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Abstract.

We investigate the condition number for a complex eigenvalue of a real matrix under
real perturbations. Based on an explicit formula, it is shown that this number is never
smaller than 1/

√
2 times the corresponding condition number with respect to complex

perturbations. This result can be generalized to the condition number of an arbitrary
complex-valued function under real perturbations. This extends to related condition
numbers.
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1 Introduction

Data are typically corrupted by errors. There may be measurement errors,
linearizations or other simplifications in a mathematical model, equipment may
wear or be out of adjustment, operating conditions may vary, etc. . . . Numerical
methods for computing the eigenvalues of a general matrix A are affected by
rounding errors, which are a consequence of working in finite precision arith-
metic. An algorithm is backward stable if it computes the exact eigenvalues and
invariant subspaces of a perturbed matrix A + E, where ‖E‖F ≤ ε‖A‖F with
ε is not much larger than the unit roundoff and, for mathematical convenience,
‖M‖F =

√
trace(M∗M) is the Frobenius matrix norm. Such backward round-

ing errors are typically much smaller than other a priori errors that may corrupt
the data A.

It is of interest to bound the effect of the backward error E on the eigenvalues of
A. The condition number of an eigenvalue λ provides a tight-to-first-order bound
on the worst-case effect of a backward error on the particular eigenvalue λ. For
complex eigenvalues, textbook derivations of this condition number implicitly
assume that the backward error E may be a general complex matrix [1, 5].
However, in many contexts it is known with certainty that the matrix A is real
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and that errors or uncertainties in the data are also real. Common numerical
methods like the QR algorithm and Krylov subspace methods, avoid complex
arithmetic when A is real and so rounding errors also yield a real backward error
E. The question arises whether the eigenvalue condition number with respect to
real backward errors may be significantly smaller than the textbook condition
number with respect to general complex backward errors. In this short paper,
we show that restricting the backward error E to be real decreases the condition
number at most by a factor of 1/

√
2. This extends to related condition numbers,

e.g., for eigenvectors and invariant subspaces.

2 Real and Complex Eigenvalue Condition Numbers

Our analysis is based on the perturbation expansion of a simple eigenvalue λ,
which can be found, e.g., in [4]. Let E ∈ B(0) be a perturbation of A ∈ Rn×n,
where B(0) ⊂ Cn×n is a sufficiently small open neighborhood of the origin. Then
there exists a uniquely defined analytic function fλ : B(0) → C so that λ = fλ(0)
and λ̂ = fλ(E) is an eigenvalue of A + E. Moreover, we have the expansion

λ̂ = λ +
1

yHx
yHEx +O(‖E‖2F ),(2.1)

where x and y are right and left eigenvectors belonging to λ normalized so that
‖x‖2 = ‖y‖2 = 1 and yHx = |yHx|.

Following [3], a norm-wise, absolute condition number for λ can be defined as
follows.

cF(λ) = lim
ε→0

1
ε

sup
{
|λ̂− λ| : E ∈ Fn×n, ‖E‖F ≤ ε

}
,(2.2)

where F ∈ {R, C}. The perturbation expansion (2.1) reveals

cF(λ) = lim
ε→0

1
ε

sup
{
|yHEx|/|yHx| : E ∈ Fn×n, ‖E‖F ≤ ε

}
= 1/|yHx| · sup

{
|yHEx| : E ∈ Fn×n, ‖E‖F = 1

}
.(2.3)

This readily implies cF(λ) ≤ 1/|yHx|. If F = C, then E = yxH attains this
upper bound showing that cC(λ) = 1/|yHx|, which coincides with the textbook
absolute condition number of an eigenvalue. For F = R and real λ, this equality
is still true as the eigenvectors x and y can be chosen to be real. For F = C and
real λ, however, this upper bound is generally not attained and cR(λ) can be less
than cC(λ). The following theorem provides an explicit formula for cR(λ) and a
bound on how much cC(λ) can exceed cR(λ). Here, ’⊗’ denotes the Kronecker
product of two matrices and ‘vec’ is the operator which stacks the columns of a
matrix into one long vector [1].

Theorem 2.1. Let λ ∈ C be a simple eigenvalue of A ∈ Rn×n with normalized
right and left eigenvectors x = xR + ıxI and y = yR + ıyI , respectively, where
xR, xI , yR, yI ∈ Rn. Then the condition number cR(λ) as defined in (2.2) satisfies

cR(λ) =
1

|yHx|

√
1
2

+

√
1
4
(bT b− cT c)2 + (bT c)2,
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where b = xR ⊗ yR + xI ⊗ yI and c = xI ⊗ yR − xR ⊗ yI . In particular, we have
the inequality

cR(λ) ≥ cC(λ)/
√

2.

Proof. Starting from (2.3), we have

cR(λ) = 1/|yHx| · sup
E∈Rn×n

‖E‖F =1

∥∥∥∥[
yT

RExR + yT
I ExI

yT
RExI − yT

I ExR

]∥∥∥∥
2

= 1/|yHx| · sup
E∈Rn×n

‖vec(E)‖2=1

∥∥∥∥[
(xR ⊗ yR + xI ⊗ yI)T

(xI ⊗ yR − xR ⊗ yI)T

]
vec(E)

∥∥∥∥
2

.(2.4)

The maximum of the second factor is given by the largest singular value of the
n2 × 2 matrix

X =
[

xR ⊗ yR + xI ⊗ yI xI ⊗ yR − xR ⊗ yI

]
.(2.5)

A vector vec(E) attaining the supremum in (2.4) is a left singular vector belong-
ing to this singular value. The square of the largest singular value of X is given
by the larger root θ? of the polynomial

det(XT X − θI2) = θ2 − (bT b + cT c)θ + (bT b)(cT c)− (bT c)2.

Because the eigenvectors x and y are normalized, it can be shown by direct
calculation that bT b+cT c = 1 and 1/4−(bT b)(cT c) = 1/4·(bT b−cT c)2, implying

θ? =
1
2

+

√
1
4
(bT b− cT c)2 + (bT c)2,

which concludes the proof.
For the matrix A =

[
0
−1

1
0

]
, we have cR(ı) = cR(−ı) = 1/

√
2 and cC(ı) =

cC(−ı) = 1, revealing that the bound cR(λ) ≥ cC(λ)/
√

2 can actually be attained.
It is the use of the Frobenius norm in the definition (2.2) of cR(λ) that leads to
the esthetically displeasing effect that this condition number may become less
than the norm of A.

3 Real-Part and Complex-Part Condition Numbers

In the case that the perturbation E is real, (2.1) may be expressed in terms
of real and imaginary parts as

λ̂R = λR +
yT

RExR + yT
I ExI

yT
RxR + yT

I xI
+O(‖E‖2F )(3.1)

λ̂I = λI +
yT

RExI − yT
I ExR

yT
RxR + yT

I xI
+O(‖E‖2F )(3.2)
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where λ = λR + iλI , λ̂ = λ̂R + iλ̂I , x = xR + ixI and y = yR + iyI with
λR, λI , λ̂R, λ̂I ∈ R and xR, xI , yR, yI ∈ Rn. Here, as in the previous section,
we use right and left eigenvectors x and y normalized so that ‖x‖2 = ‖y‖2 = 1
and yHx = |yHx|. Following [3], norm-wise, absolute condition number for the
real and imaginary parts of an eigenvalue λ with respect to a real perturbation
E, can be defined as follows.

cR
<(λ) = lim

ε→0

1
ε

sup
{
|λ̂R − λR| : E ∈ Rn×n, ‖E‖F ≤ ε

}
,(3.3)

cR
=(λ) = lim

ε→0

1
ε

sup
{
|λ̂I − λI | : E ∈ Rn×n, ‖E‖F ≤ ε

}
.(3.4)

The perturbation expansions (3.1) and (3.2) imply

cR
<(λ) = sup

‖E‖F =1

(
1

yT
RxR + yT

I xI

)
(xR ⊗ yR + xI ⊗ yI)

T vec(E)

=

√
‖xR‖2‖yR‖2 + ‖xI‖2‖yI‖2 + 2(xT

RxI)(yT
RyI)

yT
RxR + yT

I xI
,

cR
=(λ) = sup

‖E‖F =1

(
1

yT
RxR + yT

I xI

)
(xI ⊗ yR − xR ⊗ yI)

T vec(E)

=

√
‖xI‖2‖yR‖2 + ‖xR‖2‖yI‖2 − 2(xT

RxI)(yT
RyI)

yT
RxR + yT

I xI
.

Note that the condition numbers cR
<(λ) and cR

=(λ) may have different magnitudes.
The imaginary part of an eigenvalue may be well-conditioned while the real part
is not. For example, if λ, x and y are real, then cR

<(λ) = 1/(yT x) and cR
=(λ) = 0

which reflects the fact that λ̂ is real for all sufficiently small E ∈ Rn×n.
An alternate proof of Theorem 2.1 may be obtained from the observation

cC(λ) =
√(

cR
<(λ)

)2 +
(
cR
=(λ)

)2 = ‖X‖F(3.5)

where X is the matrix in (2.5). Equation (3.5) also shows that at least one of
(3.3) and (3.4) must be within a factor of 1/

√
2 of the complex perturbation

condition number cC(λ) = 1/|yHx|.
A general framework of eigenvalue perturbations of real matrices allowing the

use of a broad class of norms has been developed by Karow [2] based on the
theory of spectral value sets and real µ-functions. However, it is not known how
a simple bound relating the sensitivities of λ to real and complex perturbations
can be obtained from this theory.

4 Generalizations

The bound between the condition numbers with respect to real and complex
perturbations can be extended to an arbitrary analytic function f : Cn → Cm.
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At a given point x ∈ Cn, f satisfies the expansion

f(x +4x) = f(x) + L · 4x +O(‖4x‖22),(4.1)

for all perturbations 4x ∈ Cn in a sufficiently small neighborhood around zero.
Here, L is the complex m × n Jacobian matrix depending on x. Following [3],
define the absolute condition number of f at x as

cF(x) = lim
ε→0

1
ε

sup {‖f(x +4x)− f(x)‖2 : 4x ∈ Fn, ‖4x‖2 ≤ ε} .(4.2)

The perturbation expansion (4.1) implies

cF(x) = sup
4x∈Fn

‖4x‖2=1

‖L · 4x‖2.

For F = R, decompose L = LR + ıLC with LR, LC ∈ Rm×n. Since ‖L · 4x‖22 =
‖LR · 4x‖22 + ‖LC · 4x‖22, we have

cR(x) =
∥∥∥∥[

LR

LC

]∥∥∥∥
2

.

On the other hand, cC(x) coincides with

‖L‖2 =
∥∥∥∥[

LR −LC

LC LR

]∥∥∥∥
2

.

This shows 1/
√

2 · cC(x) ≤ cR(x) ≤ cC(x).

5 Conclusions

The real-part and imaginary-part eigenvalue condition numbers (3.3) and (3.4)
show that under real perturbations of a real matrix, the real part or the imagi-
nary part of an eigenvalue may be ill-conditioned while the other is not. However,
at least one of (3.3) and (3.4) must be within a factor of 1/

√
2 of the complex

perturbation condition number cC(λ) = 1/|yHx|. Hence, taken as a whole, real
and imaginary parts together, eigenvalues of real matrices subject to real per-
turbations are not much better conditioned than eigenvalues of real matrices
subject to complex perturbations.

Real arithmetic algorithms preserve the pairing of complex conjugate eigen-
values and eigenvectors, are typically computationally more efficient and use less
computer memory than complex arithmetic algorithms applied to real matrices.
Backward stable real arithmetic algorithms also calculate the real and imaginary
parts of eigenvalues at least as accurately as the condition numbers (3.3) and
(3.4) suggest, so they may calculate the real part or imaginary part of some eigen-
values more accurately than complex arithmetic algorithms. However, regarding
eigenvalues as complex numbers, real and imaginary parts together, backward
stable real arithmetic algorithms are not in general much more accurate than
backward stable complex arithmetic algorithms.



6 R. BYERS AND D. KRESSNER

6 Acknowledgments

The authors thank Michael Karow for stimulating discussions.

REFERENCES

1. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, MD, third ed., 1996.

2. M. Karow, Geometry of Spectral Value Sets, PhD thesis, Universität Bremen,
Fachbereich 3 (Mathematik & Informatik), Bremen, Germany, 2003.

3. J. R. Rice, A theory of condition, SIAM J. Numer. Anal., 3 (1966), pp. 287–
310.

4. G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic
Press, New York, 1990.

5. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Ox-
ford, 1965.


