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Abstract

A mathematical model for instationary magnetization processes is considered,
where the underlying spatial domain includes electrically conducting and noncon-
ducting regions. The model accounts for the magnetic induction law that couples
the given electrical voltage with the induced electrical current in the induction coil.
By a theorem of Showalter on degenerate parabolic equations, theorems on existence,
uniqueness, and regularity of the solution to the associated Maxwell integrodifferential
system are proved.
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1 Introduction

Due to their paramount importance for various electromagnetic processes in different ap-
plications, Maxwell equations attracted increasing interest in the past years. In particular,
the control of magneto-hydrodynamic processes led to the discussion of new mathematical
aspects. There is already an extended literature on the whole field.

Let us mention first the classical monographs by Bossavit [5| or Monk [11]|, where the
foundations of the underlying numerical analysis are contained. We also refer to the recent
book by Rodriguez and Valli [1] on stationary Maxwell equations.

Our paper is close to recent contributions on evolution Maxwell equations of degen-
erate parabolic type by Arnold and von Harrach [3|, Bachinger et al [4], Homberg and
Sokotowski [9], and Kolmbaur [10]. A characteristic feature of these papers is the presence
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of conducting and nonconducting regions in the spatial domain. While [4] and [10] consider
the model in bounded regions and [4] also sketches a quasilinear system, in [3| the problem
is discussed in the whole space. The paper [9] deals with induction heating and considers
a coupled system of the evolution Maxwell and heat equations.

In [4], the evolution Maxwell equations

a% +eurlp ™ curly = f(t) in  Qx(0,7)
yxn = 0 on 9Qx(0,7T) (1)
y(O) = Yo in Ql

are considered, where 2 C R? is a bounded domain that is the union of two subdomains €2,
(conducting region) and €, (nonconducting region) such that Q = Q; U Q,. The electrical
conductivity o : @ — R vanishes on {25 so that the equation (1) is of degenerate parabolic
type. Therefore, an initial condition can only be prescribed in €. By u: Q — R, the
magnetic permeability is denoted.

In the application to the magnetization processes we have in mind, the real quantity
of interest is the magnetic field B : Q x (0,7) — R3 that is represented by a vector
potential y : Q x (0,T) — R3 to be determined by equation (1). The given right-hand side
f:Qx(0,T) — R? has to obey some special regularity properties. In particular, div f = 0
is required on €2 . For us, the special choice

0 in Q x(0,7),
flw.?) :{ e(2)i(t) in Qy x (0,7) 2)

is of particular interest, where e : Qy — R3 is a given divergence free vector field and
i :[0,7] — R stands for the electrical current in an induction coil.

By the induction coil, magnetic fields are generated, but in practice the quantity under
control is the electrical voltage u : [0,7] — R. A well established mathematical model
that accounts for the coupling between voltage and current includes the induction law.
After splitting the equations in their parts in £2; and €25, the related model amounts to the
following equations:

( 8y 1 .
rn +curlpy " curly = 0 in  Q x(0,7)
curlp=t curly = e(z)i(t) in  Qy x (0,7)
yxn = 0 on 00 x(0,7T)
y(0) = wo in - Q, (3)

oy . -
/Qa-e(a:)derRZ(t) = ut) i (0,7)
\ i(0) = .

Here, R > 0 is the resistance of the induction coil and 7y, denotes the initial value for the
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electrical current. To allow for more generality, we will discuss the model in the form

(

a% +curlp ™t eurly+ey = f(t) in Qx(0,7T)
yxn = 0 on 002 x(0,7)
= 1 Q
y(0) = wo in )
dy : .
—-e(x)dr+ Ri(t) = w() in (0,7)
o Ot
| i(0) = .

In this setting, ¢ > 0 is a regularization parameter that can be taken positive in the
numerical solution of the system to enhance better stability of numerical methods, f :

Q % (0,T) — R? with
. fl(fﬂ,t) in Ql
fle.?) —{ i(Be(z) in O

has to obey certain regularity assumptions to be specified later.

Our paper is organized as follows: In Section 2, we transform the system (4) to a
parabolic model that can be handled by a theorem of Showalter [12]. We will eliminate the
electrical current ¢ and arrive at a model that covers also the model of [4] as a particular
case. In this way, we are able to provide an alternative proof of existence and uniqueness
for the equation (1). Moreover, this section contains basic definitions of spaces and bilinear
forms. Here and in the next sections, we heavily rely on results of Costabel et al. [7] on
the existence and regularity of solutions to elliptic equations of Maxwell type.

In Section 3, we discuss the well-posedness of our general system (4). Moreover, here
we discuss an associated adjoint equation as a prerequisite for later applications to the
optimal control of magnetization processes.

2 Transformation to a degenerate parabolic equation

2.1 Geometrical configuration and assumptions on the data

In our paper, 2 C R? is a bounded open set. This is the hold-all domain that covers
an electrical conducting domain 2; and an electrical nonconducting domain €25 such that
Q=0,UQ.

We first fix an illustrating example of a geometrical configuration. Our theory will hold,
however, for any other configuration that obeys our assumptions on {2; and €2, stated after
the example.

Example 2.1 Let Q C R? be an open cube, while Q is an open tube of finite length,
W ={2cR®:0<r <a]+25<ry, 21 <23< 2}
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We assume that ) is sufficiently large such that Q; C Q and take Qy = Q\ Q1. Moreover,
a subdomain 2. C €y is given by

Qo={reR® : 0<my<ai+a5<rs c <z<eca),
where r3 > 19 and z1 < ¢1 < ¢ < 29 are given numbers. In the application, . stands for
an induction coil that — due to our modelling — belongs to the nonconducting domain §2s.

Notice that g contains exactly one hole given by €y and that the boundary of €y is
composed of two disjoint connected sets.

Let us call this example geometry for later reference as tube with coil. Our theory is
is true for the following more general setting: We assume once and for all that €, €,
s, and Q. C Q, are (open) bounded Lipschitz domains such that Q; C Q (ie. € is
strictly included in €2), Q5 has exactly one hole formed by Q; and that the boundary 9,
is composed of two connected components.

Let T' := Q; N €y denote the interface between Q; and Q. The electrical conductivity
o : ) — R is given with some constant og > 0 by

L (o)) in Ql
O—(:E) T { 0 in QQ.

The magnetic permeability  : €0 — R is assumed to be bounded and measurable and
uniformly positive such that

w(x) > pp >0 for aa. x € Q.

Let O C R? be an open domain. We use the standard Sobolev spaces H(curl, ©) and
H(div,©) and the space

H(div=0,0) :={y € L*(0)? : divy = 0 in O},
the space of divergence free vector functions equipped with the inner product of L*(0)3.
It is well known that this is a Hilbert space. Moreover, we need the space

Hy(curl, Q) := {y € L*(Q)* : curly € L*(Q)* and y x n = 0 on 9Q}.
Note that from Theorem 1.2.11 of [8], the mapping
D) — L*T)?:y — y x n,

can be extended as a continuous mapping from Hy(curl, ) to H2(T')3.
Further, a nontrivial divergence free function

e € H(div,Q.) N H(curl, Q)

is given such that
e(x) - n=0 Ve . (5)

For all # € Q\ ., we extend e by e(z) = 0 and denote the extended function by the
same symbol e.



Example 2.2 For the tube with coil Q)., we define for all x € §Q.
N, T
|€2c| \V r] + 55% 0
and extend e by zero to the cube Q. The natural number N, is the number of windings of the
induction coil, and || is the area of the cross section of the coil that is perpendicular to

the windings. The extension, still denoted by e, belongs to H(div, Q) but not to H(curl, ).
Notice that e -n = 0 holds on 09, and on T'.

(6)

e(.’ljl, T2, 1;3) =

2.2 Simplification of the equations

Next, we simplify the system (3). As R > 0, we can eliminate ¢ from the fifth identity of
(3) and find

)
i(t) = —R™! a—i(x,t) ce(x)dr + R u(t) in (0, 7). (7)
Q
In that way the initial condition i(0) = i is formally equivalent to
)
R [ Yi2,0)- e(z)de = B'u(0) — io.
o Ot

However, in associated optimal control problems, the voltage u might be chosen as a control
function of L?(0,T) so that «(0) is not defined. Since this not satisfactory, we replace the
last condition by

R~ /Qy(x, 0) - e(x) dz = ap, (8)

where aq has to be chosen properly to comply with the given initial condition i(0) = ip.
Under natural assumptions on the smoothness of u and yg, the continuity of ¢ is included
so that the initial value i(0) has a meaning in such cases.

Inserting the expression (7) of 7 in the second identity of (3), we arrive at

0
R a—i(t) cedve+curlp ™ curly +ey = R 'u(t)e in Qy x (0,7).
Q
These considerations show that (3) is equivalent to
r 8y 1 B )
n +curlpy " curly+ey = 0 in  Q; x(0,7)
0
R™! ( 6% : edx) etcurlytcurly +ey = R'ue in Qyx (0,7)
Q
yxn = 0 on 002 x (0,7) 9)
y(O) = Yo n Ql?
Rt / y(x,0)-e(x)dxr = ap.
)

\

In this form, we shall investigate the degenerate parabolic system, where we allow for
a more general right-hand sides in the first two equations of (9).
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2.3 Relation between oy and 7,

We assume in this subsection that 7 is a continuous function so that i(0) has a well defined
value 7.

Let us explain that iy is uniquely determined by oy and vice versa, if yy is smooth
enough, say yo € H(curl,€;). Given initial data yo in 2, an extension ysy to €2 that is
compatible with the boundary value problem included in (3) should solve the equations

curl p=t curlysg +ey20 = e(x)ip in O,
Yoo Xxn = 0 on 09, (10)
Yoo XM = Yoxmn on [.

The second boundary condition in (10) is due to the continuity of the trace y x n across I if
y € H(curl,Q). If this boundary value problem is uniquely solvable, then yq0 := yo(+,0) =
y(+,0)|q, can be taken as the initial datum in .

Lemma 2.3 If yo belongs to H(curl,$y), then for all ¢ > 0 and iy € R, the boundary
value problem (10) has a unique solution yoy € H(curl,Qy) N H(div,Qy). If e = 0 and
ip € R, then the boundary value problem (10) has a unique solution ysy € H(curl, y) N
H(div,Qs)/Kn(Qs), where Kn(Q2) is defined by (27).

Proof. We construct 35y as the sum of a function z satisfying the homogeneous boundary
conditions and of a function Ry, fulfilling the inhomogeneous boundary condition on TI'.
First, we take an extension Ry, € H (curl, {2y) of o such that

~ J yoxn on T,
Ryoxn—{O on 0f).

This extension exists, since the trace mapping y — y x n from H(curl,Q;),7 =1 or 2 to
H~2(divy,T) is surjective, [13, section 7] or [6, p. 848].

This function Ry, is not necessarily divergence free. Therefore, we subtract V6 from
Ryo, where 0 € H} () is the unique solution of

VO.-Vidr= | Ryo-Vidde Yo e HY Q).

QQ QZ

In view of curl VO = 0 we have VO € H(curl, Q). Moreover, the function Ry = Ryo —
Vo € H(curl, ;) is divergence free as a simple computation shows. It satisfies the same
boundary conditions than Ry,, namely

~ J yoxn on T,
Rlyoxn—{o on 0f).

This follows from the implication 6 € Hg(€2) = VO € Hy(curl, y).
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Now we consider the variational equation

/ (ptcurl z - curlw + div zdivw + ¢ 2 - w) do
Qo

(11)
= / (ige-w — pu~teurl(Ryyo) - curlw — € Ryyo - w) dr Yw € Xn ()
Qo

for z € Xy () := Ho(curl, Qo) N H(div, Qy).

Due to the regularizing divergence term, the sesquilinear form on the left-hand side
of (11) is coercive in Xy (€29) if € is positive. If, however, ¢ = 0, then this problem has
a unique solution z € Xyn(€2)/Kn(€2s) since the same sesquilinear form is coercive on
Xn(Q2)/Kn(Q2) due to the compact embedding of X (£2s) into L?(25)? [14] and since the
right-hand side of (11) is equal to zero for any element of Kxn(2s) (see (28)) due to the
divergence free property of e and the fact that fr e-ndo=0.

As e and Ryy, are divergence free in ()5, the same holds true for z. This is confirmed
by taking test functions w = Vx in (11), where x € HJ(€;) is the weak solution of

Ax —ex =g € L*(Q).

Then we find that
/ divzgdr =0 Vge L*(Q),
Qo

hence div z = 0. Therefore we deduce that
curl (p~ ! curl(z 4+ Ryyo)) + (2 + Riyo)) = ige in D'(€y)

and this yields the desired field yo0 := 2 + R1yo.
The uniqueness of the solution is a consequence of the coercivity of the sesquilinear
form

a(y, z) ::/Q pteurly - curlz +divy divz+ ey zde
2

in Xn(92). Given two divergence free solutions v, w of (10), their difference v —w belongs

to Xn(€22) and solves the homogeneous variational equation a(v — w, z) = 0; then v = w

follows (modulo Ky (£2) in the case £ = 0). u
>From this field, under natural continuity conditions on y, we can deduce that

— /Q y(2,0) - e(x) dz = R~ /Q () - elr)

In other words, the constant « in (8) can be obtained from the initial value yy of y in
and from the initial value ig of the electric current that determines oo by (10).
Conversely, let use determine iy such that oo satisfies the initial condition (8). To this
aim, we split yo as
Y20 = 0 Ye + Yr, (12)
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where y,. solves

curlp=! curly, +ey. = e(xr) in Qo

Yoo Xn = 0 on 90NN, (13)
Yoo X N = 0 on T
and yr is obtained from
curlp™t curlyr +eyr = 0 in Qo
yrxn = 0 on 0N 0Ny, (14)
yr Xn = ypxn on [

Both functions exists thanks to Lemma 2.3.

Lemma 2.4 If e # 0 in the sense of L*(Q)3, then

/ Ye - €dx # 0.
Qo

Proof. The function y. belongs to Hy(curl, €2y), hence it can be taken as test function in
(13). We get

pteurly, - curly, do + & Ye|2dx = / Yo - € d.
Qo Qo Q2

If € > 0, then a vanishing right-hand side would instantly imply y. = 0 and, via (13), also
e = 0 in contrary to the assumption. If ¢ = 0, then we find curly, = 0 and again e = 0 by
(13). n

Inserting the ansatz ysg = igye + yr in (8), we directly obtain the desired value for i
by

o Rozo—fmyp-ed:v

19 = 15
0 fQ2ye'€dI' ( )

Lemma 2.5 Assume that problem (3) admits a (weak) solution y such that ylg, belongs
to C([0,T], H(curl,€y)). Then the function i is continuous on [0,T].

Proof. The solution y satisfies the equation

{p ! curly(t) - curlp +ey(t) - p} dor = / e-dri(t)

QQ QZ

in particular for all test functions ¢ € Hy(curl, Q). As Hy(curl,€2y) is dense in L?(2)3,
there exists a sequence (e,) of functions of Hy(curl, {3) converging to e in the sense of
L?(Q)3. If n is sufficiently large, then

/ e-e,dr >0
Qo
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holds, since ||e||z2@)2 > 0. Now we take e, as a test function for a sufficiently large n,
hence

i(t) = T ! {p™! curly(t) - curle, +ey(t) - e,} dx.

0, € Endt Jo,

Thanks to our assumption on y, the right-hand side is continuous. Hence the same holds
true for 1. =

3 Existence and uniqueness of solutions

3.1 Preparations for the application of a theorem by Showalter

Our results on existence and uniqueness rely on the following theorem:

Theorem 3.1 ([12], Theorem V4.A) LetV,, be a seminorm space obtained from a sym-
metric and non-negative sesquilinear form m(-,-), and let M € L(V,,,V.|) be the corre-
sponding operator given by Mx(y) = m(x,y), x,y € V,,. Let D be a subspace of V,, and
L:D — V! be linear and monotone.

(a) If ker M N'D C kerL and if M+ L : D — V! is a surjection, then for every
f€CH[0,00),V) and ug € D there exists a solution of

(Mu), + Lu(t) = f(t), ¢>0

with (Mu)(0) = Muyg.
(b) If ker M Nker L = {0}, then there is at most one solution.

To apply this theorem, we show that problem (3) fits in the associated framework. For
this purpose, we first define the linear and continuous operators M and L used in that
theorem.

We define the linear bounded operator M : L?(Q2)? — L*(Q)? as follows:

oy in €y,
My = R™! <f92 y(z) - e(x) da;) e in Q.

The operator L, whose domain D will be specified below, is introduced by
Ly = curl u= ! curly + ey.
By these operators, problem (9) can be shortly and still formally written as

{(My)t+Ly = f in Qx(0,7),
My(0) = go in €,

where f is defined by

0 n Ql (O, T)a
fla.t) :{ Rue(@) in On x (0.7).
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Later, we shall admit more general functions f on the right-hand side. The initial datum

go is given by
_ Yo in Qla
go = ape  in Q.

We shall apply the framework of section V.4 of [12] to the system (16) in the space
V ={y € L*Q)®:divy; = 0in Q,divys = 0 in Qy and (y, - n, 1)p = 0},

equipped with the semi-inner product

m(y, 2) = /Q o(e)y(e) - 5(r)dr + B ( /Q FERC d.r) ( /Q ) -ela) dx) |

Here, we used the notation y; := y|q,, @ = 1,2, that will be applied throughout our paper.
Moreover, (-;-)p means the duality pairing between H~/?(I') and H'/?(T'). Let us denote
by V., the corresponding seminorm space.

Lemma 3.2 The dual space V), is the Hilbert space
Vi={y eV, : JaecC:y =yq, = ae},
that is equipped with the inner product m.

Proof. Denote by S the right-hand side above. Since the embedding S < V! is trivial,
it remains to show the converse one. Let £ € V| then there exists C' > 0 such that

1< € (eha +| [ o) ) do

) VzeV. (17)

Further, we introduce the space
W .= {y S H(le = O,Qg) : <y2 - n, 1>r = 0}

that is a closed subspace of H(div = 0, (2y).

Take z; € H(div = 0,€;) and 2o € W and denote by Z; (resp. Z;) the extension by
zero of z; (resp. z3) to the domain outside of ©; (resp. §23). We rapidly confirm that Z;
and Z, belong to V. By (17) we further have

U(z)] < Cllzze = Cllzillzz@uyss

0z)| < C /9252(@-6(3;)@ /(2222(:16)-6(3:)0356.

e (18)

The first estimate means that the mapping
21— g(él)
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is linear and continuous from H(div = 0,€;) to C; hence, there exists h € H(div = 0,€)
such that

Uz) = /Q h-zide Vz € H(div=0,0,). (19)
Let us show that the second estimate implies the existence of o € C such that
0(Z) = a/Q 2o -edr Yz € H(div =0,)). (20)
2
Indeed, as e € W, we can split any z5 € W in the form
29 = ez + (Id — 11,) 29,
where I1, is the projection on span{e} with respect to the inner product of L*(€2;)?, namely

fQ2 29 - edx

[Mezg = ——F——>5——c.

By the estimate (18) we get

0(20 — I2)| < C

/Q (20— Mozo)(x) - elw) da| = 0,

we then deduce that
() = () = T2,
Zy) = o29) = —2———V(e).
fQ2 le|? dz

This proves (20).
For each z € V, it holds z; € H(div =0,;) and 2z € W. In view of

Z:§1+22,

and (19), (20), we conclude that

f(z):/ h-zldx+oz/ 29 - edr,
Ql Q2

implying the claim of the theorem. ]
To define the domain of the operator L, we recall a next result from [7]. To this aim,
we introduce the space

Y (Q) := {y € Ho(curl, Q) : divy; € L*(Q),i = 1,2 and (y, - n; 1)r = 0},
where we recall that
Hy(curl, Q) := {y € L*(Q)* : curly € L*(Q)* and y x n = 0 on 9N}.

11



The space Y (Q2) is a Hilbert space with the norm

19115 (@) = 1Yl1Z2 (@ + Il ewrlyl|Ze (g + | divy 22,y + | div gall72(q,)-
In Y (), we define two sesquilinear forms: for y, z € Y(2), let

ag(y,z) = / oyp - zZrdr + /(,u_1 curly -curlz + ey - 2) dx
o Q
+e'h / divy, div 2, dz + €'% / div gy, div Z5 dx,
Ql QQ
and
ap(y, z) = /(u‘l curly -curlz+ ey - 2) do
Q

et / divy, div z; do + el / div yo div Z5 dx.
Ql Q2

Recall that e > 0 was assumed. According to Lemma 2.2 of [7] we know that there
exists a positive constant C' such that

Rar(y,y) > CHQH%/(Q) vy € Y(Q). (21)

where R denotes the real part of a complex number. Thanks to this coercivity property,
for any F € L*(Q)3, there exists a unique y € Y () solution of

an(y, 2) :/QF-zdx Ve € V(Q). (22)

In particular if ' € V| we have the next result (compare with Theorem 2.3 of |7]).

Theorem 3.3 If F € L*(Q)? satisfies div F} = 0, div Fy = 0 and (Fy-n,1)p = 0, then the
unique solution y € Y () of (22) satisfies the system
curl(ptcurly;) + (0 +€)y; = Fy in Q,
diVyl =01 Ql;
curl(p= ! curlyo) + eyp = Fy in Q, (23)
diVyQ =01n QQ,
ley -n]+oy;-n=0onT.
In particular this implies that y belongs to V.

In the theorem, the expression [ey - n] denotes the jump of ey - n across I', right? The
proof of this theorem is the same as the proof of Theorem 2.3 of [7] and is therefore omitted.
Now we are able to explain the operator L more precisely. Its domain is

D:={yeY(Q)NV:3f eV suchthat ag(y,z) = m(f,z) VzeY(Q)}.

Notice that we are justified to identify V! with a subspace of V;,, in view of Lemma 3.2.
For any y € D, define

Ly=f
with the unique f appearing in the definition of D.
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Lemma 3.4 The operator L is linear and monotone from D into V! . Moreover M + L
is surjective from D onto V..

Proof. By the definition of L, it is obvious that for any y € D

m(Ly,y) = m(f,y) = ao(y,y),

hence it follows
Rm(Ly,y) = Rao(y,y) > 0.

In other words, L is linear and monotone from D into V..
Let us now prove the surjectivity of M + L from D onto V. Introduce a sesquilinear
form b on Y (Q2) by

m%a:@ma+Rﬂwam(L}m«mwﬂ(Lgm«mmﬁ.

For any y € Y(Q), it holds
Ro(y,y) > Rar(y,y)

and hence the form b is strongly coercive on Y (€2) by the coercivity property of ag. There-
fore, for any f € V! there exists a unique solution y; € Y (2) of

b(yi,z) =m(f,z) VzeY(Q). (24)

Notice that z — m(f, z) defines a linear and continuous functional on Y (£2). This identity
is equivalent to
ar(y1,2) =m(g,z) Vz€Y(Q)

with

g=1r— R_2||e||%2(9)3 (/Q y1(z) - e(x) dx) e,

Since g belongs to V!, we deduce by Theorem 3.3 that y; € V.
Similarly, (24) is equivalent to

a’o(y17 Z) = m(h7 Z) Vz e Y(Q)7
with
=1 = B2l ([ (o) ey de) e~ o,
Q

Since again h € V! | by the definition of D, we deduce that y; belongs to D.
Finally for any z € Y (Q2), we see that

m((M + L)y, z) = b(y1, 2),

and by the previous considerations, we deduce that the solution y; € Y () of (24) belongs
to D and is solution of

(M+ L)y = f.
This proves the surjectivity of M + L. [ |
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Lemma 3.5 We have ker M N D = {0}.

Proof. Let y be in ker M N D. Then it follows from My = 0 that y = 0 in )y and y is
orthogonal to e in 2o,

/ y-edr=0. (25)

Qo

On the other hand, the fact that y belongs to D means that there exists f € V! such that
aO(ya Z) = m(f7 Z) Vz e Y<Q)

Since y is zero in {2y, we have equivalently

/ (ey-z+p teurly - curl 2) dx+ei1/
Qo

divydivzdx = / fi-zdz (26)
Qo

o ([ o ) ([ -t v

Let p € D(€4)? be an arbitrary test function and define Z by Z = ¢ in Q; and zero outside.
Then Z belongs to Y (€2) and therefore the previous identity implies that

fi-pdr=0 Ve D).
951
Therefore, we have f; = 0. Coming back to (26), we insert z = y and find that

/ (lgol® + [ ewrlyo?) du + €% [ [ divyo|” da
QQ QQ

= R ( 5 fa(2) - e(z) dx) ( /Q 2 72(z) - e() dx) —0,

by (25). Notice that we introduced the notation ¥, = yo,. This implies that
curlys, = 0 and divys = 0.
Since y is in Hy(curl, Q) and y = 0 in €, we deduce that y, belongs to
Kn(Q2) = {y € Ho(curl, Q22) N H(div, Q) : curlys = 0 and divy, = 0}. (27)

According to Proposition 3.18 of [2], the dimension of Ky (£2;) is the number of holes in
()5 which is 1 in our case.

Thanks to the same proposition, Ky(2) is spanned by all Vq with ¢ € H(£,) the
unique solution of

Ag=0 in €2,

q=0 on 0f),

q = constant on I, (28)
<anqa 1>F = 17

<8nq, 1>3Q =—1.
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Hence there exists a € C and a ¢ € H*({);) with (28) such that

Y2 = aVg.
Since y belongs to Y (Q) it satisfies
(y2 - m, r =0,
or equivalently
a(0ngq, 1)r = 0.
In view of (09,q, 1)r = 1, this implies a = 0. [

3.2 Existence and regularity of solutions to (16)

Now all the hypotheses of Theorem V.4.A of [12] are fulfilled and it holds ker M Nker L C
ker M N D = {0}. According to this theorem, we obtain the following existence result.

Theorem 3.6 For all f € C'([0,00),V)) and all gy € V., there exists a unique solution
y: [0,00) = L*(Q)? of problem (16) with the regularity

My € C([0,00),V;,) N C*((0,00), V)

and such that
y(t) € D,Vt > 0.

Here, the first identity of (16) has to be understood as follows:
(My)(t) + Ly(t) = f(t) in V), Vit >0. (29)

Notice that the derivative (My)(t) of the abstract function t — (My)(t) is defined in
the strong sense.

The assumption on f requires in particular that f(¢) is divergence free in Q; for all ¢.
The same holds true in Qy, because f(t) = ¢(t) e with some real valued function ¢ and e
is divergence free.

Remark 3.7 Thanks to this theorem, we have My € C([0,00),V..). Lemma 3.2 on the
characterization of V! yields that (My)(t) = z(t), where z(t) € V.. In y, it follows
oy1(t) = 21(t), hence continuity of z yields y; € C([0,T), L*(21)?). Moreover, we have

Rl/Q ya(t) - edr e = z(t)

so that continuity of 2, implies that t +— [, wya(t) - edx is continuous on [0,00). The
continuous dependence of their norms on the data is part of Corollary 3.8 below.

The differential equation (29) is satisfied for each ¢ > 0, but the theorem above does
not provide sufficient information on the regularity of y. This is the task of the next result.
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Corollary 3.8 Assume that f € C'([0,00), V) and that gy € V,!,. Then, for any T > 0,
the unique solution y : [0,00) — L*(Q2)* of problem (16) satisfies

y € L*(0,T;Y()). (30)

Moreover, it holds
y1 € C([0,T1; L*()°), (31)
oy € LN0,T;Y(Q)) and /Q Yo () - e(z) de € WH(0,T). (32)

There is a constant ¢ > 0 not depending on f and gy such that
IMYlleqor vy + 1yll20zv@) + oyl z20ry @)

(33)
+ Jo, y(w, ) - e(@) dallwreor) < e(lf 20wz + lollvy,)-

Proof. (i) Estimation of [|[My(t)||v:: Asfor allt > 0, y(-,t) € D C V, the existence
result implies that we have

/Q1 oyi(z,t) - y(z,t)de + R (/QZ yi(x,t) - e(z )dx) (/ y(x,t) - e(x) da;) (34)
+ao(y(-, /f z,t) - j(x, t) da.

Notice that we have f(-,t)]q, = ¢(t) e with some ¢ € C*[0,T], hence

/fxt y(x,t)de = g f(:n,t)-y(x,t)dx+go(t)/ e(z) - y(x,t)de.

Qo

Both integrals in the right-hand side are continuous functions on [0, 7] (cf. Remark 3.7),
thus the right-hand side of (34) is well defined and bounded.
Let us introduce the real function

2

MﬂZAOW@ﬁFm+R* — | My(t)|2,

/ y(x,t) - e(x) de
Qo
Its derivative

im>Kﬁmmwmmw+a%L%@WWMQ<@WmﬁmM)

appears in the left-hand side of (34). Taking the real part of this previous identity and
using the fact that

§RCLO( ( ) y(7t)) = Go(y(,t),y(7t)) > 0,
we get in view of the identity /h(t) = ||y(-, )]y, that

<n%/f g 1) dz < 2| f () vy VA < [FC D12, + h(e),
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for all £ > 0.
Thanks to the regularity of y stated in Theorem 3.6, h belongs to Wh(n, T') for all
1 > 0. Therefore Gronwall’s inequality yields

t
h(t) < h(n)e'™" —i—/ e G S)H%% ds Yt > .
n

The regularity of y also implies that h is continuous at zero. Hence, passing to the limit
n — 0 we find

¢
h(t) < h(O)et+/ N fC )T, ds vt > 0.
0
By the definition of &, there holds A(0) = ||go[[f,, . Therefore, we have found that

max {|Myllv, = h(t) < C(T)(lgollvy, + [ flle20m7)) (35)

0<t<T

holds for a positive constant C'(7") that depends on 7" but not on the data and on y. This
proves (31).

(ii) Estimation of ||yl z2(0,rv(0)): Now we return to (34) and take again the real part
of this identity. Integrating in (n,7T") for n > 0 we find that
2

/nT { /Ql J%‘y(a:,t)P dx + R1% /Q2 y(x,t) - e(x)dz| + 23%%(1/(.715),3/(.7,5))} dt  (36)

—2%/ /f §(z,t) dadt.

This shows that |y;|* (resp. ‘fm y(z,) - e(x) dx’ ) belongs to Whi(n, T; L?(£2;)) (resp.
Whi(n,T)), cf. the remark after (34). Consequently,

/Q y(z,-) - e(x) dz € W20, T)

follows by passing to the limit 7 — 0. Moreover, we can integrate by parts in (36) and get
equivalently

/ oly(z, T)[*dr + R™* (x,T)-e(a:)dx —i—2/ Rao(y(-, 1), y(-,t))dt

2

_2§R/ /f y(x,t) dmdt—l—/ﬂla|y(x,n)|2dx+R_1 /Q2 y(x,n) - e(z) da

The right-hand side of this identity admits a limit as  tends to zero, thanks to the regularity
of y. Hence the same is true for the left-hand side. Passing to the limit, we obtain

/Qy(m,T)-e(x)dx +2/0 Rao(y(- 1), (- 1)) dt

/ oly(x, T) 2 dz + R~
951

—2§R/ /f y(x,t) dxdt—i—/ oly(x,0)]*dr + R™!
971
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The above identity implies that there exists ¢ > 0 such that

T
/ / ueurl (e, B dedt < e (Lo 9oz + loolEaomy).
0 Q

As for all t > 0, y(+,t) belongs to Y(£2) NV, by Lemma 2.2 of [7| we have

(a0 dr < O ( / p Y euly(e, P do+ [ lyta 0 ds),

Qs Q 1951

for some C' > 0 that is independent of ¢. The estimates (35) and (37) show that the
right-hand side of the previous inequality is square integrable in (0,7"). We conclude that
(30) holds together with the estimate

yllz20,m:v @) < CL(T) (llgollve, + 1 fllz20,m5v)), (37)

for a positive constant C(T") that depends on 7" but not on the data and on y.
(iii) Enlarging the set of test functions: As Y (2) NV is included in V, the existence
result implies that for all ¢t > 0, we have

[ oty swyde w7 ([ wien-coro) ([ o) -eta)ir) "
+ao(y(-,t),2) = /Qf(t) “Z(z)dx VzeY(Q)NV.

Our next goal is to show that this identity remains true for all z in Y ().
Indeed, for any given z € Y(Q) and i = 1 or 2, we can consider ¢; € Hj(€;), the
solution of

/Vg@i-dex:/ z-Vyxdr Vx € Hy(S%).

7

Such a solution satisfies
div(z — Vy;) = 0 in D'(),

hence z — Vp; is divergence free in €);. However, we are not sure that
((z2=Via) - n, hr = (Vo - n, Dy
is zero, which is needed to have z — Vg, € Y (). If this quantity is not zero, we define
¢2 =2 — q (V2 - n, 1)r,

where ¢ is the unique element in H'(€)y) that satisfies (28); cf. the characterization of
Kn(€s). An easy computation confirms that

((z2—V¢2)-n,1)r =0.
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Now we define 3
D v¢27

n=2z-V -
where
~ ©®1 in Ql,
1= { 0 in QQ,
1 inQy,
P2 = { ¢g in €y

and verify that z; belongs to Y (2) N V. We will show in (v) below that there holds

/91 oyi(x,t) - V@ (v)dr + R (/ dx) ( N Voi(z) - e(z) dx) 5
Faoly(,1), V) = / £(t) - VEi(z) do

and

[ owten) vaa e ([ e cwae) ([ Vo) -ewar) »
Fag(y(-t), Vaa) = /f  Von(z) da

Inserting z := 27 in (38) and subtracting it from the sum of the previous two identities we

obtain that

/91 oy(x,t) - Z(x) de + R~ (/92 y(x,t) - e(z) d:c> (/92 2(z) - () dx) (41)

+ao(y(-, /f cZ(x)dx Yz eY(Q).

In this way, we have shown that (38) holds true for all test functions z € Y (2).

Equivalently, we can re-arrange this as

/Q1 oyi(x,t) - Z(x)dr + R (/92 ye(x,t) - e(x) da:) (/92 2(z) - e(z) d:c)

= —ao(y(-, /f -Z(x)dr Vz e Y(Q).

(iv) Verification of (32): By the Cauchy-Schwarz inequality we obtain after integration

on [0,7]
T
/0 /Ql oy (x,t) - Z(x)de + R (/92 yi(x,t) - e(x) dx) (/92 Z(z) - e(x) dx) ’ dt
<CVT (I1f 20wy + Yl 2@ zllv) V2 € Y (),
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for some C' > 0. Due to (37), we deduce the existence of a constant Co(7") > 0 such that

/OT /Ql oy (z,t) - Z(x) dx + R (/92 yi(z,t) - e(z) dx) (/92 2(z) - e(x) dz) ‘ At (42)

< Co(T) (lgollvy, + 1l 20mv)lizllye) V2 € Y(Q).
In a first step, since e is different from zero in €2, we can fix a function ¢ € D(€)? such
that

/ o(x) - e(x)dx # 0.
Qo
If not, it would hold
| #@)-elw)dz =0.% € D),
Qo

and by the density of D(£2,)? into L?(23)? we would deduce that e = 0.
The function @ belongs to Y (Q2) (here we take the extension by zero). Therefore, we
deduce by (42) with z = ¢ that

R—1/T
0

This proves the second assertion from (32).
To show the first assertion, by taking any z in Y'(€2) and using (42) and (43) we deduce

that .
/0 /Q oy(x,t) - Z(x) dx

This leads to the first assertion by the definition of the norm of Y (£2)’.

(v) Verification of (39) and (40): To complete the proof, we still have to show (39)
and (40). For the first identity, we mention that My(t), My,(t) and f(t) belong to V!, for
all t € (0,7]. Therefore, it suffices to show that

dt < Cs5(T) (llgollve, + 1 flz20,mvr))- (43)

/92 (@, t) - e(z) do

dt < Cu(T) (lgollvy, + I fllz207v) 12y - (44)

/ g(z) Ve (z)de =0 VYgeV,.
951
But for such g, by Green’s formula we have

/Q 4(z) - Vs () da = — / div g(2)p1(z) dz + {g - 1 o1

Q1

The right-hand side is zero because g is divergence free and ¢; = 0 holds on I' = 9€);.
Similarly, (40) holds, if

/ g(x) - Voo(x)de =0 VgeV .
Qo
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We invoke again the Green’s formula and obtain
/ g(z) - Voo(z) do = —/ div g(@)d2(z) dx + (g2 - 1, P2)1 + (g2 * 1, P2) a0
Q2 Q2

The right-hand side is again zero because g is divergence free, ¢ = 0 holds on 0f2, and by
¢o =1 on I', we finally get

<g2 -n, ¢2>F = <92 - n, 1>F = 07

in viewof g € V.
The estimate (33) follows from (35), (37), (43), and (44). To confirm the W12(0, T)-

estimate, we first mention that we have

/fxt (e, t) dedt] < |l il 20y @)

2
< CYD) 1 fllezo,rsvey (lgollvy, + 1 f 1l e2o,rsvy) < CUT) (lgollvy, + 11l 20m3vz))

by (37). The maximum norm of h is bounded by (35). In view of this, the W2(0,T)-
estimate follows from (35) and (36). n

3.3 Existence for data with lower regularity

Our next step is to weaken the regularity assumption on the datum f, for that purpose,
we adopt the next definition.

Definition 3.9 ForT >0, go € V!, and f € L*(0,T;V]), we say that y : [0,T) — L*(Q)3
is a weak solution of problem (16) if y has the reqularity from (30), (31) and (32) and if
it satisfies

(ot vy + 17 ([ Qytu* ) ela) o) ( /| o)) dr) 09
taoly / fo5(z)de V2 Y(Q),

as well as

y1(+,0) = go in Q1 and /

Qo

y2(2,0) - e(x) dz = /Q go(z) - e(z) dx.

Note that the initial conditions are well defined due to (31) and the embedding W'2(0,T) —
([0, 7).

Remark 3.10 The assumption on gy means that divyy, = 0 in €, dive = 0 n (),
and the integral condition (5) is satisfied on I'. The assumption on f is equivalent to
fi € L*(0,T; L3(2,)3) with div fi(t) = 0 a.e. in (0,T), and fo(t) = a(t)e in Qy, where
a € L*0,7).
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Note further that the proof of our previous Corollary shows the uniqueness of a weak
solution. Its existence also follows from the previous Corollary, namely we have the

Theorem 3.11 Let T > 0 be fized and assume that f € L*(0,T;V) and go € V,,. Then
problem (16) has a unique weak solution y.

Proof. Fix a sequence f,, € D((0,7),V,),n € N such that
fo— fin L*(0,T; V) as n — oo.

Then by Corollary 3.8, for all n € N, problem (16) with right-hand side f,, and an initial
datum g has a unique solution y,, that satisfies

1Y — Ymll 20,07 @) + lo((Wn)e — Um)e) | L1015y )y + tnax | M (Yn = ym) ||V,

+H /Qz (ym?(x’ ) - ym’Q(% )) ' e(:p) dxHWLl(O,T) = C(T) an - meL?(O,T;V,%)
(46)

for some C(T') > 0 and all n,m € N. Here, we use the estimate (33). But due to the
continuous embedding Y (2) — Y ()’ this also implies that

||U(yn - ym)HHl(O,T;Y(Q)’) <C an - fm||L2(0,T;V/n)' (47}

Since (f,) is a Cauchy sequence, (46) implies the same for (y,) in different spaces.
Therefore, from the first estimate we deduce that there exist y € L*(0,T;Y(Q)), z €
C([0,T], L*(2)?), w € L' (0, T; Y (R2)), and a € WH(0,T') such that

Yn — y in L*(0,T;Y(Q)), (48)

Yn1 — 2 in C([0,T], L*(Q1)%), (49)

(0yn): — w in LY(0,T;Y (), (50)

/Q yna(z, ) - e(x) dz — al-) in W2(0,T), (51)

as n — 0o, with z = y;.
On the other hand the estimate (47) implies the existence of 2 € H*(0,T;Y (R2)') with

oyn — z in H'((0,7); Y () (52)

as n — 0o.
As L?(0,T; L*(Q)3) < L*(0,T;Y(R2)) and H'((0,7);Y(Q)) < L*0,T;Y(Q)), we
deduce that
z = oy.

Furthermore as (52) implies that
(0yn)e — 2z in L*(0, T; Y (Q)),
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and comparing with (50) we obtain that
w = oy
Moreover, as (48) implies that
/ Yno(x,-) - e(z) de — yao(z,-) - e(x) dx in L*(0,T),
Qo Q9
we deduce that

a) = /Q yo(z,-) - e(x) du.

In summary we have proved that the limit y satifies (30), (31) and (32).
Finally, by the previous Corollary we know that y, satisfies (41) with f,, instead of f,
namely

/91 (oyn)e(z,t) - Z2(x) dz + R~ (/Qz (Yn)e(z,1) - e(2) dx) (/Q2 () - e(x) dx)
+ao(yn(+: 1), 2) = /an - Z(x) dz,Vz € Y(Q).

Passing to the limit we find that y satisfies (45).
In the same manner, starting from the initial conditions satisfied by ¥, and passing to
the limit, we deduce that y satisfies the same initial conditions as y,,. [ ]

3.4 Particular cases

Let us apply Theorem 3.11 to some particular settings that fit in the general system (16).
First, we consider the case e = 0. Here, we have

My =0in Qy and gy =0 in Q.

Therefore, the system (16) reduces to the degenerate parabolic equation (1). Then Theorem
3.11 includes the following Corollary that recovers a result by Bachinger et al. [4].

Corollary 3.12 Suppose that yy € L*(Q)? is divergence free and f belongs to L*(0,T; V).
Then the equation (1) has a unique solution y € L*(0,T;Y () with oy, € L' (0, T; Y (2)).

Notice that the assumption f(t) € V,, Vt € [0,7] means that div f(t)o, = 0 and
f(t), =0 for all t € [0,T]. We have y € C([0,T], L*(€1)?) as in Remark 3.7.

In particular, it follows for yy = 0 that the map f + y is continuous from L?(0,T; V)
to L2(0,T;Y () and the mapping f ~ ¥ is continuous from L?(0,T;V!) with values in
C([0,T], L*(£2;)3). The latter follows from estimate (35).

The next result refers to equation (9), where the right-hand side vanishes in ©; and is
equal to R™u(t) e(z) in Q.
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Corollary 3.13 For all given u € L*(0,T), divergence free yo € L*(Q1), and ay € R,
the system (9) has a unique solution y € L*(0,T;Y () that obeys the reqularity stated in
Corollary 3.12 above.

The next result provides a sufficient condition for the assumption that y|q, belongs to
C([0,T], H(curl,Q)) that was used as assumption in Lemma 2.5 on the continuity of the
electrical current ¢ in the system (4).

Theorem 3.14 Assume in addition to the assumptions stated in Corollary 3.13 that it
holds curl ' curlyy, € L*()3, e # 0, and w € H'(0,T). Then the solution y of (9)
belongs to H*(0,T'; H(curl, 2)).

Proof. As in the previous sections, we denote the restriction of yy to €2; by y;o. We
consider the solution w € L?(0,T;Y(Q)) of the problem

th(t) + L'LU(t) = 0 in Ql
wi(t) -edre+ Lw(t) = u/'(t)e in Qo (53)
Q2
subject to the initial conditions
ow(0) = —Lyi in
w(0)-edr = wu(0)—ip in Qy, (54)

Qo

where iy is fixed according to (15) so that y, satisfies the initial condition (8). Notice that
u(0) is defined, since w € H'(0,T'). For the same reason, we have v’ € L?(0,T). Moreover,
Ly belongs to L?(21)3, hence the regularity assumption on the initial condition for w in
() is fulfilled.

Thanks to Corollary 3.13, there exists a unique weak solution w € L?(0,T;Y(f2)) to
the problem (53), (54). We also know that w € C([0,T], L?(£2;)?) so that the value w(0)
is well defined in ;.

Now we define y by
t
y(t) ::/ w(s) ds + yo, (55)
0

where yo = 910 is defined in ©Q; and yo = y20 = iy +yr in Qs according to (12). The integral
is defined in the Bochner sense. The solution y, constructed by Lemma 2.3 is contained in
H(curl, Q) because it holds y19 € H(curl, §2y), y10 € H(curl,€s) and y19 X n = y9p X n on
.

Therefore, we have that y € H'(0,T; H(curl,Q)). Let us verify that this is a solution
to the system (9); then the regularity result follows by the uniqueness of this solution. In
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1, we obtain

o)+ Intt) = o5 ([ (s ds ) + L / wls) ds + Lo

t
= ow(t) + / Lw(s)ds+ Ly
0
t
_ aw@)—l/‘awTsﬁk—%Lyw
0
= ow(t) — ow(t) + ow(0) + Lyip = 0,

where the last term vanishes thanks to the upper initial condition of (54). Therefore, the
first equation of (9) is fulfilled.
Consider now the equation in 2. We have a.e. in (0,7") that

/ wi(t) - edze+ Lw(t) = u'(t)e in Q.
Qo

Integration over (0,7T) yields

/Q2 w(t)-edre+ /Ot Lw(s)ds = u(t)e — u(0)e + /92 w(0) - edxe. (56)

By the lower initial condition of (54), the right-hand side of (56) is equal to u(t)e — ige,
hence

/Q2 w(t) edve+ /t Luw(s)ds + ioe = u(t)e.

0

By (55), Lyso = L(igye + yr) = ige, and the last equation, we get

/QQ?Jt(t)-edxe%—Ly(t) :/QQw(t)'edmejL/Oth(S)dS%-Lyzo:u(t)e.

This confirms the second differential equation of (9). Moreover, the initial condition is

satisfied, because
/ y(0)-edre = / Yoo - €dr e = .
QQ QQ

Notice that y9y was defined in a way such that sz y(0) - edr = «p is granted. ]

References

[1] Ana Alonso Rodriguez and Alberto Valli. Eddy current approzimation of Mazwell
equations, volume 4 of MSEA. Modeling, Simulation and Applications. Springer-
Verlag Italia, Milan, 2010. Theory, algorithms and applications.

25



[2] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-
dimensional non-smooth domains. Math. Methods Appl. Sci., 21(9):823-864, 1998.

[3] Lilian Arnold and Bastian Harrach. A unified variational formulation for the parabolic-
elliptic eddy current equations. Submitted, 2011.

[4] F. Bachinger, U. Langer, and J. Schoberl. Numerical analysis of nonlinear multihar-
monic eddy current problems. Numer. Math., 100(4):593-616, 2005.

[5] Alain Bossavit. Computational electromagnetism. Electromagnetism. Academic Press
Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements.

[6] A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl, §2) in Lipschitz domains.
J. Math. Anal. Appl., 276(2):845-867, 2002.

[7] Martin Costabel, Monique Dauge, and Serge Nicaise. Singularities of eddy current
problems. M2AN Math. Model. Numer. Anal., 37(5):807-831, 2003.

[8] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations,
Theory and algorithms, volume 5 of Springer Series in Computational Mathematics.
Springer, Berlin, 1986.

[9] D. Hémberg and J. Sokotowski. Optimal shape design of inductor coils for surface
hardening. Numer. Funct. Anal. Optim., 42:1087-1117, 2003.

[10] M. Kolmbaur. Existence and uniqueness of eddy current problems in bounded and
unbounded domains. Technical report, J. Kepler University Linz, May 2011. DK-
Report 2011-06.

[11] Peter Monk. Finite element methods for Mazwell’s equations. Numerical Mathematics
and Scientific Computation. Oxford University Press, New York, 2003.

[12] R. E. Showalter. Hilbert space methods for partial differential equations. Pitman,
London, 1977. Monographs and Studies in Mathematics, Vol. 1.

[13] L. Tartar. On the characterization of traces of a Sobolev space used for Maxwell’s
equation. In A.-Y. Le Roux, editor, Proceedings of a Meeting Held in Bordeauz, in
Honour of Michel Artola, 1997.

[14] C. Weber. A local compactness theorem for Maxwell’s equations. Math. Meth. Appl.
Sci., 2:12-25, 1980.

26



