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Abstract

A robust implementation of a Dupire type local volatility model is an important issue
for every option trading floor. In the present note we provide new analytic insights into the
asymptotic behavior of local volatility in the wings. We present a general approximation
formula and specialize it to the Heston model, showing that local variance is linear in the
wings. This further justifies the choice of certain local volatility parametrizations.

1 Introduction

A robust implementation of a Dupire type local volatility model [13, 14] is an important issue for
every equity option trading floor. Typically, this (inverse) problem is solved in a two step procedure :
(i) a smooth parametrization of the implied volatility surface; (ii) computation of the local volatility
based on the resulting call price surface. Point (i), and in particular how to extrapolate the implied
volatility in extreme strike regimes, is widely recognized as important risk management issue. To
our knowledge, this was first discussed in the Quant Congress 2000 presentation Rational Shapes of
the [implied] Volatility Surface [19]. In the context of the Heston stochastic volatility model [23], it
is seen that implied volatility squared (in short: implied variance) grows (asymptotically) linearly
in log-strike. This and related matters were then studied by numerous authors, starting with Lee
[24], see also [17] and the references therein. Subsequently, this has inspired parametrizations
of the implied volatility surface, notably the so-called SVI, short for stochastic-volatility inspired,
parametrization, cf. [18],[20].

In the present note we deal with point (ii), aiming at an understanding of typical shapes of
the local volatility surface, by giving novel insights into the behavior of local volatility at extreme
strikes. At the heart of our discussion lies a novel saddle point-based formula for local volatility,
which can be used in a wide range of maturities and strikes. When applied to the Heston model, it
reveals that local variance is — similar to implied variance — asymptotically linear in log-strike. As
an immediate application, this provides a justification to use SVI-type parametrization also for the
local variance surface.

Understanding the local volatility surface in extreme regimes, with robust numerical algorithms,
can play an important role in model risk management. Indeed, assume one wants to quantify the
model risk attached to a given path-dependent option, subject to consistency with today’s option
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Maturity | Log spot, 10° MC paths

Minimum | Maximum

0.25 -0.71 0.36
1 —1.52 0.59
) —4.13 1.14

Table 1: Minimum and maximum values of log(S;/Sp) attained by a Monte Carlo (MC) simulation
under Heston local variance (2.4), with 12 time steps per year and Heston parameters as in Figure 3.
Even with only 102 trajectories, values are reached for which computing local variance by Dupire’s
formula becomes numerically challenging.

prices (i.e. the implied volatility surface). A simple, universally applicable, test of model risk is
to compute the price under both stochastic and local volatility. Of course, it is assumed that
both models are calibrated to the same market. (In fact, in judging model risk one may take a
calibrated stochastic volatility model, say Heston, as reference here and construct the matching
local volatilities by Dupire’s formula, details of which are recalled below.) If we get the same price
(typical example: variance swap) this points to a low model risk; a high difference however (typical
example: volatility swap) indicates a high sensitivity of the option to the choice of model for the
underlying price process. (These examples are discussed in detail in [18].) Relatedly, Reghai [28]
suggests to define a “Toxicity Index” as

SV — LV
TSV LV

where SV and LV are the prices of the exotic under the stochastic volatility and the local volatility
model; a value of I away from 0 is a warning flag for a particularly ‘toxic’ (i.e. highly model
risk-sensitive) product, with all its consequences for hedging decisions.

The trouble with this simple test is that the local volatility in Heston (or other stochas-
tic volatility models) is not explicitly known. Typically, one would then use either Dupire’s
formula' (“o2 (K,T) = 207rC/K?0xkC”, with Fourier pricing of the respective derivatives of
the call prices), or Monte Carlo-based computation of local variances as conditional expectations
(“0c (K,T) = E[o? 4 (T)|Sr = K]”). Clearly then, if the price process under local volatility
makes a large excursion, local volatility from Dupire’s formula cannot be trusted since Fourier pric-
ing is known to become quickly unstable for extreme strikes (the remedy is a careful contour shift;
see Figures 1 and 2); similarly, conditioning on very unlikely events of the form {St € [K, K + §K]|}
when K > S is numerically difficult (unless one uses importance sampling or Malliavin techniques
[22]); related numerical problems when computing local volatility by Monte Carlo simulation also
arise in the Carmona and Nadtochyi formula in the Heston model [5, p. 20].)

These numerical instabilities can be overcome with our extrapolation analytics: the typical result
for stochastic volatility reads 0% (K, T) ~ (const)log K (cf. Theorem 1 and also formula (1.7) for
Heston, comment 6 below for the Stein—Stein model). The resulting method is straight-forward
patching: fix a reasonable region I in the (K, T) plane on which local volatility can be (reliably)
computed with either of the above “classical” methods; for a strike-maturity point outside the above
region, we use our approximate formula (the constant can be fully expressed in terms of the Heston

IThroughout, we work under the appropriate forward measure to avoid drift terms.



Figure 1: Local variance for Heston model computed with Dupire’s formula (left wing). Left hand
surface: call price derivatives computed via 1D integration of Heston characteristic function on a
fixed integration contour (0.5 + iR here). Right hand surface: computed on adaptive contour with
shift into saddle point §(k,T) + iR (cf. (1.8) below).

model parameters, see Theorem 1; the semi-explicit formula (1.7) is to be preferred for accuracy).
This yields a parametric, globally defined local volatility surface which then serves as the basis of
a reliable Monte Carlo simulation for option prices under local volatility.

Let us introduce in some details the mathematical ingredients necessary for the discussion to
come. Dupire’s formula [13, 14]
20rC

2 —
Oloc (Ka T) - KQaKKC

(1.1)
implies that any arbitrage free call price surface
C= C(K7 T) = OBS(KaT; UBS(Kv T))

which arises from a (not necessarily Markovian) It6 diffusion is obtained from the one-factor
(“Dupire’s local vol”) model
dSt/St = UIOC(St7t)th- (12)

(Note that spot remains fixed in the present discussion.) Local volatility can be thought of as a
Markovian projection, term coined in [27], of a higher dimensional model (e.g. Heston); the first
component then forms an It6 diffusion of the form

dSt/St = Ustoch(ta L{J)th
Indeed, it is known (see e.g. [18] and the references therein) that
01200(K7 T) = IE[Ustoch (T)z‘ST = K]

We emphasize (again!) that even for stochastic volatility models with fully explicit Markovian speci-
fication, sampling from the corresponding local volatility models requires substantial computational
effort.
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Figure 2: As in Figure 1, now right wing.

The analysis of implied, local, and stochastic volatility and their interplay has been subject of
countless works; a very small selection relevant to the present discussion is [1, 2, 4, 16, 21, 24]. Our
key contribution here is formula (1.7) below which allows for approximation of ¢ (K,T) when
K is large (and similarly, K is small). The main ingredient to this formula is a known moment
generating function (mgf) of the log-price (X;) (under the pricing measure),

M(s,T) :=exp(m(s,T)) := Eexp(sXr),

assumed to be finite in some (maximal) interval (s_(T"), s+ (7)) with critical exponents s_ and s
defined as

s_(T):=inf{s: M(s,T) < oo}, $4(T) :==sup{s: M(s,T) < o0}.

We also assume that call prices have sufficient regularity to make Dupire’s formula (1.1) well-defined,
and that the mgf blows up at the upper critical moment:

lim M(s,T) = oco. 1.3
gy, (s,T) (1.3)

This holds, e.g., in the Heston model [23], with log-price X; = log(S;/So), where
dSt = St\/ %th, S() = Sg > O,
dVy = (a + bVy)dt + ¢/ Vi d By, Vo = vg >0,

with @ > 0, b <0, ¢ > 0, d(W, B), = pdt, and we shall assume p < 0, which is typical in equity
markets. Before moving on to a more general discussion, we formulate an asymptotic formula for
local volatility in the Heston model.

Theorem 1. For Heston, the following asymptotic behavior of local variance holds:>
hm 01200 (k7 T) — 2
k—o0 k S+(S+ — 1)R1/R2 ’

2By a common abuse of notation, we write o2 _(k,T) instead of o2 _(e¥,T) when we wish to express the local vol
as a function of log-strike k.

(1.4)




where k =log (K/Sy), sy = s4+(T) and

Ry =Tc%s,(sy — 1) [®(254 — 1) — 2pc(s4pc+b)] (1.5)
—2(sppc+b) [*(2s4 — 1) — 2pc(sype+ b))
+ape s (sy — 1) (sype+ )7

Ry =2c%sy(sy — 1) [®sq(s4 — 1) — (sppc+b)?] . (1.6)

As will be discussed in Section 2, this result originates in the saddle point based approximation
formula

2-%m(s,T)
2 aT ’
ET)~ “+——~ 1.7
Uloc( ’ ) S(S*l) ( )
s=38(k,T)
where § = §(k,T) is determined as solution of the saddle point equation
2m(s,T) =k. (1.8)

Os

As such, formula (1.7) is clearly not restricted to the Heston model. Consider for instance

Example 2 (Time-dependent Black-Scholes). Assume risk-neutral dynamics of the form

dSt = St\/ ’U(t)th

We find m(s,T) = %s(s — 1) fOTv(t)dt, and then, correctly, o2 (k,T) = v(T). (In this example
the evaluation of §(k,T) plays no role, since the fraction on the right hand side of (1.7) does not
depend on it.)

We expect our approximation formula (1.7) to work whenever (1.3) holds (also assuming that
call prices are smooth enough to make (1.1) a well-defined quantity). The essence of the argument is
given in Section 2. A rigorous proof in the Heston case requires some careful tail-estimates, similar
to [16], and is omitted (details are found in [15]). The asymptotic equivalence of (1.4) and (1.7) is
shown in Section 3.

Some additional comments are in order.

1. Equation (1.8) is solvable for large k, since (1.3) implies limyy,, 0/0sm(s,T) = oco.

2. The solution §(k,T) to the saddle point equation (1.8) can itself be used to stabilize the
numerical evaluation Dupire’s formula in models with know mgf (see (2.4) below): by shifting
the integration contour into the saddle point §(k,T') + iR, the integrands in (2.4) will be
highly concentrated, and the performances of any numerical 1D quadrature will be strongly
enhanced (see Figures 1 and 2, where we are using adaptive Gauss-Lobatto after shifting the
integration contour).

3. We have §(k,T) 1 s4(T) as k — oo; hence, in models with moment explosion [1, 24], where
s4+(T) < oo, the denominator in (1.7) may be replaced by s4(T)(s+(T) — 1). While this
is correct to first order, it is often preferable to use (1.7) as it is, and to calculate §(k,T")
by (numerically) solving (1.8). The accuracy of the resulting approximation is illustrated in
Section 3 for the Heston model.



4. There is a version of our approximation formula (1.7) for small values of K (i.e. K | 0,
or k | —o0), which requires that the mgf blows up at the lower critical moment s_ (7).
If K < 0 and |k| is large, equation (1.8) has a unique solution §_(k,T) < 0. Then the
approximation (1.7) holds, if § is replaced by §_.

5. (Jump models). There are extensions of Dupire’s work to jump diffusions and also pure jump
models; see e.g. [6] ("local Lévy models”), [3] and the references therein. In particular,
Dupire’s formula (which may be written as a PDE) becomes a PIDE which features an inte-
gral term involving the second derivative of C' w.r.t. strike, times a kernel depending on K,
integrated against all strikes in (0, 00). Another difficulty in the jump setting is the potential
lack of immediate smoothing. For instance, the variance gamma model satisfies the above
PIDE only in viscosity sense; in fact, call prices in the Variance gamma model may not be
twice differentiable in K for small times, as was noted in [9]. It is a general remark, then, that
in a general jump setting, Dupire’s formula as stated in (1.1), may be ill-defined. If call prices
are smooth enough to make (1.1), and the resulting local volatility process (1.2) well-defined,
the latter may still fail to recreate the correct marginals of the original price process. May
that be as it is, it is industry standard to use Dupire’s formula (1.1), after some smoothing
of the call prices seen in the market. Since jumps cannot be ruled out from market data, this
leads, unsurprisingly, to local volatility surfaces which blow up at the short end. (Ad-hoc fixes
- such as freezing the vol surface some distance away from the short end - are being reported
from practitioners.)

In this spirit, it is interesting to see what formula (1.7) gives when applied to jump models.
The situation is particularly simple in exponential Lévy models, which have the property that
m(s,T) is linear in T'; thus, the numerator in (1.7) may be replaced by 2m(s, 1). According to
type of singularity of the mgf at the critical moment, the local volatility can display different
behaviors. Tt is shown in [15] that the local variance o2 (k,T) is asymptotic to cp x k'/?
in the double exponential Lévy model [8] (and the constant cr exhibits a 1/v/T-blowup as
T | 0), while it has logarithmic log(k/T) wings in the Variance gamma model [26] (when T is
large enough). The quality of the fit obtained using (1.7), as well as the techniques that can
be used to handle the cases of mgfs with no or slow blow-up, are also discussed in [15].

6. (Stochastic volatility models other than Heston). The linear asymptotic behavior in (1.4) is
likely to hold in large classes of stochastic volatility models. Relying on scaling properties
and on large deviation principles, it is shown in [11] that also in the correlated Stein-Stein
[30] (or Schobel-Zhu [29]) model

dXi

1
—§o—§dt + o dWy, Xy =0,
doi = (a + boy)dt + cdZ;, oo >0,

the local variance is linear in the ‘wings’. To see this, set €2 = 1/k, and rescale the Stein-Stein
variables as X = €2Xy,05 = e0y. Then,

o2 (k,T)=E[o%|Xr =k] = & °E [(a;f X5 = a%]

KE [(a;f X2 = 1] .



Hence, computing limy . 02 (k,T)/k is equivalent to evaluating the asymptotics lim._o
U%OC’E(l,T), where 01oc ¢ is the local volatility in the rescaled problem. On the other hand,
(X*,0°) was seen in [12] to satisfy an LDP so that, under the above conditioning, (X¢, %)
will center around the least-energy path arriving at the target subspace (1,-) at time T, say
at the point (1,0%).% Then

lim UIQOC(k7T) — (J})Q‘

k—o0
The Pontryagin maximum principle leads to (first order optimality) conditions (Hamiltonian
ODEFs, subject to suitable terminal and transversality conditions). Remarkably enough, these
equations can be fully solved, see [12], and so give o, and hence the asymptotic slope of local

variance in the Stein—Stein model explicitly in terms of the model parameters.

2 Saddle point asymptotics

As is well known [7, 25], we can recover the call price C' and the probability density D(-,T) of St
by Laplace-Fourier inversion from the mgf:

K b > M(s,T
C(KvT):SO_E'i_%/ e k s(s(—lids’ (21)
D(z,T) = i/ e~ (st logz N r (s T ds, (2.2)
2 —i0o

where the integration runs on the imaginary axis {R. Now differentiate the call price under the
integral sign:

ek [ 9rm(s,T) .,

By Dupire’s formula, we have

0o Irm(s,T) _ks
o2 (k,T) = 222OH) 2 oo " e M s, Thds. (2.4)
o K2D(K.T) [ e ks M (s, T)ds

Both integrands in (2.4) have a singularity at s = s, since M (s,T') gets infinite there. The singular
behavior of M (s,T) dominates the asymptotics of both integrals. The resulting asymptotic factor

87;?37(_51?) remains. This is the idea behind (1.7).

To implement it, we analyze both integrals in (2.4) by a saddle point approximation [10]. If M
features an exponential blow-up at the critical moment s, , its validity can be justified rather
universally. Examples include the Heston model, double exponential Lévy, and Black-Scholes.
(Note that the critical moment is sy = oo for Black-Scholes.) If the saddle point method is not
applicable (because of insufficient blow-up), different arguments are required; see Section 3 in [15].

So let us proceed with the saddle point analysis of (2.4). For both integrals, we only use the
factor e ¥*M(s) to find the location of the (approximate) saddle point § = 3(k,T). The saddle
point equation is (1.8), obtained by equating the derivative of e **M(s) to zero. We move the

cancels, and only the contribution of 2

3This argument is made rigorous in [11].



integration contour through the saddle point. Then, for large k, only a small part |3(s)| < h(k)
of the contour, around the saddle point, matters asymptotically. (The choice of the function h
depends on the singular expansion of M.) The integral can be approximated via a local expansion
of the integrand. Let us carry this out for the denominator of (2.4). (In the following formulas we
write m' for 8%m/ds2.)

§4ioco s+in(k)
/ e *M(s,T)ds N/ e S M(s, T)ds
3—ico s—in(k)
s-+ih(k)
- / exp (—ks +m(3,T) + k(s — §) + 2m" (3, T)(s — §)%) ds
s—ih(k)

)  pa+in(k)
:emuﬂ—M/) exp (Lm”(3,T)(s — 3)?) ds. (2.5)
3—ih(k)

In the Taylor expansion of the exponent we have used the equation m’(3,T) = k. Now the crucial

observation is that the numerator of (2.4) admits a similar approximation, where the only new
Orm(s,T) .

ingredient is the factor 2 G-

o0 aTm(S?T) —ks
2/_ioo S5 1) e~ M(s,T)ds

B /gmw O, T) s g (s Ty
s_ih(k) 5(5 — 1)

X _pEtih(k) g s T
~ 2em D) hS / Orm(& 1) (1 4 o(1) exp (2m"(3.7)(s — 5)?) ds
s—ih(k) 5(8-1)
5. T X _ pé+ih(k)
921U T) s, m)-rs / exp (Lm"(3,T)(s — §)) ds. (2.6)
3(s—1) s—ih(k)

Dividing (2.6) by (2.5) concludes the derivation. Summarizing, we note that the asymptotics
of o (k) are governed by the local expansions at s = § of the integrands in (2.4). The respective
first terms of both expansions agree, and thus cancel, except for the factor (1.7).

3 Local volatility at extreme strikes in the Heston model

In this section we focus on the Heston model, testing our approximation formula and asymptotic
result and explaining how (1.4) is obtained by specializing (1.7).

Figure 3 compares the local variance in the Heston model and its saddle-point based approxi-
mation (1.7). It is seen that formula (1.7) provides a robust approximation of local volatility in a
wide range of strikes, in particular for short maturities. For some visual comparison, Figure 4 shows
the boundaries of the region in the (k,T") plane where the relative accuracy of the approximation
becomes better than a fixed threshold, here 5%, that is to say

ot (k, T) — az(msi(_s{)T)\szg(k,Tﬂ

5
UIQOC(k7T) = %
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Figure 3: Local variance o (k,T) (left and right wing) in the Heston model with parameters
a = 0.0428937, b = —0.6067, ¢ = 0.2928, sg = 1, vg = 0.0654, p = —0.7571. The solid lines show
the local variance computed with Dupire’s formula and adaptive integration contour as in Figures
1 and 2. The approximation (1.7) is dashed.

in the outer region. Maturities range down to 7' = 0.25. Note that the right hand side of (1.7) can
be easily evaluated numerically, by using the explicit expression [23] of the Heston mgf in (1.8).
The evaluation of the saddle point §(k,T') requires the inversion of the derivative d;m(s,T) (again
explicit) in (1.8): this root-finding can be performed by simple bisection or by Newton-Raphson,
using the approximate expression of the saddle point in (3.5) as an initial guess. The involved
number of iterations (Table 2) stays bounded — and small — across maturities and log-moneyness.
We can consider (1.7) as an ‘almost’ explicit approximation formula.

Maturity | Number of function evaluations
Minimum Maximum
0.25 7 8
1 7 9
10 11 12

Table 2: Number of evaluations of d;m(s, T') required to find the saddle point §(k,T) with a relative
precision of 1078, using Newton-Raphson method and starting from the explicit approximate saddle
point § from (3.5). Values sampled over k ranging from 0.1 to 3.

When the local volatility is replaced with the almost-explicit approximation (1.7) in the wings,
we are of course expecting a good fit of the implied volatility output. In Figure 5, we compare
the implied volatilities obtained by Monte Carlo when using Heston local volatility (computed via
Dupire’s formula and adaptive integration contour for the integrals in (2.4), as in the right pane of
Figures 1 and 2), and when replacing the numerical evaluation of local volatility with formula (1.7)
on the outer region of Figure 4. For the 5% approximation of local volatility (the yellow curve), the
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Boundaries of the region where the percentage difference ’alzoc(k,T) —
5%. Heston parameters as in Figure 3.

ls=s(k,T) ’ /o2 (k,T) between local variance and its saddle point approximation is less than

fit of implied volatility is within 10 basis points (the Monte Carlo error is around 20 basis points

for all curves); the message of the red line in the right hand pane is that formula (1.7) should not
be used everywhere (notably, not too close to the money for large maturities).

We will now show that the right hand side of (1.7) is indeed asymptotically equivalent to the
right hand side of (1.4). This requires us to know that

2 —m

ar™(5T)

s=5§(k,T)
where 0 = o(T) is the so-called critical slope, defined as

~2k/o, (3.1)

o(T) = =0 (5.,(1),

T*(s) = sup{t > 0: E[e***] < c0}.

(3.2)
In fact, while the computation of the critical exponent s; in the Heston model requires simple
numerics, the critical slope can be computed in closed form [16]; we have o(T") = Ry /R, where R; =
R;(b,c,p,54(T)), i = 1,2, are defined in (1.5)—(1.6).

22-m(s,T) N 2
s(s—1)

Since §(k,T) — s4(T) as k — oo, if (3.1) is verified, the right hand side of (1.7) then satisfies
X k,
oy T D)) 1)

k — oo,

which is the formula from Theorem 1. Let us now discuss validity of (3.1). The argument which
follows nicely illustrates how formula (1.7) can be used in stochastic volatility models of affine

type. From an asymptotic analysis of the Riccati equations [16], m(s,t) is know to satisfy (writing
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Figure 5: Implied volatilities obtained when Heston local volatility is computed via Dupire’s formula
and adaptive integration contour in (2.4) (green), and when this numerical evaluation is replaced
with formula (1.7) on the outer region of Figure 4 (yellow), respectively on the region where the
accuracy of (1.7) becomes better than 20% (red). Monte Carlo parameters: 10° trajectories, 12
time steps per year.

sy = $4+(T) when T is fixed)

Vo

m(s>t) ~ 2 5 s T S+,
So(sy —s)
Vo
—m(s,t) ¥ 5——, sT s, 3.3
Js (5,) Co(sy —5)? Tes (3:3)
Vo
—m(s,T) ~ 5————, s s, 3.4
ar™( ) Z(o(sy —5))? To4 34
Equation (1.8) leads to
§=s4 = PR 4ok, (3.5)
since
Vo _ o —1/2
—m(s,t)~ 57— =k = s, — 5§~ Pk
85 ( ) %U(S+ _ §)2 + ﬁ

with 8 = —;\2/? Substitution then yields
Vo

0
(8, T)|s=5 ~ @ 9022/
?0' 6 /k/’

oT k/o,
which concludes our derivation of (3.1).

A numerical example of the convergence of the slope of local variance o2 (k,T)/k to its asymp-
totic value is show in Figure 6 (for the left wing, i.e. the most interesting one in the presence of
negatively correlated stochastic volatility).
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Figure 6: Convergence of the slope of local variance to its asymptotic value (left wing). Blue line:

2
k — W7 T = 1. Red line: asymptotic value from (1.4). Heston parameters as in Figure 3. This
gives numerical confirmation of the analytic result (1.4). For actual numerics, the approximation
formula (1.7) is to be preferred.

4 Conclusions

We proposed a new formula that expresses local volatility for extreme strikes as a computable
function of commonly available model information. In the Heston model this leads to a proof that
local volatility (squared) behaves asymptotically linear in log-strike (which is qualitatively similar
to Lee’s result [24] for implied volatility). This suggests concrete parametrizations of the local
volatility surface. (In contrast to ad-hoc specifications of the implied volatility surface there is
no danger of introducing arbitrage.) We also investigated the form of local volatility defined via
Dupire’s formula when the underlying exhibits jumps; qualitatively different behavior (compared
to diffusion models such as Heston) is seen.

Our results also help the process of quantifying model risk for path-dependent options. Indeed,
as we explained in the introduction, using our formula local volatility surfaces can be constructed
in a (globally) robust fashion. Prices of exotic options under local volatility can then be compared
with the prices obtained in the matching stochastic volatility model.

All asymptotics results are supported by numerical examples based on our novel and generic
approximation formula (1.7).
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