈ S(ξ, Y )
and x̃ ∈ S(ξ̃, Ỹ ). Then there exists x̂ ∈ S(ξ, Y ) such that

‖x̂− x̃‖ ≤ LH δ̂ ,

where LH is the Lipschitz constant from Proposition 3.2. We obtain

v(ξ, Y )− v(ξ̃, Ỹ ) = f(x)− f(x̃)

≤ f(x)− f(x̂) + f(x̂)− f(x̃) ≤ f(x̂)− f(x̃)

≤ Lf‖x̂− x̃‖ ≤ LfLH δ̂ ,

where Lf is the Lipschitz modulus of the function f on the compact set D. Analo-

gously, we obtain the same estimate for v(ξ̃, Ỹ )− v(ξ, Y ). Hence, the estimate (3.12)
is valid with L := LfLH .

To derive the estimate (3.13), let the pair (ξ̃, Ỹ ) ∈ L2
k−1 be selected as above and

let x̃ ∈ S(ξ̃, Ỹ ). Then there exists x ∈ X (ξ, Y ) such that ‖x̃ − x‖ ≤ LH δ̂. According
to the definition of the growth function ψ(ξ,Y ) we have

f(x)− v(ξ, Y ) ≥ ψ(ξ,Y )(d(x, S(ξ, Y ))).
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Furthermore, we obtain the following chain of estimates

2Lδ̂ ≥ Lf‖x̃− x‖+ Lδ̂

≥ f(x)− f(x̃) + v(ξ̃, Ỹ )− v(ξ, Y ) = f(x)− v(ξ, Y )

≥ ψ(ξ,Y )(d(x, S(ξ, Y ))),

where B denotes the unit ball in R
m. Finally, we conclude

d(x̃, S(ξ, Y )) ≤ LH δ̂ + d(x, S(ξ, Y )

≤ LH δ̂ + ψ−1
(ξ,Y )(2Lδ̂)

≤ Ψ(ξ,Y )(max{LH , L}δ̂).

This completes the proof.
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