
Maximum Multicommodity Flows Over Time
without Intermediate Storage?

Martin Groß and Martin Skutella

Fakultät II – Mathematik und Naturwissenschaften,
Institut für Mathematik, Sekr. MA 5-2

Technische Universität Berlin, Straße des 17. Juni 136,
10623 Berlin, Germany

{gross,skutella}@math.tu-berlin.de

Abstract. Flows over time generalize classical “static” network flows
by introducing a temporal dimension. They can thus be used to model
non-instantaneous travel times for flow and variation of flow values over
time, both of which are crucial characteristics in many real-world routing
problems. There exist two different models of flows over time with re-
spect to flow conservation: one where flow might be stored temporarily at
intermediate nodes and a stricter model where flow entering an interme-
diate node must instantaneously progress to the next arc. While the first
model is in general easier to handle, the second model is often more real-
istic since in applications like, e. g., road traffic, storage of flow at inter-
mediate nodes is undesired or even prohibited. The main contribution of
this paper is a fully polynomial time approximation scheme (FPTAS) for
(min-cost) multi-commodity flows over time without intermediate stor-
age. This improves upon the best previously known (2+ε)-approximation
algorithm presented 10 years ago by Fleischer and Skutella (IPCO 2002).

1 Introduction

Two important characteristics of real-world network routing problems are the
facts that flow along arcs varies over time and that flow does not arrive instan-
taneously at its destination but only after a certain delay. As none of these two
characteristics is captured by classical network flows, the more powerful model
of flows over time has been shifted into the focus of current research. Various
interesting applications and examples can, for instance, be found in the surveys
of Aronson [1] and Powell, Jailet and Odoni [15]. A more recent introduction to
the area of flows over time is given in [16], and a recent application can, e.g., be
found in [2].

Results from the literature. Network flows over time have first been studied by
Ford and Fulkerson [7, 8], who developed a reduction of flow over time problems

? Supported by the DFG Research Center Matheon “Mathematics for key technolo-
gies” in Berlin.

to static flow problems using time-expanded networks. This technique requires
a discrete time model, but works for virtually all flow-over-time problems at
the cost of a pseudo-polynomial blow-up in network size. Note that results for
discrete time models often carry over to continuous time models (see, e. g., Flei-
scher and Tardos [6]). Furthermore, Ford and Fulkerson [7, 8] describe an efficient
algorithm for the maximum flow over time problem, i. e., the problem of sending
the maximum possible amount of flow from a source to a sink within a given
time horizon. The algorithm performs a static minimum cost flow computation
to find a static flow that is then sent repeatedly through the network.

Related to this problem is the quickest flow problem, which asks for the
minimum amount of time necessary to send a given amount of flow from the
source to the sink. Burkard, Dlaska and Klinz [3] describe a strongly polynomial
algorithm for this problem by embedding Ford and Fulkersons’ algorithm into
Megiddo’s parametric search framework [14]. A generalization of this problem,
the quickest transshipment problem, asks for the minimum amount of time to
fulfill given supplies and demands at the nodes. Hoppe and Tardos [11, 12] give
a polynomial algorithm relying on submodular function minimization for this.

The minimum cost flow over time problem consists of computing a flow of
minimum cost, fulfilling given supplies and demands within a specified time
horizon. Klinz and Woeginger [13] show that this problem is weakly NP-hard; it
can still be solved in pseudo-polynomial time using time-expanded networks.

The problems discussed above can all be generalized to the case of multiple
commodities. In this setting, we either have a set of source-sink pairs between
which flow is sent, or a set of supply-demand vectors specifying different types
of supplies/demands that need to be routed in the network. Hall, Hippler, and
Skutella [10] show that the multicommodity flow over time problem is NP-hard,
even on series-parallel graphs. For multiple commodities, there are cases where
storage of flow at intermediate nodes (i. e., nodes that are neither source nor
sink nodes) can be necessary for obtaining an optimal solution. If storage at
intermediate nodes and non simple flow paths are forbidden, the multicommodity
flow over time problem is strongly NP-hard [10] and has no FPTAS, if P 6= NP.

Fleischer and Skutella [4, 5] introduce the concept of condensed time-ex-
panded networks, which rely on a rougher discretization of time, resulting in a
blow-up in network size that is polynomially bounded. This, however, makes it
necessary to increase the time-horizon slightly but still yields an FPTAS for the
quickest multicommodity transshipment problem with intermediate storage. The
result can be generalized to the quickest multicommodity flow over time prob-
lem with bounded cost, if costs on the arcs are non-negative. It is important to
emphasize that the underlying technique critically relies on the fact that flow
might be stored at intermediate nodes and that there are optimal solutions that
send flow only along simple paths through the network. For the case where inter-
mediate storage of flow is prohibited, there is a (2 + ε)-approximation algorithm
based on entirely different ideas.

Contribution of this paper. There are numerous flow over time problems where
non-simple flow paths are required for optimal solutions. Examples of such prob-

2

lems are multicommodity flows over time without intermediate storage, min-
imum cost flows over time with arbitrary (possibly negative) arc costs, and
generalized flows over time. As in the first problem, the necessity of non-simple
flow paths is often closely related to upper bounds on the amount of flow that
can be stored at intermediate nodes. Such bounds do exist in most real-world
applications and in many cases like, e. g., traffic networks intermediate storage
of flow is forbidden completely.

Inspired by the work of Fleischer and Skutella, we present a new, more elab-
orate condensation technique for time-expanded networks whose analysis no
longer requires that flow is being sent along simple paths only. Fleischer and
Skutella use the number of arcs on a path to bound the rounding error, which
does not yield good bounds with non-simple paths due to the potentially high
number of arcs in them. To this end, we introduce a new type of LP formu-
lation for flow over time problems that is somewhere in between an arc-based
and a path-based formulation. This LP has a dual which can be approximately
separated in polynomial time for most flow problems (more precisely, for flow
problems that use standard flow conservation). We start by first studying the
separation problem from a general point of view in Section 2. While this prob-
lem is NP-hard, we describe an FPTAS for it (which is sufficient for our pur-
poses) that uses dynamic programming in conjunction with Meggido’s paramet-
ric search framework [14]. In Section 3 we apply this result to the maximum
multicommodity flow over time problem without intermediate storage and show
that it yields an FPTAS for this NP-hard problem. Furthermore, in Section 4
we extend our techniques to the minimum cost multicommodity flow over time
problem with non-negative arc costs.

2 The Restricted Minimum Cost s-t-Sequence Problem

In this section, we define the restricted minimum cost s-t-sequence problem.
Informally speaking, this problem consists of finding an arc sequence of minimum
cost between two nodes whose length is restricted to lie in a given interval. This
length constraint implies that it can be necessary to incorporate cycles in an
optimal solution. We present an FPTAS for this NP-hard problem. In Section 3
we make use of this result to solve a dual separation problem.

In order to define our problem formally, we need some notations for arc se-
quences first. Given a directed graph G = (V,A), a v-w-sequence S is a sequence
of arcs (a1, a2, . . . , a|S|), ai=(vi, vi+1)∈ A with v = v1, w = v|S|+1. A v-w-path
is a v-w-sequence with vi 6= vj for all i 6= j. A v-cycle is a v-v-sequence with
vi = vj implying i = j or i, j ∈ {1, |S|+ 1}. Thus, our paths and cycles are
simple arc sequences.

If an arc a is contained in a sequence S, we write a ∈ S. We refer to the
number of occurrences of an arc a in a sequence S as #(a, S). By S[→ ai]
we denote the subsequence (a1, a2, . . . , ai−1) of S. Furthermore, we extend the
concept of incidence from arcs to sequences and write (by overloading notation)
S ∈ δ+v if a1 ∈ δ+v := {a = (v, ·) | a ∈ A} and S ∈ δ−v := {a = (·, v) | a ∈ A}

3

if a|S| ∈ δ−v . We also extend arc attributes fa ∈ R, a ∈ A (e. g., costs, lengths,

transit times, etc.) to sequences S = (a1, . . . , a|S|) by defining fS :=
∑|S|
i=1 fai .

Finally notice that we can decompose an s-t-sequence S into an s-t-path and
cycles. With these notations, we can define our problem more formally.

Definition 1. An instance of the restricted minimum cost s-t-sequence problem
is given by a graph G = (V,A) with costs ca ≥ 0 and lengths `a ≥ 0 on the
arcs a ∈ A, two designated nodes s, t ∈ V and a threshold value ∆ > `∗, with
`∗ := maxa∈A `a. The task is to find an s-t-sequence S of minimum cost cS :=∑
a∈S #(a, S) · ca under the constraint that ∆− `∗ ≤ `S ≤ ∆.

This problem is obviously NP-hard (e. g., by reduction of the length-bounded
shortest path problem). The FPTAS that we will develop for this problem ap-
proximates the length constraint, i. e., it computes a solution at least as good as
an optimal solution but with a relaxed length constraint (1 − ε)∆ − `∗ ≤ `S ≤
(1 + ε)∆ for a given ε > 0. We begin by classifying the arcs into two groups.

Definition 2. Given ε > 0, an arc a ∈ A is short if `a ≤ ε∆/n, and long
otherwise. A sequence is short, if all of its arcs are short, and long otherwise.

It follows that a solution to the restricted minimum cost s-t-sequence problem
can – due to the length constraint – contain at most n/ε long arcs. Since a long
cycle needs to contain at least one long arc, it follows that at most n2/ε arcs of
the solution can be part of long cycles; the remaining arcs are part of an s-t-path
or short cycles. Due to the fact that a path does not contain duplicate nodes,
we make the following observation.

Observation 1. Let S be a solution to the restricted minimum cost s-t-sequence
problem. Then S contains at most n+n2/ε arcs that are not part of short cycles.

For our FPTAS, we would like to round the arc lengths without introducing
too much error. Sequences without short cycles are fine, because they have a
nicely bounded number of arcs. However, we cannot simply restrict ourselves to
sequences without short cycles. Therefore, we now define a nice v-w-sequence S
to be a v-w-sequence that contains at most one short cycle, but is allowed to
make several passes of this cycle. We will see that we can handle such sequences
efficiently while losing not too much accuracy. Notice that we can ignore zero-
length cycles, as these cycles do neither help us reach t nor can they improve
the objective value.

Lemma 1. For an s-t-sequence S with a path-cycle-decomposition, let C be a

short cycle in the decomposition of S with maximal length-to-cost ratio
∑
a∈C `a∑
a∈C ca

and let `short be the total length of all short cycles in the decomposition of S.
(Zero-cost cycles are assumed to have infinite ratio.) We define a corresponding

nice sequence S′ with cycle C by removing all short cycles and adding
⌊
`short
`C

⌋
copies of C. Then `S − ε∆ ≤ `S − `C ≤ `S′ ≤ `S and cS′ ≤ cS.

4

Proof. Let S∗ be the sequence obtained by removing all short cycles from S. S∗

is then a sequence without any short cycles and length `S∗ = `S − `short. Now

we add
⌊
`short
`C

⌋
copies of C and gain S′. It follows that

`S′ = `S∗ +

⌊
`short
`C

⌋
`C = `S − `short +

⌊
`short
`C

⌋
`C

≤ `S − `short +
`short
`C

`C

= `S .

Since C is a short cycle, `C ≤ n · ε∆n = ε∆ holds, yielding

`S′ = `S − `short +

⌊
`short
`C

⌋
`C

≥ `S − `short +
`short
`C

`C − `C

= `S − `C
≥ `S − ε∆.

Now let C1, . . . , Ck be the removed short cycles. Due to C having maximum
length-to-cost-ratio and therefore minimum cost-to-length-ratio, it follows that
the cost of S′ is bounded by

cS′ = cS −
k∑
i=1

`Ci
cCi
`Ci

+

⌊
`short
`C

⌋
cC

≤ cS −
k∑
i=1

`Ci
cC
`C

+ `short
cC
`C

= cS .

ut

Recall that we are looking for an s-t-sequence of lower or equal cost than the
cost of an optimal solution, but with relaxed length constraints. Based on our
observations, each optimal solution to the problem yields a corresponding nice
sequence of lower or equal cost in the length interval between ∆ − `∗ − ε∆
and ∆. Thus, it is sufficient to describe an algorithm that computes an optimal
solution in the set of nice sequences within this length interval. In the following,
we describe an algorithm that does so, but with a slightly larger set of allowed
sequences. This can only improve the result, however.

Computing the best-ratio-cycles for each node. For each node v ∈ V , we compute
the best-ratio short cycle containing v and refer to it as Cv. We can compute
the cycle with the best ratio by using Megiddo’s framework [14].

5

Defining rounded lengths. In order to compute the rest of the sequence, we will
now introduce rounded lengths. Define δ := ε2∆/n2 and rounded arc lengths `′

by `′a := b`a/δc δ for all a ∈ A.

Computing the optimal sequences with regard to rounded lengths for each node.
We use the rounded arc lengths in a dynamic program. Let S(v, w, x, y) be a
v-w-sequence of minimum cost with length x (with regard to `′) that contains
y arcs. We denote the cost of S(v, w, x, y) by c(v, w, x, y). Notice that storing
these values requires only O(n · n · n2ε−2 · (n+ n2ε−1)) space, as there are only
n nodes, n2ε−2 different lengths and at most n + n2ε−1 arcs in the sequences
we are looking for (see Observation 1). We initialize the dynamic program with
c(v, w, x, y) := 0 for v = w, x = 0, y = 0 and c(v, w, x, y) := ∞ for either
x = 0 or y = 0. For x ∈

{
0, δ, . . . ,

⌊
n2/ε2

⌋
δ
}

and y ∈
{

0, 1, . . . ,
⌊
n+ n2ε−1

⌋}
we compute

c(v, w, x, y) := min {c(v, u, x− `′a, y − 1) + ca | a = (u,w)∈ A, x− `′a ≥ 0} .

We now define C(v, w, x) := min
{
c(v, w, x, y) | y ∈

{
0, 1, . . . ,

⌊
n+ n2ε−1

⌋}}
as

the minimum cost of a v-w-sequence with length x (with regard to `′) and at
most y arcs. The sequences corresponding to the costs can be computed with
appropriate bookkeeping. This dynamic program will either compute a sequence
that does not use short cycles or at least a sequence that does not use more arcs
than a nice sequence potentially would – which is also fine for our purposes.

Bounding the rounding error. The rounding error for an arc a is bounded by δ.
Our sequences have at most n+n2/ε arcs. Therefore the rounding error for such
a sequence S is at most (n+n2/ε)δ = (ε+ ε2/n)∆. Therefore we can bound the
length of S with regard to the rounded lengths by `S −

(
ε+ ε2/n

)
∆ ≤ `′S ≤ `S .

Putting the parts together. For this computation, we test all possible start-
nodes v for short cycles and all ways to distribute length between the s-v-,
v-t-sequences and the short cycles. There are at most O((n2ε−2)2) = O(n4ε−4)
ways to distribute the length. If the s-v- and v-t-sequence do not have sufficient
length to match the length constraint, the remaining length is achieved by using
the best-ratio cycle at v. We define L :=

{
0, δ, . . . ,

⌊
n2/ε2

⌋
δ
}

for brevity. Since
we compute s-v- and v-t-sequences with regard to `′, we incur a rounding error
of 2(ε+ε2/n) there. Thus, we have to look for sequences with a length of at least
L := (1− 3ε− 2ε2/n)∆− `∗ with regard to `′ in order to consider all sequences
with a length of at least ∆ − `∗ − ε∆ with regard to `. We can compute an
s-t-sequence S with cost at most the cost of an optimal solution by

min

{
C(s, v, `′s) + cCv

⌊
L− `′s − `′t

`Cv

⌋
+ C(v, t, `′t)

∣∣∣∣ v ∈ V, `′s, `′t ∈ L, `′s + `′t ≤ L
}

and using bookkeeping. The minimum can be computed in time O(n5ε−4). Thus,
we can find a sequence S with cost at most the cost of an optimal solution and(
1− 3ε− 2ε2/n

)
∆− `∗ ≤ `S ≤

(
1 + 2ε+ 2ε2/n

)
∆ .

6

Theorem 2. For a given instance I of the restricted minimum cost s-t-sequence
problem and ε > 0, we can compute in time polynomial in the input size and ε−1

an arc sequence whose cost is at most the cost of an optimal solution to I and
whose length satisfies (1− ε)∆− `∗ ≤ `S ≤ (1 + ε)∆.

3 The Maximum Multicommodity Flow over Time
Problem

We will now use this problem to approximate maximum multicommodity flows
over time without intermediate storage.

3.1 Preliminaries

An instance of the maximum multicommodity flow over time problem without
intermediate storage consists of a directed graph G = (V,A) with capacities
ua ≥ 0 and transit times τa ∈ N0 on the arcs a ∈ A. Furthermore, we are given
a set of commodities K = {1, . . . , k} with a source si and a sink ti for all i ∈ K.
Arc capacity ua means that all commodities together can send at most ua units
of flow into arc a at any point in time. A transit time of τa means that flow
entering arc a at time θ leaves the arc at time θ + τa. Finally, we are given
a time horizon T ∈ N0 within which all flow needs to be sent. Let n := |V |,
m := |A|, and k := |K|. Note that we will assume for every commodity i ∈ K,
that there is a single source si ∈ V and a single sink ti ∈ V . Furthermore we
assume that sources and sinks have no incoming and outgoing arcs, respectively
(i. e., δ−si = δ+ti = ∅ for all i). This can be achieved by adding k super-sources
and super-sinks.

A multicommodity flow over time without intermediate storage f : A×K ×
[0, T) → R≥0 assigns a flow rate f(a, i, θ) to each arc a ∈ A, each commodity
i ∈ K and all points in time θ ∈ [0, T). A flow rate f(a, i, θ) specifies how
much flow of commodity i is sent into arc a at time θ. These flow rates need
to fulfill flow conservation:

∑
a∈δ−v f(a, i, θ − τa) −

∑
a∈δ+v f(a, i, θ) = 0 for all

i ∈ K, v ∈ V \ {si, ti}, θ ∈ [0, T). Such a flow is called feasible, if it obeys the
capacity constraints as well:

∑
i∈K f(a, i, θ) ≤ ua for all a ∈ A, θ ∈ [0, T).

The objective is to compute a feasible multicommodity flow over time f
without intermediate storage that maximizes the amount of flow |f | sent by all

commodities within the time horizon, i. e., |f | :=
∑
i∈K

∑
a∈δ−ti

∫ T−τa
θ=0

f(a, i, θ).

For convenience, we define the flow rate of a flow over time to be zero on all arcs
at all time points θ 6∈ [0, T).

For our setting of an integer time horizon and integral transit times, we can
switch between the continuous time model of flows over time given above, where
points in time are from a continuous interval [0, T), and the discrete time model,
where a discrete set of time points T := {0, . . . , T − 1} is used. Such a flow over
time x : A × K × T → R≥0 assigns flow rates to the arcs and commodities at
the specified discrete time points only. It is assumed that flow is sent at this rate

7

until the next time step. The viability of the switching is due to the following
lemma (see, e. g., [5]).

Lemma 2. Let f be a feasible multicommodity flow over time without interme-
diate storage in the continuous time model. Then there exists a feasible multi-
commodity flow over time x without intermediate storage in the discrete time
model of the same value, and vice versa.

Using the discrete time model, we can employ time-expansion, a standard tech-
nique from the literature first employed by Ford and Fulkerson [7, 8]. This tech-
nique is based on copying the network for each time step with arcs linking the
copies based on their transit times. Furthermore, super-sources s′i and -sinks t′i
are introduced for each commodity i ∈ K and connected to the copies of the
commodity’s source and sink, respectively. A more thorough introduction can,
for example, be found in [16]. For the sake of completeness, we give a formal
definition of time-expanded networks here.

Definition 3. The time expanded network GT with its node set V T and its arc
set AT is constructed by “copying the network for each time step”:

V T := {vθ | v ∈ V (G), θ ∈ {0, 1, . . . , T − 1}} ∪ {s′i, t′i | i ∈ K} ,
ET := {aθ = (vθ, wθ+τa) | a = (v, w) ∈ A, θ ∈ {0, . . . , T − τa − 1}} ,
HT := { (s′i, (si)θ), ((ti)θ, t

′
i) | i ∈ K, θ ∈ {0, . . . , T − 1}} ,

AT := ET ∪HT .

Capacities are extended from A to AT by uTa′ := ua for a′ = aθ ∈ ET and
uTa′ :=∞ for a′ ∈ HT .

3.2 LP-Formulations

Using the discrete time model, we can formulate the problem as an LP in arc
variables. A variable xa,i,θ describes the flow rate of commodity i into arc a at
time step θ which is equivalent to the flow on the copy of a starting in time layer
θ in the time-expanded network. The only special cases for this time-expanded
interpretation are the arcs of the form (s′i, (si)θ) and ((ti)θ, t

′
i), as these arcs

are outside the copied original network. However, we can just consider the arcs
(s′i, (si)θ) being copies of each other belonging to time layer θ and the same for
arcs ((ti)θ, t

′
i).

max
∑
i∈K

∑
a∈δ−

t′
i

∑
θ∈T

xa,i,θ,

s.t.
∑
i∈K

xa,i,θ ≤ ua for all a ∈ A, θ ∈ T,∑
a∈δ−v

xa,i,θ−τa −
∑
a∈δ+v

xa,i,θ = 0 for all i ∈ K, v ∈ V \ {s′i, t′i}, θ ∈ T,

xa,i,θ ≥ 0 for all a ∈ A, i ∈ K, θ ∈ T.

8

It is not difficult to see that, due to flow conservation, all flow contributing to
the objective function is sent from a source to a sink along some sequence of
arcs. We define S to be the set of all s′i-t

′
i-sequences for all i ∈ K. Then there

is always an optimal solution to the maximum multicommodity flow over time
problem that can be decomposed into sequences S∗ ⊆ S. We want to split the
sequences S ∈ S into smaller parts of nearly the same length ∆ > 0. Let τ∗

be the maximum transit time of an arc. Then we can split S into subsequences
of lengths between ∆ − τ∗ and ∆. The length of the last subsequence can be
anywhere between 0 and ∆, though, because we have to fit the remaining arcs
there. This leads to the following definition.

S∆∆−τ∗ := {v-t′i-sequences S | i ∈ K, v ∈ V, τS ≤ ∆}
∪ {v-w-sequences S | i ∈ K, v,w ∈ V,∆− τ∗ ≤ τS ≤ ∆} .

Since optimal solutions can be decomposed into sequences in S∆∆−τ∗ , we can also
formulate an LP based on variables for all sequences in S∆∆−τ∗ . Variable xS,i,θ
describes the flow rate of commodity i into sequence S at time step θ. Therefore,
the following LP, which we will refer to as the split-sequence LP, can be used to
compute an optimal solution to our problem:

max
∑
i∈K

∑
S∈δ−

t′
i

∑
θ∈T

xS,i,θ−τS ,

s.t.
∑
i∈K

∑
S∈S∆

∆−τ∗

∑
j=1,...,|S|:
a=aj

xS,i,θ−τS[→aj]
≤ ua for all a ∈ A, θ ∈ T,

∑
S∈δ−v

xS,i,θ−τS −
∑
S∈δ+v

xS,i,θ = 0 for all i∈K, v∈V \{s′i, t′i}, θ∈T,

xS,i,θ ≥ 0 for all S ∈ S∆∆−τ∗ , i ∈ K, θ ∈ T.

This formulation of the problem has two advantages over the initial arc-based
formulation. Firstly, all sequences in S∆∆−τ∗ – with the exception of those ending
in a sink – have a guaranteed length of ∆ − τ∗. Since the time horizon T is
an upper bound for the length of any sequence in S, we can conclude that a
sequence S ∈ S can be split into at most dT/(∆− τ∗)e+ 1 segments. Secondly,
when rounding up the transit times of the sequence-segments, we know that the
error introduced by the rounding is bounded by τ∗ for all segments save for the
last one, which ends in a sink. These two advantages together allow us to obtain
a strong bound on the rounding error.

3.3 Solving the Split-Sequence LP

Unfortunately, the split-sequence LP cannot be solved directly in polynomial
time due to its enormous size. We will approach this problem in two steps.

1. We round transit times to generate a number of discrete time steps that is
polynomially bounded in the input size and ε−1. This introduces a rounding
error, which we bound in Section 3.4.

9

2. The resulting LP has still exponentially many variables; therefore we will
consider its dual, which has exponentially many constraints, but only poly-
nomially many variables (in the input size and ε−1). In Section 3.5 we ar-
gue that the dual separation problem can be approximated which yields an
FPTAS for the original problem.

We begin by introducing a set SL := {S is a v-w-sequence with τS ≥ L} that
be will necessary later due to the fact that we can only approximate the dual

separation problem. We define S∆L := S∆∆−τ∗ ∪SL and replace S∆∆−τ∗ with S∆L in
the LP above. It is easy to see that this does not interfere with our ability to use
this LP to solve our problem. We now round the transit times of the sequences

in S∆L up to the next multiple of ∆, i. e., τ ′S := dτS/∆e∆ for all S ∈ S∆L .
Moreover, we define T ′ := d(1 + ε)T/∆e∆ and T′ := {0, ∆, . . . , T ′ −∆}. Using
these transit times yields the following LP, which we will refer to as the sequence-
rounded LP :

max
∑
i∈K

∑
S∈δ−

t′
i

∑
θ∈T′

xS,i,θ−τ ′S ,

s.t.
∑
i∈K

∑
S∈S∆L

#(a, S) · xS,i,θ ≤ ∆ua for all a ∈ A, θ ∈ T′,∑
S∈δ−v

xS,i,θ−τ ′S −
∑
S∈δ+v

xS,i,θ = 0 for all i ∈ K, v ∈ V \{s′i, t′i}, θ ∈ T′,

xS,i,θ ≥ 0 for all S ∈ S∆L , i ∈ K, θ ∈ T′.

3.4 Bounding the Error of the Sequence-Rounded LP

In this section, we will analyze the error introduced by using sequence-rounded
transit times. The lemmas and proofs used in this subsection built on and extend
techniques introduced by Fleischer and Skutella [5]. We begin by bounding the
error introduced by switching from the given transit times to the sequence-
rounded transit times.

Lemma 3. Let S ∈ S be a source-sink sequence and let τ be the normal transit
times and τ ′ the sequence-rounded transit times. Then τS ≤ τ ′S ≤ τS + ε2T , for

∆ := ε2T
4n and L := (1− 1/4ε2/(1 + 1/4ε2))∆.

Proof. The rounding error for an sequence S′ ∈ S∆L is bounded by max(τ∗, ∆−L)
for all sequences not ending in the sink of a commodity, for those ending in the
sink it is bounded by ∆. W.l.o.g, we will now assume that ∆−L ≥ τ∗, as we can
decrease τ∗ to ∆ − L by splitting arcs – this requires at most m T

∆−L ∈ O(nmε4)
additional arcs for the L that we choose below. The rounding error for a source-

sink-sequence decomposed into sequences of S∆L is then bounded by⌈
T

L

⌉
(∆− L) +∆ ≤ T

L
∆− T + 2∆− L .

10

We will now choose ∆ := ε2T
4n and L := (1− `)∆. Then

T

L
∆− T + 2∆− L =

`

1− `
T + (1 + `)

ε2T

4n
.

Now we choose ` :=
1
4 ε

2

1+ 1
4 ε

2 and get

`

1− `
T + (1 + `)

ε2T

4n
=

1

4
ε2T +

1

4n
ε2T +

1
4ε

2

1 + 1
4ε

2

ε2T

4n
≤ ε2T .

Thus, the rounding error is bounded by ε2T , i. e. a sequence is at most ε2T longer
when using the sequence-rounded transit times instead of the given ones. ut

This result enables us construct flows feasible with regard to the sequence-
rounded transit times out of normal flows.

Lemma 4. Let f be a multicommodity flow over time, sending |f | flow units
within a time horizon of T . Then, for ε > 0, there exists a multicommodity
flow over time that is feasible with regard to the sequence-rounded transit times,
sending |f |/(1 + ε) flow units within a time horizon of (1 + ε)T .

Proof. W.l.o.g., we can assume that f can be decomposed into s′i-t
′
i-sequences.

Otherwise, there exists a flow of equal value with this property. All these s′i-t
′
i-

sequences can be further decomposed into sequences of S∆L . We will now examine
the effects of sending f with sequence-rounded transit times. This means that
all flow particles of f still travel along the same sequences, as specified by the
decomposition, but the time to traverse a sequence is now different than be-
fore. This does not affect flow conservation, since we just change the speed at
which flow travels. However, we might violate capacities. Therefore, we define a
smoothed flow based on the sequence-decomposition in order to lessen the effects
of this:

fsm(S, i, θ) :=
1

εT

∫ θ

θ−εT
f(S, i, ξ) dξ for all S ∈ S∆L , i ∈ K, θ ∈ [0, (1 + ε)T).

Due to the smoothing, this flow requires a time horizon that is εT longer than
the original one, resulting in a time horizon of (1 + ε)T for fsm. The flow value
of each arc a at a point in time θ is then bounded by:

fsm(a, θ) :=
∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

fsm(S, i, θ − τ ′S[→aj])

=
∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

1

εT

∫ θ−τ ′S[→aj]

θ−εT−τ ′
S[→aj]

f(S, i, ξ) dξ

11

In the next step, we use the bound on the error introduced by the sequence-
rounding which we have obtained in Lemma 3. This gives us the following esti-
mation:

∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

1

εT

∫ θ−τ ′S[→aj]

θ−εT−τ ′
S[→aj]

f(S, i, ξ) dξ

≤ 1

εT

∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

∫ θ−τS[→aj]

θ−εT−ε2T−τS[→aj]

f(S, i, ξ) dξ

=
1

εT

∫ θ

θ−εT−ε2T

∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

f(S, i, ξ − τS[→aj]) dξ

=
1

εT

∫ θ

θ−εT−ε2T
f(a, ξ) dξ

≤ 1

εT

∫ θ

θ−εT−ε2T
ua dξ =

εT + ε2T

εT
ua = (1 + ε)ua.

Therefore, we can scale the smoothed flow by 1
1+ε and obtain a feasible flow,

that sends 1
1+ε |f | flow units within a time horizon (1 + ε)T :

fsc+sm(S, i, θ) :=
1

1 + ε
fsm(S, i, θ) for all S ∈ S∆L , i ∈ K, θ ∈ [0, (1 + ε)T).

This concludes the proof. ut

Furthermore, we can obtain a solution to the sequence-rounded LP out of any
flow feasible with regard to the sequence-rounded transit times.

Lemma 5. Let f be a feasible multicommodity flow over time with regard to the
sequence-rounded transit times. Then there exists a solution x to the sequence
rounded LP with equal value.

Proof. Define x by

xa,i,θ :=
1

∆

∫ (θ+1)∆

θ∆

f(a, i, ξ) dξ

Since f is feasible with sequence-rounded transit times, x is feasible in the
sequence-rounded LP. Due to f obeying flow-conservation, so does x. It is easy
to see that the total flow value sent does not change, proving the claim. ut

Finally, a solution to the sequence-rounded LP can be turned into a normal flow.

Lemma 6. Let x be a solution to the sequence-rounded LP. Then, for any ε > 0,
one can compute a multicommodity flow over time without intermediate storage
that sends |x|/(1 + ε) units of flow within time horizon (1 + ε)T .

12

Proof. Consider the flow over time f corresponding to x and a decomposition
(fS)

S∈S∆L
of f . We will now analyze what happens if we send the flow of f using

normal transit times. This means that all flow particles of f still travel along
the same sequences, as specified by the decomposition, but the time to traverse
a sequence is now different than before. This does not affect flow conservation,
since we just change the speed at which flow particles travel. However, due to
the different transit times, we might violate capacities. Therefore, we define a
smoothed flow by

fsm(S, i, θ) :=
1

εT

∫ θ

θ−εT
f(S, i, ξ) dξ for all S ∈ S∆L , i ∈ K, θ ∈ [0, (1 + ε)T).

in order to limit the capacity violations. The new flow requires εT more time,
resulting in a time horizon of (1 + ε)T . Now we need to examine how much
capacities are violated by fsm if send with the normal transit times:

fsm(a, θ) =
∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

fsm(S, i, θ − τS[→aj])

=
∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

1

εT

∫ θ−τS[→aj]

θ−εT−τS[→aj]

f(S, i, ξ) dξ

At this point, we use the fact that the error introduced by the sequence rounding
is at most ε2T (see Lemma 3). We use this for the following estimation:

∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

1

εT

∫ θ−τS[→aj]

θ−εT−τS[→aj]

f(S, i, ξ) dξ

≤ 1

εT

∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

∫ θ−τ ′S[→aj]
+ε2T

θ−εT−τ ′
S[→aj]

f(S, i, ξ) dξ

=
1

εT

∫ θ+ε2T

θ−εT

∑
i∈K

∑
S∈S∆L

∑
j=1,...,|S|:a=aj

f(S, i, ξ − τ ′S[→aj]) dξ

=
1

εT

∫ θ+ε2T

θ−εT
f(a, ξ) dξ

≤ 1

εT

∫ θ+ε2T

θ−εT
ua dξ =

εT + ε2T

εT
ua = (1 + ε)ua.

Therefore, we can scale fsm to get an flow, that sends 1
1+ε |x| flow units within

a time horizon (1 + ε)T and obeys the capacities:

fsc+sm(S, i, θ) :=
1

1 + ε
fsm(S, i, θ) for all S ∈ S∆L , i ∈ K, θ ∈ [0, (1 + ε)T).

13

Since f is feasible, this flow also fulfills flow conservation making it feasible as
well. Consider an arbitrary i ∈ K, v ∈ V \ {si, ti}, θ ∈ [0, T):∑

S∈δ−v

fsc+sm(S, i, θ)−
∑
S∈δ+v

fsc+sm(S, i, θ))

=
∑
S∈δ−v

1

1 + ε
fsm(S, i, θ)−

∑
S∈δ+v

1

1 + ε
fsm(S, i, θ))

=
∑
S∈δ−v

1

1 + ε

1

εT

∫ θ

θ−εT
f(S, i, ξ) dξ −

∑
S∈δ+v

1

1 + ε

1

εT

∫ θ

θ−εT
f(S, i, ξ) dξ

=
1

1 + ε

1

εT

∫ θ

θ−εT

∑
S∈δ−v

f(S, i, ξ)−
∑
S∈δ+v

f(S, i, ξ) dξ

=
1

1 + ε

1

εT

∫ θ

θ−εT
0 dξ = 0

This concludes the proof. ut

For the sake of completeness, we also discuss the computation of fsc+sm and
related functions used in previous lemmas.

Lemma 7. fsc+sm can be computed efficiently.

Proof. Let x be a solution to the sequence-rounded LP that can be decomposed
into sequences. There is no waiting in intermediate nodes – thus, each sequence
can let flow wait at the source only. Therefore, each sequence S of the decom-
position of x induces a sequence-flow over time fS that sends xS flow in a time
interval of length ∆ and zero flow otherwise; i. e. each fS is a step-function with
one non-zero-step. There are at most time-layer many sequences in the time
expanded network that correspond to the same sequence in the static network
(recall that waiting at intermediate nodes is forbidden). Thus, the result is a
piecewise constant function describing the flow for each sequence, that has at
most time-layer many steps (T ′ \ ∆ ∈ O(nε−2)). Thus, each of fsc+sm(S, i) is
efficiently computable and the number of such functions is polynomial in the
input as well (since x is a flow in a network of polynomial size). ut

3.5 Solving the Sequence-Rounded LP’s Dual

It remains to show that we can solve the sequence-rounded LP efficiently.

Observation 3. The dual of the sequence-rounded LP is

min
∑
a∈A

∑
θ∈T′

∆uaβa,θ,

s.t. −αv,i,θ + αw,i,θ+τ ′S +
∑
a∈A

#(a, S)βa,θ ≥ 1 for all S ∈ S∆L , i ∈ K, θ ∈ T′,

βa,θ ≥ 0 for all a ∈ A, θ ∈ T′.

14

with αs′i,i,θ = αt′i,i,θ = 0 for all commodities i ∈ K and θ ∈ T′, since these
variables do not correspond to constraints in the primal LP and have just been
added for notational brevity. The separation problem of this dual is to find a

sequence S ∈ S∆L with
∑
a∈A

#(a, S)·βa,θ < 1+αv,i,θ−αw,i,θ+τ ′S for some v, w, i, θ.

Notice that the number of different combinations of v, w, i, θ is polynomially
bounded such that we can enumerate them efficiently. Thus, the separation prob-

lem is to find a v-w-sequence S of minimum cost with regard to β and S ∈ S∆L .
This is the restricted minimum cost s-t-sequence problem introduced in Section 2
with β as the costs and τ as the lengths and ∆ as the threshold. As we have seen
there, we can only approximately solve this separation problem in the sense that
we get a solution with a length between (1− ε)∆− τ∗ and (1 + ε)∆. Recall that

we have defined S∆L as S∆∆−τ∗ ∪ SL for this purpose. Until this point, choosing
SL = ∅ would have been completely fine, we have not needed it so far. However,
using the equivalence of separation and optimization [9], we can find a solution
to a dual problem where SL contains the additional sequences of length at least
(1− ε)∆− τ∗ found by the ellipsoid method. This leads to L := (1− ε)∆− τ∗
which is also in line with the value of L we have used in the analysis before. We
conclude this section by stating our main result.

Theorem 4. Let I be an instance of the maximum multicommodity flow over
time problem without intermediate storage and let OPT be the value of an opti-
mal solution to it. There exists an FPTAS that, for any given ε > 0, computes
a solution with value at least OPT/(1 + ε) and time horizon at most (1 + ε)T .

We mention that for the multicommodity flow over time problems with storage at
intermediate nodes considered in [5], Fleischer and Skutella obtained a stronger
approximation result where only the time horizon is increased by a factor 1 + ε
but the original, optimal flow values are sent. In our setting, however, we also
need to approximate the flow values and can only send a 1/(1 + ε) fraction.
This is due to the fact that for the case where intermediate storage is allowed,
increasing the time horizon by a factor δ allows to increase flow values by a factor
of δ (Lemma 4.8 in [5]). Such a result does not hold for our setting, though (see
Example 1 below). In this context, it is also interesting to mention that hardly
any results on approximating the flow value for a fixed time horizon are known
and almost all approximation algorithms that guarantee an optimal flow value
at the price of slightly increasing the time horizon rely on [5, Lemma 4.8].

v1

v2

1

v31

1

A gadget where increasing the time horizon does not increase the
amount of flow that can be sent. The arc labels specify transit times,
the capacities are one on all arcs. There are three commodities, the first
having v1 as a source and v3 as a sink, the second with v2 and v1, the
third with v3 and v2.

Fig. 1. Counterexample to Lemma 4.8 in [5] in our setting.

15

Example 1. Consider the network in Figure 1. Within a time horizon of T = 3,
three flow units can be sent by routing exactly one flow unit of each commodity.
There is only a single source-sink-path for each commodity, and all paths have
length 2. Therefore it is easy to see that this is indeed a maximal flow for this
instance. Now consider time horizon T = 4. We can still not send more than
three flow units, as we can only send flow into the three paths in the interval
[0, 2), but flow sent into one path during [0, 1) blocks flow send into the next
path during [1, 2).

4 Extensions

Our approach above is based on the fact that we can efficiently approximate the
separation problem of the dual LP. Therefore, we can extend this approach to
related problems whose dual LP is also efficiently approximable.

The multicommodity flow over time problem without intermediate storage
is similar to the maximum multicommodity flow over time problem without
intermediate storage, but instead of a source and a sink for each commodity, we
are given supplies and demands bi,v, i ∈ K, v ∈ V that specify how much flow of
each commodity can be sent from or to a node. The task is to find a flow that
satisfies all supplies and demands within a time horizon.

The minimum cost multicommodity flow over time problem without interme-
diate storage receives the same input as an instance of the multicommodity flow
over time problem without intermediate storage together with arc costs ca ∈ R.
The task is to find a feasible multicommodity flow over time of minimum cost
fulfilling all supplies and demands within the given time horizon. The formal
definitions are as follows:

Definition 4 (Multicommodity Flow over Time without Intermediate
Storage). An instance of the multicommodity flow over time problem without
intermediate storage consists of a network G = (V,A) with a set of nodes V
and a set of arcs A, as well as capacities ua ≥ 0 and transit times τa ∈ N0 on
all arcs a ∈ A. Furthermore, we are given a set of commodities K = {1, . . . , k}
with balances bi,v ∈ R for all i ∈ K, v ∈ V with

∑
v∈V bi,v = 0 for all i ∈ K.

Finally we are given a time horizon T ∈ N0. The objective is to find a feasible
multicommodity flow over time that fulfills all supplies and demands (see below).

In this setting, a multicommodity flow over time without intermediate storage
has to fulfill a slightly different type of flow conservation constraint than we
have seen before.

Definition 5. A multicommodity flow over time without intermediate storage
x : A × K × T → R≥0 assigns a flow value xa,i,θ to each arc a ∈ A, each
commodity i ∈ K and all points in time θ ∈ T such that supplies and demands
are fulfilled:∑

a∈δ+v

T∑
θ=0

xa,i,θ −
∑
a∈δ−v

T−τa∑
θ=0

xa,i,θ = bi,v for all i ∈ K, v ∈ V .

16

Furthermore, flow conservation has the following requirements:

0 ≤
∑
a∈δ+v

θ∑
ξ=0

xa,i,θ −
∑
a∈δ−v

θ−τa∑
ξ=0

xa,i,ξ ≤ bi,v for all i ∈ K, v ∈ V : bi,v ≥ 0, θ ∈ T

and

0 ≥
∑
a∈δ+v

θ∑
ξ=0

xa,i,θ −
∑
a∈δ−v

θ−τa∑
ξ=0

xa,i,ξ ≥ bi,v for all i ∈ K, v ∈ V : bi,v < 0, θ ∈ T.

Such a flow is called feasible, if it obeys the capacity constraints as well:∑
i∈K

xa,i,θ ≤ ua for all a ∈ A, θ ∈ T.

A minimum cost multicommodity flow over time adds an objective function to
the multicommodity flow over time problem. Formally, it can be defined as fol-
lows.

Definition 6 (Minimum Cost Multicommodity Flow over Time). An
instance of the minimum cost multicommdity flow over time problem receives
the same input as an instance of the multicommodity flow over time problem
without intermediate storage with the addition of costs ca ∈ R on the arcs a ∈ A.
The objective is to find a feasible multicommodity flow over time of minimum
cost fulfilling all supplies and demands within the time horizon, where the cost
of a flow x is defined as

∑
a∈A

∑
i∈K

∑
θ∈T ca · xa,i,θ.

We focus now on the minimum cost multicommodity flow over time problem
without intermediate storage, as this problem is a generalization of the mul-
ticommodity flow over time problem without intermediate storage. The case
with intermediate storage can be done similarly. We begin by considering an arc
based LP formulation that is again based on a time-expanded network but has
a slightly different structure than before.

We still copy the network for each time step and introduce a super-source
s′i and -sink t′i for each commodity i ∈ K, but we connect the super-nodes dif-
ferently to the network. For this purpose, we define additional nodes si,v for
each v ∈ V with supply bi,v > 0 and ti,v for each node v ∈ V with demand
bi,v < 0. Then we define new supplies and demands b′ by b′i,s′i

:=
∑
v∈V :bi,v>0 bi,v,

b′i,t′i
:=
∑
v∈V :bi,v<0 bi,v and b′i,v = 0 for the rest of the nodes. Then we con-

nect the super-nodes by arcs asi,v = (s′i, si,v) and ati,v = (ti,v, t
′
i) with the

supply/demand-nodes. The capacity of the new arcs is determined by the supply
and demand of the nodes they are connected to, i. e. uasi,v = |bi,v|, uati,v = |bi,v|.
These arcs have zero transit time and zero cost. The supply nodes si,v and de-
mand nodes ti,v are then connected with all copies of their node v in the time-
expanded network by arcs with infinite capacity, zero transit time and zero cost.
This gives us a network where only two nodes per commodity have non-zero

17

supply and demand, which makes the structure of the LP much nicer. In or-
der to make the LP more similar to the last problem, we transform it into a
maximization problem. For brevity, we define V := {s′i, t′i | i ∈ K}. We get the
following LP based on arc variables. Note that the arcs incident to nodes of V
exist only once, i. e. they are outside the copied structure.

max −
∑
i∈K

∑
a∈A

∑
θ∈T

ca · xa,i,θ,

s.t.
∑
i∈K

xa,i,θ ≤ ua for all a ∈ A, θ ∈ T,∑
a∈δ+v

xa,i,θ −
∑
a∈δ−v

xa,i,θ−τa = 0 for all i ∈ K, v ∈ V \ V, θ ∈ T,∑
a∈δ+v

xa,i −
∑
a∈δ−v

xa,i = b′i,v for all i ∈ K, v ∈ V, θ ∈ T,

xa,i,θ ≥ 0 for all a ∈ A, i ∈ K, θ ∈ T.

Note that the changes compared to the maximum multicommodity flow over
time problem without intermediate storage are mostly in the objective function
and the right side of the flow conservation constraints. Again we can consider a
sequence-rounded LP.

max −
∑
i∈K

∑
S∈S∆L

∑
θ∈T′

cS · xS,i,θ,

s.t.
∑
i∈K

∑
S∈S∆L

#(a, S) · xS,i,θ ≤ ∆ua for all a ∈ A, θ ∈ T′,∑
S∈δ+v

xS,i,θ −
∑
a∈δ−v

xS,i,θ−τ ′S = 0 for all i ∈ K, v ∈ V \ V, θ ∈ T′,∑
S∈δ+v

xS,i −
∑
S∈δ−v

xS,i = b′i,v for all i ∈ K, v ∈ V, θ ∈ T′,

xS,i,θ, xS,i ≥ 0 for all S ∈ S∆L , i ∈ K, θ ∈ T′.

The dual of this sequence-rounded LP is:

min
∑

a∈A,θ∈T′
∆uaβa,θ +

∑
i∈K,v∈V,θ∈T′

b′i,vαv,i,θ,

s.t. αv,i,θ − αw,i,θ+τ ′S+
∑
a∈A

#(a, S)βa,θ ≥ −cS for all S ∈ S∆L , i ∈ K, θ ∈ T′,

βa,θ ≥ 0 for all a ∈ A, θ ∈ T′.

with αs′i,i,θ = αt′i,i,θ = 0 for all commodities i ∈ K and θ ∈ T′, since these
variables do not correspond to constraints in the primal LP and have just been
added for notational brevity. Note that cS =

∑
a∈A #(a, S)ca. Therefore, we can

write the constraint for all S ∈ S∆L , i ∈ K, θ ∈ T′ as∑
a∈A

#(a, S) · (βa,θ + ca) ≥ −αv,i,θ + αw,i,θ+τ ′S .

For non-negative costs, this leads once again to a restricted minimum cost s-t-
sequence problem as the separation problem.

18

Theorem 5. Let I be an instance of the minimum cost multicommodity flow
over time problem with non-negative arc costs and let OPT be the value of an
optimal solution to it. There exists an FPTAS that, for any given ε > 0, finds a
solution of value at most OPT , with time horizon at most (1 + ε)T that fulfills
a (1 + ε)−1 fraction of the given supplies and demands.

Conclusion. We conclude by stating an open problem that might stimulate fur-
ther research in this direction: Multicommodity flow over time problems without
intermediate storage that are restricted to simple flow paths. It is known that
these problems are strongly NP-hard [10] and thus, unless P=NP, do not have
an FPTAS. On the positive side, there is a (2 + ε)-approximation algorithm
known [4, 5].

Acknowledgments. The authors thank Melanie Schmidt and the anonymous ref-
erees for their helpful comments regarding the presentation of this paper.

References

[1] J. E. Aronson. A survey of dynamic network flows. Annals of Operations Research,
20:1–66, 1989.

[2] M. Braun and S. Winter. Ad hoc solution of the multicommodity-flow-over-time
problem. IEEE Transactions on Intelligent Transportation Systems, 10(4):658–
667, 2009.

[3] R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. ZOR –
Methods and Models of Operations Research, 37:31–58, 1993.

[4] L. Fleischer and M. Skutella. The quickest multicommodity flow problem. In
William J. Cook and Andreas S. Schulz, editors, Integer Programming and Com-
binatorial Optimization, volume 2337 of Lecture Notes in Computer Science, pages
36–53. Springer, 2002.

[5] L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on Com-
puting, 36:1600–1630, 2007.

[6] L. K. Fleischer and É. Tardos. Efficient continuous-time dynamic network flow
algorithms. Operations Research Letters, 23:71–80, 1998.

[7] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

[8] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419–433, 1987.

[9] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combina-
torial Optimization. Springer, 1988.

[10] A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient
algorithms and complexity. Theoretical Computer Science, 379:387–404, 2007.

[11] B. Hoppe. Efficient dynamic network flow algorithms. PhD thesis, Cornell Uni-
versity, 1995.

[12] B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of
Operations Research, 25:36–62, 2000.

[13] B. Klinz and G. J. Woeginger. Minimum cost dynamic flows: The series parallel
case. Networks, 43:153–162, 2004.

19

[14] N. Megiddo. Combinatorial optimization with rational objective functions. Math-
ematics of Operations Research, 4:414–424, 1979.

[15] W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and dynamic networks and
routing. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser,
editors, Network Routing, volume 8 of Handbooks in Operations Research and
Management Science, chapter 3, pages 141–295. North–Holland, Amsterdam, The
Netherlands, 1995.

[16] M. Skutella. An introduction to network flows over time. In Research Trends in
Combinatorial Optimization, pages 451–482. Springer, 2009.

20

