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SEMI-CLOSED FORM CUBATURE AND APPLICATIONS TO

FINANCIAL DIFFUSION MODELS

CHRISTIAN BAYER, PETER FRIZ, RONNIE LOEFFEN

Abstract. Cubature methods, a powerful alternative to Monte Carlo due to
Kusuoka [Adv. Math. Econ. 6, 69–83, 2004] and Lyons–Victoir [Proc. R. Soc.
Lond. Ser. A 460, 169–198, 2004], involve the solution to numerous auxil-
iary ordinary differential equations. With focus on the Ninomiya-Victoir algo-
rithm [Appl. Math. Fin. 15, 107–121, 2008], which corresponds to a concrete
level 5 cubature method, we study some parametric diffusion models motivated
from financial applications, and exhibit structural conditions under which all
involved ODEs can be solved explicitly and efficiently. We then enlarge the
class of models for which this technique applies, by introducing a (model-
dependent) variation of the Ninomiya-Victoir method. Our method remains
easy to implement; numerical examples illustrate the savings in computation
time.

1. Introduction

We deal with the common problem in quantitative finance to compute, as fast
and accurately as possible,

(1) E [f (XT )] .

Here, f : RN → R denotes a typical payoff function and (Xt)0≤t≤T is an N -
dimensional diffusion process, given in terms of a stochastic differential equation
(SDE) in Stratonovich form



X1(t, x)
...

XN (t, x)


 =




x1

...
xN


+




∫ t

0
V 1
0 (X(s, x))ds

...∫ t

0 V
N
0 (X(s, x))ds


+




∑d
j=1

∫ t

0 V 1
j (X(s, x)) ◦ dBj

s

...∑d
j=1

∫ t

0 V N
j (X(s, x)) ◦ dBj

s


 .

where x = (x1, . . . , xN ) ∈ RN and B = (B1, . . . , Bd) is a d-dimensional standard
Brownian motion. Whenever convenient, we shall use the compact notation

(2) X(t, x) = x+

∫ t

0

V0(X(s, x))ds +

d∑

j=1

∫ t

0

Vj(X(s, x)) ◦ dBj
s ,

or, in Itô form,

X(t, x) = x+

∫ t

0

Ṽ0(X(s, x))ds+

d∑

j=1

∫ t

0

Vj(X(s, x))dBj
s ,

where Ṽ i
0 (x) = V i

0 (x) +
1
2

∑d
j=1

∑N
k=1 V

k
j ∂kV

i
j (x).

Key words and phrases. Ninomiya–Victoir method, cubature method, Monte Carlo simulation.
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As is common in the analysis of higher-order, weak approximation methods for
such SDEs (cf. the classics Kloeden and Platen [7], Glasserman [4] as well as
Kusuoka [8], Lyons and Victoir [12] and Ninomiya and Victoir [15] for cubature
type methods) we shall assume that the payoff function f and all vector fields
V0, V1, . . . , Vd are smooth, with bounded derivatives of any order. The standing
remark in this subject, implicit in all of the aforementioned references, is that any
scheme obtained from such an analysis can and will be applied to typical financial
diffusion models (such as Heston, SABR and their – possibly higher-dimensional –
generalizations) even if they do not satisfy the technical assumptions initially used
in the analysis; numerical experiments (which are necessary for every numerical
scheme in any case!) serve as a posteriori justification.1

We do not wish to impose any special structure on (2); in particular the vector
fields are not supposed to commute (cf. Kloeden and Platen [7][page 348] for the
advantages in such a case in the particular case of the Milstein scheme), no affine
structure (as in the Heston model) is assumed, nor do we want to rely on heat-kernel
based expansions of (1) (such as the SABR formula). In this generality, one has
essentially two approaches. The PDE method, based on the Feynman-Kac formula,
consists in solving the Cauchy problem for the partial differential equation

∂tu (t, x) + Lu(t, x) = 0, u (T, x) = f(x)

where the 2nd order differential operator L is given in Hörmander form L =

V0+
1
2

∑d
i=1 V

2
i where vector-fields are identified with first order differential opera-

tors. As is well known, that PDE approach is prohibitively slow in higher dimension;
there are also stability issues when L is not elliptic. The other approach is the prob-
abilistic “simulation” method which requires two steps. In step 1 one discretizes

X (t, x) in order to obtain an approximation X
K
(t, x); typically, K corresponds

to the number of partitions of [0, T ]; examples include the Euler-Maruyama (EM)
scheme

X
(EM),K

(0, x) = x ∈ RN

X
(EM),K

(
k + 1

K
,x

)
= X

(EM),K
(

k

K
, x

)
+ Ṽ0(X

(EM),K
(

k

K
, x

)
)× T

K

+

√
T

K

d∑

j=1

Vj

(
X

(EM),K
(

k

K
, x

))
Zj
k+1,

where
(
Zj
k

)
is a family of independent N (0, 1)2 random variables, as well as higher

order (Milstein, Kusuoka, Ninomiya–Victoir, . . . ) schemes which we do not wish
to detail at this moment. The discretization error is given by

∣∣∣E [f (X (T, x))]− E

[
f
(
X

K
(T, x)

)]∣∣∣ =





O (T/K) for Euler-Maruyama
O
(
(T/K)2

)
for Ninomiya-Victoir

· · ·

1It is possible to analyze mollified/truncated versions of CIR, Heston, SABR, . . . and thus
provide further mathematical justification. For instance, it was only recently shown in full rigor
that the classical Euler-Maruyama scheme applied to the Heston model converges; see e.g. Mao
and Higham [5]. Let us also mention the work of Alfonsi [1] in this context. Such considerations
are not the purpose of the present paper.

2Throughout the paper N (µ, σ2) denotes the normal distribution with mean µ and variance
σ2.
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In step 2 one has to integrate f
(
X

K
(T, x)

)
over some domain of dimension

D = D (K) such as3

E

[
f
(
X

K
(T, x)

)]
=

∫

[0,1)D(K)

F
(
y1, . . . , yD(K)

)
dy1 . . . dyD(K).

Here, F denotes the dependence of f
(
X

K
(T, x)

)
on uniform random variables, i.e.,

F
(
U1, . . . , UD(K)

)
= f

(
X

K
(T, x)

)
for a collection

(
U1, . . . , UD(K)

)
of independent

random variables uniformly distributed on the unit interval. The right-hand-side
is approximated by Monte Carlo (MC) or Quasi Monte Carlo (QMC), essentially
obtained by averaging M samples of F

(
y1, . . . , yD(n)

)
. These samples are random

if created by Monte Carlo (MC) and deterministic if obtained by Quasi Monte Carlo
(QMC). In either case, we have an integration error of the form

∣∣∣MC
(
f
(
X

K
(T, x)

)
,M
)
(ω)− E

[
f
(
X

K
(T, x)

)]∣∣∣ ,
∣∣∣QMC

(
f
(
X

K
(T, x)

)
,M
)
− E

[
f
(
X

K
(T, x)

)]∣∣∣ .

The central limit theorem roughly implies that MC-integration error is O
(
1/

√
M
)
.

More precisely, we have in the sense of an asymptotic equality in law,

MC
(
f
(
X

K
(t, x)

)
,M
)
≈ N

(
E

[
f
(
X

K
(t, x)

)]
,V
[
f
(
X

K
(t, x)

)]
/M
)

so that, using V

[
f
(
X

K
(t, x)

)]
≈ V [f (X (t, x))] we see that the number of sample

points M needed to attain a given accuracy (i.e. a certain ε bound for the MC-
integration error) is roughly independent of K and the discretization algorithm.
The situation is somewhat different for the QMC-integration error. It is known that
there exists sequences (”sample points”) such that there exists C = C (f,D (K))
such that for all M one has

∣∣∣QMC
(
f
(
X

K
(T, x)

)
,M
)
(ω)− E

[
f
(
X

K
(T, x)

)]∣∣∣ ≤ C
(logM)

D(K)

M
.

In contrast to the MC case, the number of sample points M needed by QMC to
attain a given accuracy depends heavily on the dimension of integration D (K) and,

possibly, on the smoothness of f
(
X

K
)
as a function in the points y1, . . . , yD(K).

Moreover, the above error estimate is known to grossly overestimate the true error
in many cases.

1.1. Cubature on Wiener Space. Let us briefly put the (Kusuoka–Lyons–Victoir)
cubature method in this context. For simplicity of notation only, we consider the
case V0 = 0 here. A cubature formula on Wiener space is a random variable W
taking values in the space C1-var([0, 1],Rd) of continuous paths of bounded variation
with values in Rd such that we have

(3) E

[∫

0≤t1≤···≤tj≤1

◦dBi1
t1 · · · ◦ dB

ij
tj

]
= E

[∫

0≤t1≤···≤tj≤1

dW i1
t1 · · · dW ij

tj

]
.

3The dimension D(K) will depend on the method (for instance D(K) = K × d for the Euler-
Maruyama scheme, D(K) = K × (d+ 1) for the Ninomiya–Victoir scheme).
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for all multi-indices I = (i1, . . . , ij) ∈ {1, . . . , d}j with all 1 ≤ j ≤ m, where
m is a fixed positive integer, the order of the cubature formula. Moreover, we
note that since the paths of the process W are of bounded variation, the integrals
on the right hand side of (3) are then understood as classical Riemann-Stieltjes
integrals. In applications, the reference interval [0, 1] in (3) is typically replaced
by some (small) interval such as [0, T/K]. (Due to Brownian scaling, however, the
problems are equivalent; in particular, a cubature formula on [0, t] is obtained by
a scaled version of the cubature formula on [0, 1].) In the classical paper of Lyons
and Victoir [12] the authors actually insisted that the cubature formula is discrete
meaning that for some positive integer k, the law of W can be written as

k∑

i=1

λiδWi
,

where δWi
is the Dirac measure on Wiener space which assign unit mass to the path

Wi (.) , zero to every other path. (Existence and explicit knowledge of cubature
formulas is a non-trivial problem!) The idea is now to approximate the stochastic
differential equation (2) for X = X (t, x) by a family of (random) ordinary time-
inhomogeneous differential equations,

X(t, x;W ) = x+
d∑

j=1

∫ t

0

Vj(X(s, x;W ))
dW j (s)

ds
ds,

where W now denotes a cubature formula on the interval [0, t]. A stochastic Taylor-
expansions (e.g. chapter 18 in [2] for a discussion in the spirit of cubature) shows

that E
[
f
(
X(t, x;W )

)]
− E [f (X (t, x))] = O

(
t
m+1

2

)
as t → 0. Observe that in

the case of a discrete cubature formula E
[
f
(
X(t, x;W )

)]
is computed exactly (no

integration error!) by solving k ordinary differential equations. A (big) interval
[0, T ] can be handled by dividing it into K intervals of length T/K and iterating
this procedure but now exact computation of E [f (X(t, x;W ))] requires to solve

k + k2 + · · ·+ kK = O
(
kK
)

ordinary differential equations. When kK becomes too big one can either perform
a Monte Carlo simulation (“on the cubature tree”) or resort to recombination tech-
niques (see Litterer and Lyons [13] for the present state of art). Let us note, how-
ever, that in many practical applications K remains small, which helps to explain
the numerical benefits of cubature even without recombination.

1.2. The Ninomiya–Victoir (NV) Scheme. The Ninomiya–Victoir “splitting”
scheme, introduced in [15], is given by

X
(NV ),K

(0, x) = x ∈ RN ,

X
(NV ),K

(
(k + 1)T

K
, x

)
=

=

{
e

T
2K V0eZ

1
k

√
T
K

V1 · · · eZd
k

√
T
K

Vde
T
2K V0X

(NV ),K (kT
K , x

)
if Λk = −1,

e
T
2K V0eZ

d
k

√
T
K

Vd · · · eZ1
k

√
T
K

V1e
T
2K V0X

(NV ),K (kT
K , x

)
if Λk = +1.

Here eV x ∈ RN denotes the ODE solution at unit time to ẏ = V (y) , y (0) = x and
the probability space carries independent random-variables (Λk), with values ±1 at
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probability 1/2, and N (0, 1) random variables (Zj
k). One step in the NV scheme

corresponds actually to a (non-discrete) cubature formula of order m = 5. To see
this, assume V0 = 0 for (consistent) simplicity and let (bi) denote the canonical
basis of Rd. An Rd-valued random path W (ω), continuous and of bounded vari-
ation, is then created via Λ (ω) ∈ {+1, 1} and d independent N (0, 1) realizations
Z1 (ω) , . . . , Zd (ω). If Λ (ω) = −1 we take W (ω) : [0, T/K] → Rd , started at 0 say,

to move at constant speed, first an amount Zd
k

√
T/K in bd-direction, . . . until the

final move Z1
k

√
T/K in b1-direction; if Λ (ω) = +1 the construction is similar but

in reversed order. When V0 6= 0, one follows the flow of the drift vector-field for
time T/ (2K) in the first and last step of the scheme; at all intermediate steps V0 is
followed for a time T/K; this is inspired by classical splitting methods in operator
theory. Let us also note that the coin-flipping corresponds to Talay’s trick of, in
a weak approximation context, replacing the (difficult to sample) Lévy’s area by
a discrete moment-matched random variable, see Kloeden and Platen [7][page 466
f.].

The NV scheme has attracted wide attention since its introduction in [15]; it is
nowadays found in various sophisticated numerical packages such as Inria’s software
PREMIA for financial option computations. 4 A variation of the scheme designed
to deal with degeneracies arising some affine situations is discussed in [1]. Let us
also mention the ”NV inspired” schemes developed in [3] and [16].

1.3. Semi-closed form cubature. It is clear from the preceding discussion that
cubature methods, and the NV scheme in particular, heavily rely on the ability
to solve, fast and accurately, ordinary differential equations. The general cubature
methods involves time-inhomogeneous ODEs; in general, there is no alternative to
solve them numerically, typically with Runge-Kutta methods. (A detailed discus-
sion on how Runge-Kutta methods are applied in this context is found in Ninomiya
and Ninomiya [14].)

On the other hand, the Ninomiya-Victoir splitting scheme only involves the
composition of solution flows to time-homogeneous ODEs. In particular, there will
be ”lucky” cases of models where all (or at least most) ODE flows can be solved
exactly.5 In such a case one has effectively found a level-5 cubature method which
can be implemented without relying on numerical ODE solvers. In particular, one
expects the cubature methods to perform especially well in such cases. As was
observed in [15], see also Section 2.1, the Heston model is such a lucky case. We
thus propose the following definition.

Definition 1. A diffusion model of type (2) where a cubature method can be
implemented without any numerical ODE solutions is said to be accessible to semi-
closed form cubature (SCFC).

For instance, any model of type (2) where all ODE flows etV0 , . . . , etVd can be
solved in closed form falls in this class. However, one soon encounters model (e.g.
the popular SABR model, see Section 2.2) in which some of the vector-fields do not
allow for flows in closed form. The contribution of this paper, beyond suggesting the

4As of Sep 2010, the weblink ralyx.inria.fr/2006/Raweb/mathfi/uid21.html contains some rel-
evant information.

5 By this we mean a closed-form solution to the ODE ẏ = V (y) , y (0) = x which allows for

fast numerical evaluation. In particular, we are not interested in ”closed-form” solution in terms
of complicated and slow-to-evaluate special functions.
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systematic use of financial models that are accessible to semi-closed form cubature,
is that the class of such models can be significantly enlarged by working with an
almost trivial modification of the NV scheme. 6 Before explaining our modification
we point out that the SABR model then becomes accessible to semi-closed form
cubature. Our modification is based on the trivial equivalence of (2) with

dX(t, x) =


V0(X(t, x))−

d∑

j=1

γjVj(X(t, x))


 dt+

d∑

j=1

Vj(X(t, x)) ◦ d
(
Bj

t + γjt
)

≡V
(γ)
0 (X(t, x)) +

d∑

j=1

Vj(X(t, x)) ◦ d
(
Bj

t + γjt
)

whatever the choice of drift parameters γ1, . . . , γd. Assume that all diffusion vector-
fields (V1, . . . , Vd) allow for flows in closed form, whereas etV0 is not available in
closed form. The point is that, in a variety of concrete examples, one can pick drift

parameters γ1, . . . , γd in a way that etV
(γ)
0 can be solved in closed form after all.

Therefore, we propose the following variant of the Ninomiya-Victoir method
(which shall be referred to as the “NV scheme with drift (trick)”):

X
(NV d),K

(0, x) = x ∈ RN ,

X
(NV d),K

(
(k + 1)T

K
, x

)
=

(4)

=

{
e

T
2K V

(γ)
0 eZ

1
kV1 · · · eZd

kVde
T
2K V

(γ)
0 X

(NV d),K (kT
K , x

)
, if Λk = −1,

e
T
2K V

(γ)
0 eZ

d
kVd · · · eZ1

kV1e
T
2K V

(γ)
0 X

(NV d),K (kT
K , x

)
, if Λk = +1,

(5)

where Zi
k ∼ N

(
T
K γi,

T
K

)
independent of each other.

The bulk of this paper is devoted to implement these ideas for a handful of
(stochastic volatility) models encountered in the financial industry. Since high-
dimensional problems are the raison d’être for probabilistic simulation methods,
a detailed discussion of a higher-dimensional (SABR-type) model is included. At
last, we discuss numerical results obtained with our “drift-modified” NV scheme:
relative to the classical NV scheme we observe significant and consistent savings in
computational time.

Note that we want to concentrate on the method itself, without further improve-
ments like variance reduction, optimization of code and Romberg extrapolation.

Acknowledgment: Partial support of MATHEON and the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement nr. 258237 is gratefully acknowledged.

6While SCFC corresponds to the “luckiest” case of avoiding numerical ODE solvers altogether,
any significant reduction of numerical ODEs to be solved will be desirable. Our modification of
the NV scheme can obviously be used to this purpose as well.
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2. Application of classical NV scheme to Heston and SABR

2.1. Heston model. The stochastic volatility model of Heston is given by the
SDE:

dX1(t, x) =µX1(t, x)dt+
√
X2(t, x)X1(t, x)dB

1
t

dX2(t, x) =κ(θ −X2(t, x))dt+ ξ
√

X2(t, x)d
(
ρB1

t +
√
1− ρ2B2

t

)
,

where µ is the rate of return of the asset, θ is the long vol, κ is the mean-reversion
rate, ξ is the vol(atility) of vol(atility) and ρ is the correlation parameter between

the (standard) Brownian motions B1 and
(
ρB1

t +
√
1− ρ2B2

t

)
.

The vector fields are given by

Ṽ0(x) =

(
µx1

κ(θ − x2)

)
, V1(x) =

(√
x2x1

ξρ
√
x2

)
, V2(x) =

(
0

ξ
√
1− ρ2

√
x2

)

and so we get
(
V 1
0 (x)

V 2
0 (x)

)
=

(
Ṽ 1
0 (x)

Ṽ 2
0 (x)

)
−
(

1
2

∑2
j=1 VjV

1
j (x)

1
2

∑2
j=1 VjV

2
j (x)

)
=

(
[µ− 1

4ξρ]x1 − 1
2x2x1

κ(θ − x2)− 1
4ξ

2

)
.

The corresponding solutions to the ODEs are (cf. Lord et al. [11, p.8-9] and their
reference to [15]; see also the Appendix)

esV0x =

(
x1 exp

(
[µ− 1

4ξρ− 1
2J ]s+

1
2
x2−J

κ [e−κs − 1]
)

(x2 − J)e−κs + J

)
,

esV1x =



x1 exp

(
( 1

2 ξρs+
√
x2)

2

+
−x2

ξρ

)

(
1
2ξρs+

√
x2

)2
+


 ,

esV2x =




x1(
1
2ξ
√
1− ρ2s+

√
x2

)2
+


 ,

with J =
κθ− 1

4 ξ
2

κ . We assume (as in [11]) that J ≥ 0; see [1] for how to proceed
otherwise.

The Heston model can be rewritten in log-coordinates. Define Y1(t) = logX1(t, x)
and Y2(t) = X2(t). In this new coordinate chart, the vector fields are

(
V 1
0 (y)

V 2
0 (y)

)
=

(
[µ− 1

4ξρ]− 1
2y2

κ(θ − y2)− 1
4ξ

2

)
, V1(y) =

( √
y2

ξρ
√
y2

)

and the corresponding solutions to the ODEs are

esV0y =

(
y1 + [µ− 1

4ξρ− 1
2J ]s+

1
2
y2−J

κ [e−κs − 1]
(y2 − J)e−κs + J

)
,

(6) esV1y =


y1 +

( 1
2 ξρs+

√
y2)

2

+
−y2

ξρ(
1
2ξρs+

√
y2
)2
+


 ,

esV2y =




y1(
1
2ξ
√
1− ρ2s+

√
y2

)2
+


 ,
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with J =
κθ− 1

4 ξ
2

κ , as before and y = (y1, y2) = (log x1, x2). As is well-known, it
is far preferable to use Heston in log-coordinates when simulating with the EM
scheme. Although this is less critical in the cubature context, we still recommend
(6) to avoid the numerical evaluation of exp(·).

2.2. SABR model. The SABR model is given by

dX1(t, x) =aX2(t, x)(X1(t, x))
βdB1

t

dX2(t, x) =bX2(t, x)d
(
ρB1

t +
√
1− ρ2B2

t

)
,

where 1
2 ≤ β ≤ 1, a, b > 0 and −1 < ρ < 1. 7 The corresponding vector fields are

Ṽ0(x) =

(
0
0

)
, V1(x) =

(
ax2x

β
1

bρx2

)
, V2(x) =

(
0

b
√
1− ρ2x2

)

and so we get

(
V 1
0 (x)

V 2
0 (x)

)
=−

(
1
2

∑2
j=1 VjV

1
j (x)

1
2

∑2
j=1 VjV

2
j (x)

)
=

(
− 1

2 [a
2βx2

2x
2β−1
1 + abρx2x

β
1 ]

− 1
2b

2x2

)
.

The solutions to the ODEs corresponding to the vector fields V1 and V2 are

esV1x =

(
g1(s)

x2 exp (bρs)

)
,

esV2x =

(
x1

x2 exp
(
b
√
1− ρ2s

)
)
,

where

g1(s) =

[
(1− β)

ax2

bρ

(
ebρs − 1

)
+ x1−β

1

]1/(1−β)

+

, 0 < β < 1,

g1(s) =x1 exp

(
ax2

bρ

(
ebρs − 1

))
, β = 1.

For details on the uniqueness of g1 we refer to the Appendix. Concerning the
solution to the ODE corresponding to V0, let H(s) be the first component of esV0x,
i.e.

esV0x =

(
H(s)

x2 exp
(
− 1

2b
2s
)
)
.

It is impossible to find H in closed-form (unless ρ = 0 or β = 1). This means that
applying the standard NV-scheme must involve the numerical solution of auxiliary
ODEs. We shall see later that with the NV scheme with drift all involved ODEs
can be solved in closed form.

7Although in the literature the SABR model is also considered for 0 < β < 1

2
we restrict

ourselves to the case 1

2
≤ β ≤ 1 in order to avoid difficulties regarding well-posedness of X, cf.

[9].
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3. Models accessible to SCFC and NV with drift

3.1. Motivation. In the classical NV scheme, only centered Gaussian (Brownian)
increments are used to flow along the diffusion vector fields. Our main observation
is that one can also use non-centered Gaussian increments; this affects the drift
term and, chosen in a smart way, can sometimes render all auxiliary ODE to be
solvable in closed form. To motivate the class of models for which this works, we
illustrate how to systematically construct models accessible to SCFC from a fairly
general two-factor stochastic volatility model given in Itô form by

dX1(t) =A(X1(t))B(X2(t))dB
1
t

dX2(t) =C(X2(t))dt +D(X2(t))dB
1
t + E(X2(t))dB

2
t ,

where (X1(0), X2(0)) = (x1, x2) is kept fixed. In Stratonovich form this becomes
(omitting the dependence on t in the drift and diffusion coefficients),

dX1(t) =− 1

2
A(X1)

[
A′(X1)B

2(X2) +D(X2)B
′(X2)

]
dt+A(X1)B(X2) ◦ dB1

t

dX2(t) =

[
C(X2)−

1

2
[D(X2)D

′(X2) + E(X2)E
′(X2)]

]
dt

+D(X2) ◦ dB1
t + E(X2) ◦ dB2

t ,

In the subsequent analysis we shall exhibit a number of possible choices which lead
to models accessible to SCFC. First we would like to choose the coefficients A, . . . , E
such that we can rewrite the first SDE as

dX1(t) = H1(X1)H2(X2)dt+A(X1)B(X2) ◦ d
(
B1

t + γ1t
)

for a constant γ1 and functions H1, H2. Three possible ways to achieve this goal
are

(i) A′(X1) ∝ 1, (ii) D(X2) = 0 or (iii) D(X2)B
′(X2) ∝ B(X2).

Note that the Heston model is a particular example satisfying (i). However, in case
(i) we would have γ1 = 0 and since we want to illustrate the additional benefit
of the NV scheme with drift over the classical NV scheme, we will not consider
case (i) in any more detail. Moreover, since we would like the volatility factor to
depend on the Brownian motion driving the stock, we will also skip case (ii) and

concentrate on case (iii) which implies B(X2)
B′(X2)

∝ D(X2) and γ1 > 0. E.g. if we

choose D(x) = 1, then B(x) ∝ exp(cx), if D(x) = x, then B(x) ∝ xc with c 6= 0, if
D(x) = xq, 0 ≤ q < 1, then B(x) ∝ exp( c

1−qx
1−q). We focus on the most natural

choice (i.e. B not being of exponential type) and therefore pick

B(X2) = aXα
2 and D(X2) = bρX2.

These choices give us

dX1(t) =− 1

2
A(X1)A

′(X1)a
2X2α

2 dt+A(X1)aX
α
2 ◦ d

(
B1

t −
1

2
αbρt

)

dX2(t) =

[
C(X2)−

1

2

[
b2ρ2X2 + E(X2)E

′(X2)
]]

dt+ bρX2 ◦ dB1
t + E(X2) ◦ dB2

t .

With

(V 1
0 , V

2
0 ) =

(
−1

2
A(x1)A

′(x1)a
2x2α

2 , C(x2)−
1

2
[b2ρ2x2 + E(x2)E

′(x2)]

)
,
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define h(t;x2) = x2e
tV 2

0 . We would like
∫ t

0
h(s;x2)

2αds to have an explicit ex-

pression, since it will appear in the first component of xetV0 . Possible cases are (i)

h(t;x2) ∝ t+x2, (ii) h(t;x2) ∝ ect or (iii) very specific cases like h(t;x2) = p(t, x2)
1
2α

with p nice. Both (i) and (ii) lead to C being affine and E being affine or of square
root type. We pick

C(X2) = κ(θ −X2) and E(X2) = b
√
1− ρ2X2.

and we shall later motivate why we let E be linear. With these choices we can write

dX1(t) =− 1

2
A(X1)A

′(X1)a
2X2α

2 dt+A(X1)aX
α
2 ◦ d

(
B1

t − 1

2
αbρt

)

dX2(t) =

[
κ(θ −X2)−

1

2
b2X2

]
dt+ bρX2 ◦ dB1

t + b
√
1− ρ2X2 ◦ dB2

t .

We now rewrite the second SDE in the form

dX2(t) = H(X2)dt++bρX2 ◦ d
(
B1

t + γ1t
)
+ b
√
1− ρ2X2 ◦ d

(
B2

t + γ2t
)

with γ1 = − 1
2αbρ (as in the first SDE) and with γ2 a constant such that H(X2)

becomes as simple as possible (recall that we want
∫ t

0
(x2e

sH)2αds to be explicit).
We get

dX2(t) = κθdt+ bρX2 ◦ d
(
B1

t − 1

2
αbρt

)

+ b
√
1− ρ2X2 ◦ d

(
B2

t +
αbρ2 − 2κ/b− b

2
√
1− ρ2

t

)
.

Note that if we would have chosen E to be affine but not linear or have chosen E of
square root type, we would not be able to make H so simple. (For the same reason
we have chosen D linear and not generally affine.)

Finally, A(X1) is left to choose. Since we want to end up with a model accessible
to SCFC, the function A should be such that x1e

tA is explicit, which means that
we want

∫ x

·
dy

A(y) to have an explicit inverse. Also, x1e
tA·A′

should be explicit. The

obvious candidates are A(X1) = Xβ
1 , A(X1) = ecX1 and A(X1) = X1 + c and all

lead to models that are accessible to SCFC. As a case study we choose the first one
and apply the NV scheme with drift to the resulting model in the next section.

3.2. Generalized SABR (with shifted log-normal 2nd factor). In the pre-
vious section we constructed a particular class of SV-models which are accessible
to SCFC, namely:

dX1(t) =aX2(t)
αX1(t)

βdB1
t

dX2(t) =κ(θ −X2(t))dt+ bX2(t)
(
ρdB1

t +
√
1− ρ2dB2

t

)
,

with X1(0) = x1 and X2(0) = x2. We assume that the parameters satisfy 1
2 ≤

β ≤ 1, θ, κ ≥ 0, α > 0, a, b > 0, −1 < ρ < 1. Details surrounding well-posedness,
integrability properties and martingale properties can be found in Lions and Musiela
[9, 10]. A simple application of Itô’s formula shows that

X2(t) = x2e
−(κ+ 1

2 b
2)t+bWt + κθ

∫ t

0

e−(κ+ 1
2 b

2)(t−s)eb(Wt−Ws)ds,
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where Wt = ρB1
t +

√
1− ρ2B2

t and thus X2(t) > 0 for all t ≥ 0, provided x2 > 0.
We shall now give all the ODE solutions that are required to apply the NV

scheme (with drift). First note that the vector fields V1 and V2 corresponding to
B1 and B2 are given by

V1 =

(
axα

2 x
β
1

bρx2

)
, V2 =

(
0

b
√
1− ρ2x2

)

and the ODE solutions are

esV1x =

(
g1(s)

x2 exp (bρs)

)
,

esV2x =

(
x1

x2 exp
(
b
√
1− ρ2s

)
)
,

where

g1(s) =

[
(1− β)

axα
2

αbρ

(
eαbρs − 1

)
+ x1−β

1

]1/(1−β)

+

,
1

2
≤ β < 1,

g1(s) =x1 exp

(
axα

2

αbρ

(
eαbρs − 1

))
, β = 1.

The Itô drift vector field Ṽ0 and Stratonovich drift vector field V0 of X are given
by

Ṽ0(x) =

(
0

κθ − κx2

)
, V0(x) =

(
− 1

2a
2βx2α

2 x2β−1
1 − 1

2αabρx
α
2 x

β
1

κθ − (κ+ 1
2b

2)x2

)
.

We have esV0x = (H(s), h(s))T with

h(s) =

(
x2 −

κθ

κ+ 1
2b

2

)
e−(κ+ 1

2 b
2)s +

κθ

κ+ 1
2b

2

and H needs to be numerically solved. (We have already pointed to this difficulty
when we discussed the classical SABR example earlier on.)

Let us now show that by using Brownian increments with drift, this problem can
be resolved: all necessary flows can be computed in closed form. Recall from the
previous section that we can rewrite X as

dX1(t) =− 1

2
a2βX2α

2 X2β−1
1 dt+ aXα

2 X
β
1 ◦ d

(
B1

t + γ1t
)

dX2(t) =κθdt+ bρX2 ◦ d
(
B1

t + γ1t
)
+ b
√
1− ρ2X2 ◦ d

(
B2

t + γ2t
)
.

with

γ1 = −1

2
αbρ and γ2 =

αbρ2 − 2κ/b− b

2
√
1− ρ2

.

We see here that the assumption −1 < ρ < 1 is crucial. Note that the vector fields
corresponding to B1

t + γ1t and B2
t + γ2t, respectively, are V1 and V2. Denote by

V
(γ)
0 the remaining part, i.e.

V
(γ)
0 (x) =

(
− 1

2a
2βx2α

2 x2β−1
1

κθ

)
.
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Then we have esV
(γ)
0 x = (g0, κθs+ x2)

T with (cf. Appendix)

g0(s) =
(
−a2β(1− β)P (s) + x

2(1−β)
1

) 1
2(1−β)

+
,

1

2
< β < 1,

g0(s) =x1 exp

(
−1

2
a2P (s)

)
, β = 1,

g0(s) =−1

4
a2P (s) + x1, β =

1

2
,

where

P (s) =
1

(2α+ 1)κθ

(
(κθs+ x2)

2α+1 − x2α+1
2

)
.

Note that when κ = 0 or θ = 0, P (s) should be understood in the limiting sense,
i.e., P (s) = sx2α

2 for κ = 0 or θ = 0.

Remark 2. Since the SABR model is a special case of the model presented here
– corresponding to α = 1, κ = 0 – the semi-closed form NV algorithm developed
above can be, in particular, applied to the SABR model.

3.3. Girsanov transform. We have seen for the example above, that if one uses
the standard NV scheme, the flow of the drift vector field is not available in closed
form. Besides using the ‘drift trick’ as we did above, it is also possible to absorb
this drift in a change-of-measure; the details of this are outlined below. There
is, however, a serious downside to this: the Girsanov-density which appears due
to the change-of-measure will add significantly to the variance of the object to be
sampled. Thus, without further variance reduction, we do not advertise the use of
the Girsanov transform in this context.

Let Y = (Y1, Y2) be the process defined by

dY1(t) =aY2(t, x)
αY1(t)

β
(
−γ1dt+ dB1

t

)

dY2(t) =κ(θ − Y2(t))dt+ bρY2(t)
(
−γ1dt+ dB1

t

)
+ b
√
1− ρ2Y2(t)

(
−γ2dt+ dB2

t

)
.

and let P be the probability measure under which B = (B1, B2) is a 2-dimensional

standard Brownian motion. Define the probability measure Q by dQ
dP |Ft

= E(t),
where

E(t) = exp

(
γ1B

1
t + γ2B

2
t − 1

2
(γ2

1 + γ2
2)t

)
.

Then by Girsanov, under Q, (B1, B2) is equal in law to a 2-dimensional standard
Brownian motion plus constant drift equal to (γ1, γ2). Hence under Q, Y is equal
in law to X under P and we have for f : R2 → R measurable,

EP[f(X(t))] = EQ[f(Y1(t), Y2(t))] = EP[f(Y1(t), Y2(t))E(t)].
Hence a “weighted” NV scheme with explicit solutions to all ODEs can be ob-
tained by using the NV scheme for the process Y and then multiplying the payoff
f(Y1(t), Y2(t)), as is done in importance sampling, by E(t). Note that all the ODE
solutions corresponding to the NV scheme for Y are explicit, since the vector fields

corresponding to Y are V
(γ)
0 , V1 and V2.

To back up our claim about the additional variance caused by the Girsanov

density E(t), note that V(E(t)) = e(γ
2
1+γ2

2)t − 1, which is only negligible when γ1
and γ2 are close to zero.
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3.4. A multi-dimensional version. Let us illustrate how the techniques intro-
duced (until now in the context of 2-dimensional models) remain feasible in typical
higher dimensional models (what we have in mind here is some multi asset SV
model). Since it is precisely the curse of dimensionality that forces one to use sto-
chastic methods (rather than PDE methods, say) we want to be fully explicit in
showing how our ideas are implemented in higher dimensions. More specifically,
we shall consider the following multi-dimensional version of our SABR-type model:
for i = 1, . . . , N ,

dXi(t) =aiYi(t)
αiXi(t)

βidB̃i
t

dYi(t) =κi(θi − Yi(t))dt+ biYi(t)dW̃
i
t ,

with Xi(0) = xi, Yi(0) = yi and 1
2 ≤ βi ≤ 1, θi, κi ≥ 0, αi > 0, ai, bi > 0,

−1 < ρi < 1. Here ( B̃

W̃
), with B̃ = (B̃1, . . . , B̃N )T and W̃ = (W̃ 1, . . . , W̃N )T is

a 2N-dimensional Brownian motion with correlation matrix given by ρ which we
assume to be positive-definite. Let

√
ρ be the unique lower-triangular matrix such

that
√
ρ
√
ρT = ρ (Choleski decomposition). Then ( B̃

W̃
)

(D)
=

√
ρ( B

W
), where ( B

W
),

with B = (B1, . . . , BN )T and W = (W 1, . . . ,WN )T is a 2N -dimensional standard
Brownian motion. Hence we can write for i = 1, . . . , N ,

dXi(t) =aiYi(t)
αiXi(t)

βid




N∑

j=1

√
ρi,jB

j
t +

N∑

j=1

√
ρi,N+jW

j
t




dYi(t) =κi(θi − Yi(t))dt+ biYi(t)d




N∑

j=1

√
ρN+i,jB

j
t +

N∑

j=1

√
ρN+i,N+jW

j
t


 .

Let for j = 1, . . . , N , Vj and Uj be the vector fields corresponding to Bj and W j ,
respectively. We have

Vj(x, y) =




a1y
α1
1 xβ1

1

√
ρ
1,j

b1y1
√
ρ
N+1,j

...

aNyαN

N xβN

N

√
ρ
N,j

bNyN
√
ρ
2N,j




, Uj(x, y) =




0
b1y1

√
ρ
N+1,N+j
...
0

bNyN
√
ρ
2N,N+j




.

It follows that

V0(x, y) =




− 1
2p1a

2
1β1y

2α1
1 x2β1−1

1 − 1
2q1α1a1b1y

α1
1 xβ1

1

κ1θ1 − (κ1 +
1
2b

2
1r1)y1

...

− 1
2pNa2NβNy2αN

N x2βN−1
N − 1

2qNαNaNbNyαN

N xβN

N

κNθN − (κN + 1
2b

2
NrN )yN




,
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where for i = 1, . . . , N ,

pi =

N∑

j=1

[(√
ρi,j

)2
+
(√

ρi,N+j

)2]
= ρi,i = 1,

qi =

N∑

j=1

[√
ρN+i,j

√
ρi,j +

√
ρN+i,N+j

√
ρi,N+j

]
=

N∑

j=1

√
ρN+i,j

√
ρi,j ,

ri =
N∑

j=1

[(√
ρN+i,j

)2
+
(√

ρN+i,N+j

)2]
= ρN+i,N+i = 1.

We would like to write the system (Xi, Yi), i = 1, . . . , N in the following way

dXi(t) =− 1

2
a2iβiYi(t)

2αiXi(t)
2βi−1dt+ aiYi(t)

αiXi(t)
βi

×




N∑

j=1

√
ρi,j ◦ d

{
Bj

t + γjt
}
+

N∑

j=1

√
ρi,N+j ◦ d

{
W j

t + δjt
}



dYi(t) =κiθidt+ biYi(t)

×




N∑

j=1

√
ρN+i,j ◦ d

{
Bj

t + γjt
}
+

N∑

j=1

√
ρN+i,N+j ◦ d

{
W j

t + δjt
}

 ,

for a certain ~γ = (γ1, . . . , γN ) and ~δ = (δ1, . . . , δN). Looking at V0, we should

choose ~γ and ~δ such that for i = 1, . . . , N ,

N∑

j=1

√
ρi,jγj +

N∑

j=1

√
ρi,N+jδj =− 1

2
qiαibi,

N∑

j=1

√
ρN+i,jγj +

N∑

j=1

√
ρN+i,N+jδj =− κi +

1
2b

2
i

bi
.

These are 2N linear equations with 2N unknowns. It follows that there exists a

unique ~γ and ~δ such that the above equalities are satisfied if
√
ρ is of full rank.

This is the multi-dimensional analogue of the condition −1 < ρ < 1 of the previous
section. We see that in order to apply the NV scheme with drift, we need to find
the flows corresponding to the vector fields Vj(x, y), Uj(x, y) and

V
(~γ,~δ)
0 (x, y) =




− 1
2a

2
1β1y

2α1
1 x2β1−1

1

κ1θ1
...

− 1
2a

2
NβNy2αN

N x2βN−1
N

κNθN




.

All the solutions to these ODEs can be found explicitly as in Section 3.2.

3.5. Numerical analysis of our NV scheme with drift. In this section we want

to prove second order weak convergence of E
(
f
(
X

(NV d),K
(T, x)

))
as K → ∞

for smooth f with X
(NV d),K

(T, x) given by (4)-(5). As in the original proof by
Ninomiya and Victoir [15] for the classical NV scheme, we use a Taylor expansion
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to get the local order of the weak error by comparison with the known local weak

order of the classical Ninomiya-Victoir scheme. Let X
(NV ),K

(T/K, x) be as in
Section 1.2. Then the difference in the Taylor expansion of the expectation in one
step is given by

(7)

E

(
f
(
X

(NV d),K
(T/K, x)

)∣∣∣Λ1 = −1
)
− E

(
f
(
X

(NV ),K
(T/K, x)

)∣∣∣Λ1 = −1
)
=

[
1

2

∑

1≤i<j≤d

γiγjViVjf(x)−
1

2

∑

1≤j<i≤d

γiγjViVjf(x)+

+
1

4

∑

1≤i<j≤d

γiVi(Vj)
2f(x)− 1

4

∑

1≤j<i≤d

γiVi(Vj)
2f(x)+

+
1

4

∑

1≤i<j≤d

γj(Vi)
2Vjf(x)−

1

4

∑

1≤j<i≤d

γj(Vi)
2Vjf(x)

]
(T/K)

2
+O

(
(T/K)

3
)
.

When we condition on Λ1 = 1, only the order of the indices are swapped. By the
peculiar structure of (7), this means that the signs of all terms of the difference
change, i.e.,

E

(
f
(
X

(NV d),K
(T/K, x)

)∣∣∣Λ1 = 1
)
− E

(
f
(
X

(NV ),K
(T/K, x)

)∣∣∣Λ1 = 1
)
=

−
[
E

(
f
(
X

(NV d),K
(T/K, x)

)∣∣∣Λ1 = −1
)
− E

(
f
(
X

(NV ),K
(T/K, x)

)∣∣∣Λ1 = −1,
)]

+O
(
(T/K)

3
)
.

Thus, taking the unconditional expectation in Λ1 gives

E

(
f
(
X

(NV d),K
(T/K, x)

))
− E

(
f
(
X

(NV ),K
(T/K, x)

))
= O

(
(T/K)

3
)
,

and second order convergence of the Ninomiya-Victoir scheme with drift follows
exactly as in the case without drift.

Remark 3. The drift trick also works for classical cubature on Wiener space as in
Lyons-Victoir [12], i.e., when W 0(t) ≡ t, simply by adding the same drift tγi to
the ith component of the cubature path W . This procedure retains the original
order of convergence for the given cubature formula, as can be trivially seen by
comparing the ODEs with and without drift. Note that in the Ninomiya-Victoir
scheme a slightly more difficult argument as discussed above is necessary, since here
the “time” component W 0 is not linear.

4. Numerical results

In this section we report the results of our numerical experiments. For this we
have chosen three models: the SABR model, the generalized SABR model and
the multi-dimensional generalized SABR model. The numerical results for these
models are given in Section 4.1, Section 4.2 and Section 4.3, respectively. For each
of the models, we compare the NV scheme with drift to the regular NV scheme and
the Euler scheme and in all the experiments reported in this paper, we used Quasi
Monte-Carlo for the integration. In order to check the order of the three schemes, we
first give plots of the relative discretization error against the number of time steps
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K. For these plots the number of ‘simulated trajectories’ M is chosen such that
the integration error is negligible compared to the discretization error. (Since we
are using Quasi Monte Carlo, M is strictly speaking not the number of simulations,
but the size of the finite low-discrepancy sequence used for the computation.) In
order to compute these errors we of course need to know the ‘true value’ (or a
good estimate of it). For the two experiments involving the generalized SABR
model, the true value was obtained by running the code longer than reported in
the plots. However, in the case of the SABR model, the true value was estimated
by extrapolation of the values obtained by the code (the SABR formula is not exact
enough!)

Results comparing the discretization error against the number of time steps,
might not really seem practically relevant, since they only relate the number of time-
steps for different numerical methods, but not the corresponding computational cost
or computer time. Therefore we also give tables of the computational time of the
different schemes. If we want to compare the run-time for different methods, we
need to ensure the fairness of the comparison, i.e., we need to compare the different
methods with parameters giving similar computational errors. We basically have
two parameters for the numerical method, namely the number of time-steps K
and the number of simulated trajectories M – where every trajectory is given by a
D(K)-dimensional vector from a low discrepancy sequence, in our case the Sobol-
sequence. (Here, D(K) depends on both the model and the method.) Unlike
for Monte Carlo simulation, where accurate, but probabilistic error estimates are
available, there is no simple error estimation procedure for QMC (as far as we are
aware). Therefore, it is not obvious how to choose the number of trajectories for
a comparison of run-times. Choosing the same number of trajectories for every
method might not be appropriate, because some methods might yield “rougher”
integration problems, requiring a higher number of trajectories for a comparable
precision.

In our comparison we proceeded as follows. For a given model and method
we first choose K (and M very large) such that the relative discretization error
is around 10−3. For simplicity, we take the computations run for producing the
plots, which means that K is a power of two. Then we start with M0 = 1000
trajectories, run the method, and double the number M of trajectories until the
observed (absolute) error is consistently closer than 2× 10−5 to the true (absolute)
error for the fixed given K.

To explain this in more detail, first recall that the computational error in (Quasi)
Monte Carlo simulations for SDEs splits into two parts: Error = Errordis+Errorint.
Here, Errordis stems from the time-discretization of the SDE. This part of the error
is controlled byK. Errorint is the error from the integration, i.e., from the numerical
computation of the expectation of the solution to the discretized SDE. This error
part is controlled by M . In the comparison procedure, we first fix K such that the
relative discretization error Errordis/C (C denoting the true result) is around 10−3.
Then we choose M (by a doubling procedure) such that Errorint ≤ 2×10−5. (Since
in all cases C ≈ 0.1, this means we choose the integration error to be one fifth of
the discretization error.)

In the following tables, we report the found parameters, the corresponding rel-
ative error and the computational time in seconds – all computations where per-
formed on the same computer, a Toshiba laptop with 6 GB RAM and four Intel
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Core i7 CPUs with 1.6 GHz. Notice that the run-time scales linearly with the
number M of trajectories.

4.1. SABR. In this section we give the results corresponding to the experiment
with the SABR model. Recall that this SV-model is given by

dX1(t) =aX2(t)X1(t)
βdB1

t

dX2(t) =bX2(t)
(
ρdB1

t +
√
1− ρ2dB2

t

)
,

with X1(0) = x1 and X2(0) = x2 and where the parameters satisfy 1
2 ≤ β ≤ 1,

a, b > 0, −1 < ρ < 1. The parameters chosen for the experiment are β = 0.9,
a = 1.0, b = 0.4, ρ = −0.7, x1 = 1.0, x2 = 0.3. As the derivative we choose a
(European) call option with maturity time T = 1.0 and strike price K = 1.05. For
simplicity we assume that the interest rate is zero. The corresponding estimated
‘true result’ is 0.09400046.

In Figure 1 the convergence rates of the three schemes is graphically displayed.
We clearly see the second-order convergence of the two NV schemes compared to
the first-order convergence of the Euler method.
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Figure 1. Order of convergence for the SABR model.

Method K M Rel. Error Time
Euler 32 512000 0.00150 5.87 sec
Ninomiya-Victoir 2 512000 0.00134 2.44 sec
NV with drift 2 128000 0.00140 0.28 sec
Table 1. Computational time for the SABR model

In Table 1 the timings are reported for the SABR model. Notice that the
Ninomiya-Victoir method both in its original form and in its variant are clearly
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more efficient than the Euler method, by a factor two or three. On the other hand,
the simpler structure of the Ninomiya-Victoir method with drift results in a con-
siderable speed up if compared with the original method. Notice that a speed up
with a factor two would even hold if we reject the empirically found choice of M
for the drift variant and use the same number of trajectories as for the other two
methods.

4.2. Generalized SABR. In this section we give the results corresponding to the
experiment with the generalized SABR model of Section 3.2. For convenience we
restate this SV-model:

dX1(t) =aX2(t)
αX1(t)

βdB1
t

dX2(t) =κ(θ −X2(t))dt+ bX2(t)
(
ρdB1

t +
√
1− ρ2dB2

t

)
,

with X1(0) = x1 and X2(0) = x2 and 1
2 ≤ β ≤ 1, θ > 0, κ ≥ 0, α > 0, a, b > 0,

−1 < ρ < 1. For our experiment, we choose the parameters as follows: β = 1.0,
θ = 0.3, κ = 2.0, α = 0.5, a = 1.0, b = 0.5, ρ = −0.7, x1 = 1.0 and x2 = 0.2. We
further pick the same call option as in Section 4.1. The estimated ‘true result’ is
0.1767505855.

In Figure 2 the discretization error against the number of time steps is plotted.
Again, we see the second-order convergence of the two NV schemes compared to
the first-order convergence of the Euler method.
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Figure 2. Order of convergence for the generalized SABR model.

In Table 2 the timings are reported for the generalized SABR model. In the
one-dimensional generalized SABR model, the Ninomiya-Victoir method is only
faster than the Euler method because the integrand seems to be smoother. If one
rejects our way to determine the necessary number of trajectories M as too crude
and insists on taking the same number for both methods, the Ninomiya-Victoir
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Method K M Rel. Error Time
Euler 32 8192000 0.00174 91.94 sec
Ninomiya-Victoir 4 2048000 0.00204 13.93 sec
NV with drift 4 1024000 0.00104 2.88 sec

Table 2. Computational time for the generalized SABR model

method will require almost the same time as the Euler method in order to give
comparable results at this level. However, the Ninomiya-Victoir method with drift
still retains a convincing speed-up, again probably due to the simpler structure of
the subroutines.

4.3. Multi-dimensional generalized SABR. In this section we give the numeri-
cal results corresponding to the multi-dimensional generalized SABR model. Recall
that from Section 3.4 this model is given by

dXi(t) =aiY
αi

i Xβi

i dB̃i
t

dYi(t) =κi(θi − Yi)dt+ biYidW̃
i
t ,

i = 1, . . . , N . For our experiment we choose N = 4 and as the derivative we take a
basket option with the same weight on each stock. The parameters for the experi-
ment have been chosen as follows: a = (1, 0.5, 0.3, 0.7)T , b = (0.5, 0.8, 0.4, 0.6)T , α =
(0.5, 1, 0.7, 0.8)T , β = (0.6, 0.7, 0.8, 0.9)T , κ = (0.2, 0.7, 0.5, 0.9)T , θ = (0.3, 0.4, 0.6, 0.2)T ,
and, finally,

ρ ≈




1 0.0111 0.6395 −0.1081 −0.3414 −0.0642 −0.2054 −0.0236
0.0111 1 0.2698 0.2770 0.1651 −0.3504 −0.8186 −0.4383
0.6395 0.2698 1 −0.1381 −0.1379 −0.0031 −0.3169 −0.0161
−0.1081 0.2770 −0.1381 1 0.7312 −0.9030 0.0419 −0.8121
−0.3414 0.1651 −0.1379 0.7312 1 −0.5969 0.0747 −0.6703
−0.6420 −0.3504 −0.0031 −0.9030 −0.5969 1 0.1878 0.8790
−0.2054 −0.8186 −0.3169 0.0419 0.0747 0.1878 1 0.2796
−0.0236 −0.4383 −0.0161 −0.8121 −0.6703 0.8790 0.2796 1




.

Note that the above choice of ρ implies that B̃i and W̃ i are negatively correlated,
as usual in equity modeling. Moreover, ρ is positive definite – and in fact, chosen
at random among all such correlation matrices. The estimated ‘true value’ of the
basket option is 0.09254183.

The convergence rates of the three different schemes for this experiment are
graphically displayed in Figure 3. The picture is similar as in the two previous
cases in the sense that there is second-order convergence for the two NV schemes
and first-order convergence for the Euler scheme.

Method K M Rel. Error Time
Euler 32 2048000 0.000934 246.65 sec
Ninomiya-Victoir 4 1024000 0.002017 52.33 sec
NV with drift 4 1024000 0.000862 35.31 sec

Table 3. Computational time for the multi-dimensional general-
ized SABR model
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Figure 3. Order of convergence for the multi-dimensional gener-
alized SABR model.

Further, the computational time for the generalized SABR model with a four-
dimensional stock market, reported in Table 4.3, again shows the usual picture. The
classical Ninomiya-Victoir method gives a speed-up between factors two and four
(depending on the trust of the choice of M). In this case, one might, however, note
that the error from the classical Ninomiya-Victoir method is more than twice higher
the the errors from the competing methods. And again, the simpler structure of
the ODEs in the case of a Ninomiya-Victoir method with drift leads to a convincing
speed-up as compared to both other methods.

Appendix

In Sections 2.1, 2.2 and 3.2, the following ODE appears:

y′(t) =h(t)(y(t))β ,

y(0) =x,
(8)

where 0 < β < 1, x ≥ 0 and h : [0,∞) → R is continuous and either positive valued
or negative valued. One can easily check that

(9) Φx(t) =

(
(1− β)

∫ t

0

h(s)ds+ x1−β

)1/(1−β)

+

, t ≥ 0,

with a+ := max{a, 0}, is a solution to (8). We briefly provide some details about
uniqueness of the solution. When h takes only negative values, then the right hand
side of the ODE (8) is decreasing in the state variable and uniqueness follows for
any x ≥ 0 (see e.g. Example 2.4 on p.286 of [6]). When h takes only positive values
and x > 0, uniqueness follows by the Picard-Lindelöf theorem. When h takes only
positive values and x = 0, the solution (9) is not unique; for instance, y(t) ≡ 0
forms another solution. For this particular case, we have chosen, throughout the
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paper, to work with the solution Φ0(t), since the flow Φx(t) is (right)-continuous
at x = 0 for all t ≥ 0.
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