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Abstract

We characterize the Smith form of skew-symmetric matrix polynomials over an arbi-
trary field F, showing that all elementary divisors occur with even multiplicity. Restrict-
ing the class of equivalence transformations to unimodular congruences, a Smith-like
skew-symmetric canonical form for skew-symmetric matrix polynomials is also obtained.
These results are used to analyze the eigenvalue and elementary divisor structure of ma-
trices expressible as products of two skew-symmetric matrices, as well as the existence
of structured linearizations for skew-symmetric matrix polynomials. By contrast with
other classes of structured matrix polynomials (e.g., alternating or palindromic polyno-
mials), every regular skew-symmetric matrix polynomial is shown to have a structured
strong linearization. While there are singular skew-symmetric polynomials of even de-
gree for which a structured linearization is impossible, for each odd degree we develop
a skew-symmetric companion form that uniformly provides a structured linearization
for every regular and singular skew-symmetric polynomial of that degree. Finally, the
results are applied to the construction of minimal symmetric factorizations of skew-
symmetric rational matrices.
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1 Introduction

Recent papers have analyzed the Smith forms of several important classes of structured ma-
trix polynomials, in particular, of alternating polynomials [37] and palindromic polynomials
[38]. The main motivation for these investigations was to probe for any systematic obstruc-
tions to the existence of structured linearizations arising from incompatibilities between the
elementary divisor structure of polynomials and pencils within the same structure class. Such
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incompatibilities were indeed found in [37, 38], and are analogous to restrictions on possible
Jordan structures and Schur forms of Hamiltonian and symplectic matrices, see e.g., [31, 34],
and their generalizations as even, symplectic, or palindromic pencils, see e.g., [22, 48, 49].
The difficulties stem from constraints on the multiplicities of Jordan structures associated
with certain critical eigenvalues: at 0 or∞ for Hamiltonian matrices and alternating matrix
polynomials, at ±1 for symplectic matrices and palindromic matrix polynomials.

It is also well-known that there are restrictions on the possible Jordan structures of skew-
Hamiltonian matrices and their pencil extensions: all eigenvalues have even multiplicity,
and every Jordan block appears an even number of times [15, 23, 50]. In contrast to the
situation for Hamiltonian and symplectic matrices, though, these restrictions on Jordan
structures do not raise any significant difficulties for numerical methods. Indeed, skew-
Hamiltonian structure is special among matrices with multiple eigenvalues, since there are
stable methods for the computation of eigenvalues, invariant subspaces, and Schur forms that
can easily separate the paired structures from each other [42, 49, 51]. Recent results on the
perturbation theory for skew-Hamiltonian matrices and their pencil extensions [1, 2, 8, 28]
add theoretical support for this observed behavior.

These favorable properties for skew-Hamiltonian matrices immediately lead one to ask
to what extent these properties might also be present in their natural matrix polynomial
generalization, i.e., the class of skew-symmetric matrix polynomials.

The work presented here1 initiates this inquiry by developing the structured Smith form
for skew-symmetric matrix polynomials over an arbitrary field. This canonical form is then
used as an investigative tool for the existence of structured linearizations. After a brief
review of the relevant concepts in Section 2, we establish the notion of skew-symmetry over
arbitrary commutative rings and fields (including those of characteristic 2) in Section 3,
extending several well-known properties of skew-symmetric matrices over R or C to a general
commutative ring. Canonical forms are the subject of Sections 4 and 5. These are then used
in Section 6 to characterize the elementary divisor structure of a product of two skew-
symmetric matrices, to resolve the structured linearization question for skew-symmetric
polynomials, and to construct symmetric factorizations of skew-symmetric rational matrices
that are minimal everywhere except for infinity.

2 Notation and Background Results

Throughout this paper we consider n × n matrix polynomials P (λ) with nonzero leading
coefficients, i.e.,

P (λ) = λkAk + · · ·+ λA1 +A0, Ak 6= 0, Ai ∈ Fn×n, 1 ≤ i ≤ k,

where F is an arbitrary field. It is often useful to view P (λ) as a polynomial matrix, i.e.,
as a single matrix with polynomial entries Pij(λ). We will switch freely between these two
points of view, using whichever is most appropriate for the task at hand.

We use F[λ] for the ring of polynomials in one variable with coefficients from the field F,
and F(λ) to denote the field of rational functions over F. A matrix polynomial P (λ) is said
to be regular if it is invertible when viewed as matrix over F(λ), equivalently if detP (λ) is
not the identically zero polynomial; otherwise it is said to be singular. The rank of P (λ),

1By contrast with our earlier work on Smith forms in [37] and [38], this paper contains no joke.
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sometimes called the normal rank, is the rank of P (λ) when viewed as a matrix with entries
in the field F(λ).

We now gather together some well-known results and tools from matrix theory that are
used in this paper. Details can be found in standard monographs like [17, Ch.VI], [19, Part
IV], [32].

2.1 Smith form, elementary divisors, and greatest common divisors

Recall that two m×n matrix polynomials P (λ), Q(λ) are said to be unimodularly equivalent,
denoted by P ∼ Q, if there exist unimodular matrix polynomials E(λ) and F (λ) of sizem×m
and n× n, respectively, such that

Q(λ) = E(λ)P (λ)F (λ). (2.1)

Here, an n×nmatrix polynomial E(λ) is called unimodular if detE(λ) is a nonzero constant,
independent of λ.

Theorem 2.1 (Smith form [16]).
Let P (λ) be an m× n matrix polynomial over an arbitrary field F. Then there exists r ∈ N,
and unimodular matrix polynomials E(λ) and F (λ) of size m ×m and n × n, respectively,
such that

E(λ)P (λ)F (λ) = diag(d1(λ), . . . , dmin {m,n}(λ)) =: D(λ), (2.2)

where d1(λ), . . . , dr(λ) are monic, dr+1(λ), . . . , dmin {m,n}(λ) are identically zero, and dj(λ)
is a divisor of dj+1(λ) for j = 1, . . . , r − 1. Moreover, D(λ) is unique.

The nonzero diagonal elements dj(λ), j = 1, . . . , r in the Smith form of P (λ) are called
the invariant factors or invariant polynomials of P (λ), and have an important interpretation
in terms of greatest common divisors of minors of P (λ) [17, 19, 32]. Recall that a minor
of order k of an m × n matrix A is the determinant of a k × k submatrix of A, i.e., of a
matrix obtained from A by deleting m− k rows and n− k columns. For d(x) 6≡ 0 we write
d(x)|p(x) to mean that d(x) is a divisor of p(x). When S is a set of scalar polynomials, we
write d|S to mean that d(x) divides each element of S, i.e., d(x) is a common divisor of the
elements of S. The greatest common divisor (or GCD) of a set S containing at least one
nonzero polynomial is the unique monic polynomial g(x) such that g(x)|S, and if d(x)|S
then d(x)|g(x). We denote the GCD of S by gcd(S).

Theorem 2.2 (Characterization of invariant polynomials).
Let P (λ) be an m × n matrix polynomial over an arbitrary field F with Smith form as in
(2.2). Set p0(λ) ≡ 1. For 1 ≤ j ≤ min(m,n), let pj(λ) ≡ 0 if all minors of P (λ) of order
j are zero; otherwise, let pj(λ) be the GCD of all minors of P (λ) of order j. Then the
number r in Theorem 2.1 is the largest integer such that pr(λ) 6≡ 0, i.e., r = rankP (λ).
Furthermore, the invariant polynomials d1(λ), . . . , dr(λ) of P (λ) are ratios of GCDs given
by

dj(λ) =
pj(λ)

pj−1(λ)
, j = 1, . . . , r,

while the remaining diagonal entries of the Smith form of P (λ) are given by

dj(λ) = pj(λ) ≡ 0 , j = r + 1, . . . ,min {m,n}.
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The following simple result on GCDs of sets of matrix polynomials will be needed later.

Lemma 2.3. Suppose S =
{
p1(x), p2(x), . . . , pm(x)

}
is a finite set of scalar polynomials

over an arbitrary field F, and let S̃ :=
{
p21(x), p

2
2(x), . . . , p

2
m(x)

}
.

(a) If gcd(S) = 1, then gcd(S̃) = 1.

(b) If gcd(S) = g(x), then gcd(S̃) = g2(x).

Proof. (a): Suppose on the contrary that gcd(S̃) 6= 1. Then there exists a non-trivial F-
irreducible polynomial r(x) that divides each p2i . But then the irreducibility of r(x) implies
that r(x) must divide each pi, contradicting the hypothesis that gcd(S) = 1.
(b): By hypothesis, pi(x) = g(x)hi(x) for each i, and gcd

{
h1(x), h2(x), . . . , hm(x)

}
= 1.

Then gcd(S̃) = gcd
{
g2h21, g

2h22, . . . , g
2h2m

}
= g2 · gcd

{
h21, h

2
2, . . . , h

2
m

}
= g2, by part (a).

2.2 Elementary divisors and linearizations

If P (λ) is a matrix polynomial over a field F with rank r, then each of its invariant polyno-
mials di(λ) for 1 ≤ i ≤ r can be uniquely factored as

di(λ) = qi1(λ)
αi1 · . . . · qi,`i(λ)

αi,`i ,

where `i ≥ 0, αij > 0, j = 1, . . . , `i, and qij(λ), j = 1, . . . , `i are distinct F-irreducible monic
non-constant polynomials. (If `i = 0, then di(λ) ≡ 1 by the definition of the empty product.)
Then the elementary divisors of P are the collection of factors qij(λ)αij for j = 1, . . . , `i,
i = 1, . . . , r including repetitions [17]. If qij(λ)αij = (λ− λ0)αij is a power of a linear factor
for some λ0 ∈ F, then λ0 is called an eigenvalue of P and (λ−λ0)αij is called an elementary
divisor associated with λ0.

Infinite elementary divisors of P are obtained via the reversal, revP , defined by

(revP )(λ) := λkP (1/λ), where k = degP. (2.3)

The elementary divisors of P associated with λ0 = ∞ are then defined to be the same as
those associated with the eigenvalue 0 of revP .

Recall that an nk×nk pencil L(λ) = λX+Y is called a linearization for an n×n matrix
polynomial P (λ) of degree k if there exist unimodular nk × nk matrix polynomials E(λ)
and F (λ) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0
0 In(k−1)

]
.

A linearization L(λ) is called a strong linearization if in addition there exist unimodular
nk × nk matrix polynomials G(λ) and H(λ) such that

G(λ)revL(λ)H(λ) =

[
revP (λ) 0

0 In(k−1)

]
.

This concept was introduced in [18], and named in [30], see also [29]. It is clear from the
definition that the (finite and infinite) elementary divisors of P (λ) and L(λ) are identical if
L(λ) is a strong linearization for P (λ). For the converse, we need an additional condition
on the nullspace of P (λ).
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Definition 2.4 ([10], Definition 2.1). Let P (λ) be an n × n matrix polynomial over an
arbitrary field F, and let F(λ) denote the field of rational functions over F. Then

Nr(P ) := {x(λ) ∈ F(λ)n | P (λ)x(λ) ≡ 0 }

is called the (right) nullspace of P (λ).

Lemma 2.5 ([10], Lemma 2.3). Let P (λ) = λkAk+· · ·+λA1+A0, Ak 6= 0 be an n×n matrix
polynomial and let L(λ) be an nk×nk matrix pencil. Then L(λ) is a strong linearization for
P (λ) if and only if L(λ) and P (λ) have the same (finite and infinite) elementary divisors
and dimNr(P ) = dimNr(L).

A classical example of a linearization is the “companion” linearization

C1(λ) = λ


In 0

. . .

In
0 Ak

+


0 −In 0

. . .
. . .

0 −In
A0 A1 . . . Ak−1

 . (2.4)

It was shown in [18] that C1(λ) is always a strong linearization, for any n × n matrix
polynomial P (λ). (Only the case F = C was considered in [18], but the proof given there
generalizes immediately to polynomials over arbitrary fields.)

Remark 2.6. Let s be the sum of the degrees of all the elementary divisors (finite and
infinite) of a matrix polynomial P (λ) of degree k. Then the Index Sum Theorem for matrix
polynomials [12], implies that s can never exceed kr, where r = rankP (λ). For square P (λ)
of size n × n, the Index Sum Theorem further implies that P (λ) is regular if and only if
s = kn. This fact will be important for us in Section 6.3.2.

2.3 Compound matrices and their properties

Recently, compound matrices have proved very effective in obtaining Smith forms of struc-
tured matrix polynomials: for T -even and T -odd polynomials in [37], and for T -palindromic
polynomials in [38]. They will once again constitute a central tool in this paper. For ref-
erences on compound matrices, see [21, Section 0.8], [39, Chapter I.2.7], [45, Section 2 and
28].

We use a variation of the notation in [21] for submatrices of an m × n matrix A. Let
η ⊆ {1, . . . ,m} and κ ⊆ {1, . . . , n} be arbitrary index sets of cardinality 1 ≤ j ≤ min(m,n).
Then Aηκ denotes the j × j submatrix of A in rows η and columns κ, and the ηκ-minor of
order j of A is detAηκ. Note that A has

(
m
j

)
·
(
n
j

)
minors of order j. When η = κ, then

Aηκ is referred to as a principal submatrix of A, and the corresponding minor detAηκ is a
principal minor of A.

Definition 2.7 (Compound Matrices).
Let A be an m × n matrix with entries in an arbitrary commutative ring, and let ` ≤
min(m,n) be a positive integer. Then the `th compound matrix (or the `th adjugate) of
A, denoted C`(A), is the

(
m
`

)
×
(
n
`

)
matrix whose (η, κ)-entry is the ` × ` minor detAηκ of

A. Here, the index sets η ⊆ {1, . . . ,m} and κ ⊆ {1, . . . , n} of cardinality ` are ordered
lexicographically.
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Observe that we always have C1(A) = A, and, if A is square, then Cn(A) = detA. Basic
properties of C`(A) that we need are collected in the next theorem.

Theorem 2.8 (Properties of compound matrices).
Let A be an m × n matrix with entries in a commutative ring, and let ` ≤ min(m,n) be a
positive integer. Then

(a) C`(AT ) =
(
C`(A)

)T ;
(b) C`(µA) = µ` C`(A), where µ ∈ F;

(c) det C`(A) = (detA)β, where β =
(
n−1
`−1
)
, provided that m = n;

(d) C`(AB) = C`(A) C`(B), provided that B ∈ Fn×p and ` ≤ min(m,n, p).

We are especially interested in compounds of matrices with polynomial entries. Note that
such a compound can be thought of either as a polynomial with matrix coefficients, or as a
matrix with polynomial entries, leading to the natural identification C`(P )(λ) := C`(P (λ)).
The next theorem, established in [37], shows how the first ` + 1 invariant polynomials of
P (λ) determine the first two invariant polynomials of C`(P )(λ).

Theorem 2.9 (First two invariant polynomials of the `th compound [37]).
Suppose the Smith form of an n× n matrix polynomial P (λ) is

D(λ) = diag
(
d1(λ) , . . . , d`−1(λ) , d`(λ) , d`+1(λ) , . . . , dn(λ)

)
,

and for 2 ≤ ` < n denote the Smith form of the `th compound C`
(
P (λ)

)
by

S(λ) = diag
(
s1(λ) , s2(λ) , . . . , s(n`)

(λ)
)
.

Then the first two diagonal entries of S(λ) are given by

s1(λ) =

`−1∏
j=1

dj(λ)

· d`(λ) and s2(λ) =

`−1∏
j=1

dj(λ)

· d`+1(λ) .

3 Skew-symmetry over a commutative ring

Our focus in this work is on matrix polynomials that are skew-symmetric over an arbitrary
field F. Let us begin by examining the notion of skew-symmetry for a matrix A ∈ Fn×n
when char F = 2. In such a field, the condition A = −AT is equivalent to saying that A
is symmetric, and in particular, the entries on the main diagonal are unconstrained, rather
than zero. By explicitly requiring the diagonal entries Aii to vanish, we are led to a definition
of skew-symmetry that works in arbitrary fields, and additionally, just as well in the more
general setting of a commutative ring.

Definition 3.1. An n × n matrix A with entries in a commutative ring R is said to be
skew-symmetric if AT = −A , and Aii = 0 for i = 1, . . . , n.
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Such matrices often go by the name “alternate matrix” or “alternating matrix” [14, 26, 33],
but this is not universally the case. We have chosen, instead, Artin’s usage in [4], where the
condition Aii = 0 is explicitly invoked to make the development of skew-symmetry work in
a uniform way for all fields. Of course, this condition is redundant when 2 ∈ R is not a zero
divisor; otherwise it constitutes an independent constraint on the entries of A. Note that
we follow the usage of Jacobson [26], where the element 0 ∈ R is included as one of the zero
divisors of the ring R.

A skew-symmetric matrix polynomial P (λ) over an arbitrary field F can now be defined
as a skew-symmetric matrix (in the sense of definition 3.1) whose entries are polynomials
in F[λ]. Equivalently, P (λ) is skew symmetric when all its coefficient matrices are skew
symmetric (again, in the sense of Definition 3.1). For convenience, a self-contained definition
is included below:

Definition 3.2. An n × n matrix polynomial P (λ) =
∑k

0 λ
iAi over a field F is said to be

skew-symmetric if

(a) P (λ)T = −P (λ), equivalently if ATj = −Aj for j = 0, . . . , k, and if

(b) Pii(λ) ≡ 0 for i = 1, . . . , n.

We now prove several basic properties of skew-symmetric matrices. Our main interest,
of course, is in skew-symmetric matrices with polynomial entries. However, these properties
are most naturally developed for matrices with entries in an arbitrary commutative ring.

The first result shows that the determinant of an n × n skew-symmetric matrix is zero
whenever n is odd. This is well known for skew-symmetric matrices over the real or complex
numbers. In fact, it is easy to prove when R is any field F with char F 6= 2, but is not so
straightforward when F has characteristic two, or when the entries of the matrix are from a
commutative ring which is not a field.

Lemma 3.3. Suppose A is an n × n skew-symmetric matrix with entries in an arbitrary
commutative ring R. Then detA = 0 whenever n is odd.

Proof. First recall the familiar proof, valid whenever the element 2 ∈ R is not a zero divisor.
In this case we have

AT = −A =⇒ det(AT ) = det(−A)
=⇒ detA = (−1)n detA = −detA

=⇒ 2 detA = 0 ,

and so detA = 0, since 2 is not a zero divisor.
To obtain an argument that works for an arbitrary commutative ring R, we take a

different approach. For a fixed odd n, consider the generic n× n skew-symmetric matrix

Gn(x12, x13, . . . , xn−1,n) :=



0 x12 x13 . . . x1,n
−x12 0 x23 . . . x2,n
−x13 −x23 0 . . . x3,n
...

...
. . .

...
0 xn−1,n

−x1,n −x2,n . . . −xn−1,n 0


, (3.1)
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in which each of the n(n − 1)/2 entries above the diagonal is a distinct variable. Then
detGn is a polynomial in the ring R := Z[x12, x13, . . . , xn−1,n ]. The determinant detA of
an arbitrary n×n skew-symmetric matrix A with entries from any commutative ring R can
be evaluated simply by plugging in the values aij ∈ R of the entries of A into the polynomial
detGn. In other words, if aij ∈ R are the entries of A, then A = Gn(a12, a13, . . . , an−1,n),
and

detA = det
[
Gn(a12, a13, . . . , an−1,n)

]
=
(
detGn

)
(a12, a13, . . . , an−1,n) .

Observe, however, that the “familiar” argument described in the first paragraph of this proof
applies to detGn as an element of the particular ring R, because 2 is not a zero divisor in
the ring R. Thus when n is odd, detGn is the identically zero polynomial in R, so that
evaluating detGn with arbitrary entries from any commutative ring R will always produce
the answer detA = 0 in R.

Next we prove that skew-symmetry is preserved under congruence transformations. Once
again, this is immediate if the entries of the matrix are from a commutative ring R in which
2 is not a zero divisor, but it is not straightforward otherwise.

Lemma 3.4. Let A,B, F be n×n matrices over an arbitrary commutative ring R such that
B = F TAF . If A is skew-symmetric, then so is B.

Proof. If 2 ∈ R is not a zero divisor, then the result follows immediately from

BT =
(
F TAF

)T
= F TATF = −F TAF = −B .

If 2 is a zero divisor in R, then we use the same technique as in the proof of Lemma 3.3. To
this end, let Gn be the generic n× n skew-symmetric matrix as in (3.1), and

Fn(y11, y12, . . . , ynn) :=


y11 y12 . . . y1n
y21 y22 . . . y2n
...

...
. . .

...
yn1 yn2 . . . ynn


the generic n× n (unstructured) matrix. Then both Gn and Fn can be viewed as matrices
with entries in the polynomial ring R̂ = Z[x12, x13, . . . , xn−1,n, y11, y12, . . . , ynn ], with n2 +
n(n− 1)/2 independent commuting variables.

The matrices A and F can now be obtained by substituting the entries from A and F
into the corresponding variables of the matrix polynomials Gn and Fn, whereas B can be
obtained by substituting those entries exactly into the corresponding variables of the matrix
polynomial F Tn GnFn. By the argument in the first sentence of this proof, F Tn GnFn is skew-
symmetric as a matrix with entries in the ring R̂, since 2 is not a zero divisor in R̂. Thus
it follows, as in the proof of Lemma 3.3, that B is skew-symmetric as a matrix with entries
in the ring R.

Skew-symmetry is also preserved under inverses, as shown in the next lemma.

Lemma 3.5. Suppose A is an n × n matrix with entries in a commutative ring R, and A
is invertible. If A is skew-symmetric, then so is A−1.
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Proof. The first condition of skew-symmetry, i.e., that (A−1)T = −A−1, comes immediately
via the simple computation (A−1)T = (AT )−1 = (−A)−1 = −A−1. The diagonal-entries
condition in Definition 3.1 follows from the classical adjoint characterization of inverse ma-
trices, i.e., A−1 = (1/detA) · adjA. The existence of A−1 means that detA 6= 0, so n is
even by Lemma 3.3. Now observe that each diagonal entry (adjA)ii is the determinant of
an (n− 1)× (n− 1) principal submatrix of A. Such a submatrix is skew-symmetric of odd
size, hence by Lemma 3.3 we have (adjA)ii = 0 for i = 1, . . . , n.

Finally we consider the various compounds of skew-symmetric matrices over an arbitrary
commutative ring, and determine what their structure is. Note that the proof is very similar
to that used for Lemma 3.5.

Lemma 3.6. Suppose A is an n × n skew-symmetric matrix with entries in an arbitrary
commutative ring R. Then the `th compound C`

(
A
)
is skew-symmetric when ` is odd, but

symmetric when ` is even.

Proof. Since A is skew-symmetric we have AT = −A. Taking the `th compound of both
sides gives C`

(
AT
)
= C`(−A), which by Theorem 2.8 simplifies to C`

(
A
)T

= (−1)`C`(A).
Thus when ` is even we immediately see that C`(A) is symmetric. When ` is odd, each
diagonal entry of C`(A) is the determinant of an ` × ` principal submatrix of A, which by
the argument used in the proof of Lemma 3.5 is always zero. Thus C`(A) is skew-symmetric
when ` is odd.

Of course we are primarily interested in the result of Lemma 3.6 when A is a skew-
symmetric matrix polynomial, so we illustrate it with the following example.

Example 3.7. Let F = Z2 and consider the skew-symmetric matrix polynomial

P (λ) =


0 1 λ λ+ 1
1 0 λ2 + λ 1
λ λ2 + λ 0 λ

λ+ 1 1 λ 0

 ,
which we view as a skew-symmetric matrix with entries in the commutative ring R = Z2[λ ].
Then we obtain

C2
(
P (λ)

)
=



1 λ λ+ 1 λ2 + λ 1 λ3

λ λ2 λ2 + λ λ3 + λ2 λ3 λ2

λ+ 1 λ2 + λ λ2 + 1 0 λ+ 1 λ2 + λ
λ2 + λ λ3 + λ2 0 λ4 + λ2 λ2 + λ λ3 + λ2

1 λ3 λ+ 1 λ2 + λ 1 λ
λ3 λ2 λ2 + λ λ3 + λ2 λ λ2


and

C3
(
P (λ)

)
=


0 λ3 + λ λ4 + λ2 λ5 + λ3 + λ2

λ3 + λ 0 λ4 + λ2 + λ λ3 + λ
λ4 + λ2 λ4 + λ2 + λ 0 λ4 + λ2

λ5 + λ3 + λ2 λ3 + λ λ4 + λ2 0

 .
So indeed we see that C2

(
P (λ)

)
is symmetric (but not skew-symmetric, since it does not

have an all-zeroes diagonal), while C3
(
P (λ)

)
is skew-symmetric.
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Remark 3.8. The proof technique used in Lemmas 3.3 and 3.4 is known informally by
various names, such as the “method of the generic example” or the “principle of permanence
of identities” [4, p. 456-7]. See also [26, p. 334-5] or [33, p. 372-4] for another use of this
technique in developing the basic properties of the Pfaffian.

4 Skew-Smith Form

In this section we develop our main result, the “Skew-Smith Form”, starting with the follow-
ing result about the first two diagonal entries in the Smith form of a skew-symmetric matrix
polynomial.

Lemma 4.1. Suppose P (λ) is an n × n skew-symmetric matrix polynomial (regular or
singular) over an arbitrary field F with Smith form

D(λ) = diag
(
d1(λ) , d2(λ) , . . . , dn(λ)

)
,

where n ≥ 2. Then d1(λ) = d2(λ).

Proof. By Theorem 2.2 we know that d1(λ) is the GCD of all the entries of P (λ). Now if
d1(λ) = 0, then D(λ) = 0, and we are done. So let us assume that d1(λ) 6≡ 0. Letting g(λ)
be the GCD of all the 2× 2 minors of P (λ), then we know from Theorem 2.2 that

d1(λ)d2(λ) = g(λ) . (4.1)

We aim to show that g(λ) = d 2
1 (λ); from (4.1) it will then follow that d1(λ) = d2(λ), as

desired. Our strategy is to show that d 2
1 (λ) | g(λ) and g(λ) | d 2

1 (λ), from which the equality
g(λ) = d 2

1 (λ) then follows because both are monic.
Combining d1(λ) | d2(λ) from the Smith form together with (4.1), we see immediately

that d 2
1 (λ) | g(λ). To see why g(λ) | d 2

1 (λ), first observe that the GCD of any set S must
always divide the GCD of any subset of S; this follows directly from the definition of GCD.
Thus if we can find some subset of all the 2× 2 minors of P (λ) whose GCD is d 2

1 (λ), then
g(λ) | d 2

1 (λ) and we are done. We claim that the subset P of all principal 2 × 2 minors
of P (λ) is one such subset. To see this let U denote the set

{
Pij(λ)

}
i<j

of all polynomial
entries in the strictly upper triangular part of P (λ). Then clearly gcd(U) = d1(λ). But it is
easy to see that the subset P consists of exactly the squares of all the elements of U , i.e.,

P =
{(
Pij(λ)

)2}
i<j

.

Then by Lemma 2.3 we have gcd(P) = d 2
1 (λ), and the proof is complete.

All the necessary tools are now available to prove our main result, the characterization
of all possible Smith forms for skew-symmetric matrix polynomials over an arbitrary field.

Theorem 4.2 (Skew-Smith form). Suppose that

D(λ) = diag
(
d1(λ), d2(λ), . . . , d`(λ), 0, . . . , 0

)
(4.2)

is an n× n diagonal matrix polynomial over an arbitrary field F, such that dj(λ) is monic
for j = 1, . . . , `, and dj(λ) | dj+1(λ) for j = 1, . . . , ` − 1. Then D(λ) is the Smith form
of some n × n skew-symmetric matrix polynomial P (λ) over F if and only if the following
conditions hold:
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(a) ` = 2m is even;

(b) d2i−1(λ) = d2i(λ) for i = 1, . . . ,m (pairing of adjacent invariant polynomials).

Proof. (⇒): First observe that if d1(λ) = 0, then D(λ) = 0, and conditions (a) and (b)
hold trivially with ` = 0. So from now on let us assume that d1(λ) 6= 0.

Next we show that whenever dj 6= 0 for some odd index j = 2i − 1, then n > j, and
d2i(λ) = d2i−1(λ). To see that d2i−1(λ) 6= 0 implies n > 2i− 1, let us suppose instead that
n = 2i− 1. Then we would have

detP (λ) = cdetD(λ) = d1(λ)d2(λ) · · · d2i−1(λ) 6≡ 0 .

But this would contradict the fact that detP (λ), being the determinant of an n × n skew-
symmetric matrix over the commutative ring R = F[λ ] with n odd, must be identically zero
by Lemma 3.3. Thus n > 2i− 1.

With n > 2i− 1, we can now apply Theorem 2.9 to the compound matrix C2i−1
(
P (λ)

)
to conclude that the first two invariant polynomials of C2i−1

(
P (λ)

)
are

s1(λ) =

2i−2∏
j=1

dj(λ)

· d2i−1(λ) and s2(λ) =

2i−2∏
j=1

dj(λ)

· d2i(λ) .
But C2i−1

(
P (λ)

)
is skew-symmetric by Lemma 3.6, so s1(λ) = s2(λ) by Lemma 4.1, and

hence d2i(λ) = d2i−1(λ) 6≡ 0.
Finally, the fact that d2i−1(λ) 6= 0 implies d2i(λ) 6= 0 forces ` to be even, and the proof

of the (⇒) direction is complete.
(⇐): Suppose D(λ) satisfies conditions (a) and (b). Then there is a simple way to

construct a skew-symmetric P (λ) with Smith form D(λ). First observe that for any scalar
polynomial f(λ), the 2× 2 skew-symmetric polynomial[

0 f(λ)
−f(λ) 0

]
=: antidiag

(
−f(λ), f(λ)

)
is unimodularly equivalent to diag

(
f(λ), f(λ)

)
. Thus if we replace each pair of consecu-

tive invariant polynomials d2j−1(λ) = d2j(λ) in D(λ) by the 2 × 2 skew-symmetric block
antidiag

(
−d2j(λ), d2j(λ)

)
, then we will have a block-diagonal P (λ) that is skew-symmetric

with Smith form D(λ).

From Theorem 4.2 and the construction of the special skew-symmetric matrix polynomial
in the proof of the sufficiency of the conditions (a) and (b) in Theorem 4.2, we immediately
obtain the following corollary, giving a structured “Smith-like” canonical form for skew-
symmetric matrix polynomials under unimodular equivalence.

Corollary 4.3 (Skew-symmetric canonical form).
Let P (λ) be a skew-symmetric n×n matrix polynomial over an arbitrary field F. Then there
exists r ∈ N with 2r ≤ n and unimodular matrix polynomials E(λ), F (λ) over F such that

E(λ)P (λ)F (λ) =

[
0 d1(λ)

−d1(λ) 0

]
⊕ · · · ⊕

[
0 dr(λ)

−dr(λ) 0

]
⊕ 0n−2r =: K(λ), (4.3)

where dj is monic for j = 1, . . . , r and dj | dj+1 for j = 1, . . . , r − 1. Furthermore, the
polynomials dj(λ) for j = 1, . . . , r are uniquely determined by these conditions.
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5 Canonical Form under Unimodular Congruence

In Corollary 4.3, both the original polynomial P (λ) and the canonical form K(λ) are skew-
symmetric, so it is natural to wonder whetherK(λ) can be obtained from P (λ) via structure-
preserving transformations. Here the appropriate structure-preserving transformations are
unimodular congruences, introduced next.

Definition 5.1. Let P (λ), Q(λ) be two n× n matrix polynomials. Then we say that P and
Q are unimodularly congruent if there exists a unimodular matrix polynomial F (λ) such
that

F (λ)TP (λ)F (λ) = Q(λ).

The transformation P 7→ F TPF is called a unimodular congruence transformation.

Remark 5.2. Taking F (λ) to be an elementary unimodular (column) transformation (see
[19]), i.e., either the interchange of columns ` and k, the addition of the f(λ)-multiple of the
kth column to the `th column, or multiplication of the kth column by a nonzero constant
a ∈ F, the corresponding unimodular congruence transformation P (λ) 7→ F (λ)TP (λ)F (λ)
simultaneously performs this action on both the columns and the corresponding rows. Such
elementary unimodular congruences will be used extensively in the proof of Theorem 5.4.

That unimodular congruences are indeed structure-preserving in this context is a conse-
quence of the following special case of Lemma 3.4.

Corollary 5.3. Suppose P (λ) and Q(λ) are two n×n matrix polynomials that are unimod-
ularly congruent. If P (λ) is skew-symmetric, then so is Q(λ).

The next result shows that the canonical form (4.3) can still be attained when the uni-
modular equivalence transformations used in Corollary 4.3 are restricted to unimodular con-
gruence transformations. In particular, this provides an alternative proof for Theorem 4.2.
But this result has further ramifications, to be briefly discussed immediately after the proof.

Theorem 5.4 (Skew-symmetric canonical form under unimodular congruence).
Let P (λ) be a skew-symmetric n×n matrix polynomial over an arbitrary field F. Then there
exists r ∈ N with 2r ≤ n and a unimodular matrix polynomial F (λ) over F such that

F (λ)TP (λ)F (λ) =

[
0 d1(λ)

−d1(λ) 0

]
⊕ · · · ⊕

[
0 dr(λ)

−dr(λ) 0

]
⊕ 0n−2r =: K(λ) ,

where dj is monic for j = 1, . . . , r, and dj | dj+1 for j = 1, . . . , r−1. Moreover, the canonical
form K(λ) is unique.

Proof. The argument given here adapts the usual algorithmic proof (see, e.g., [19]) of the
existence of a Smith form for general matrix polynomials, restricting the transformations
used to unimodular congruences only, so that skew-symmetry is preserved (by Corollary 5.3)
throughout the reduction. The strategy is first to show that any n×n skew-symmetric P (λ)
with n ≥ 3 can be transformed by unimodular congruence into the block-diagonal form

B(λ) =

 0 d(λ)
−d(λ) 0

Q(λ)

 , (5.1)

where Q(λ) is (n− 2)× (n− 2) skew-symmetric, and such that B(λ) satisfies
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“Property D”: d(λ) is monic, and d(λ) divides all the entries of Q(λ).

A simple induction on n then completes the argument.
We begin by defining several basic operations achievable by combinations of elementary

unimodular congruences; these operations will be used repeatedly in the reduction of P (λ)
to the form (5.1). For several of these operations we will need to refer to the set

R2(P ) :=
{
pij(λ) | i = 1, 2 and i < j

}
of all entries in the first two rows of the upper triangular part of P (λ).

• “Interchange of the (1, 2) and (i, j) entries”:
Any entry pij(λ) with i < j can be interchanged with p12(λ) via the congruence
that interchanges rows 1 and i simultaneously with columns 1 and i, followed by a
simultaneous interchange of columns (and rows) 2 and j.

• “Degree-reduction of the (1, 2)-entry”:
Input: any skew-symmetric P such that p12 6= 0 and p12 - R2(P ).
Output: a unimodular congruence transforming P into a skew-symmetric P̃ such

that p̃12 6= 0 and deg p̃12 < deg p12.
Since p12 - R2(P ), we can choose some nonzero pij with i = 1 or i = 2 and 3 ≤ j ≤ n
such that p12 does not divide pij . If i = 2 then the congruence that interchanges
the first two rows (and columns) will move pij into the first row, and replace p12
by the essentially equivalent −p12. Thus without loss of generality we may assume
that pij is in the first row, so from now on i = 1. There are two cases to consider,
depending on the degrees of p12 and p1j . If deg p12 ≤ deg p1j , then we may write
p1j(λ) = q(λ)p12(λ) + r1j(λ), where the remainder r1j(λ) is nonzero and deg r1j <
deg p12. Now do the elementary unimodular congruence that adds the −q(λ)-multiple
of column 2 to column j (and similarly for rows). This leaves r1j in the (1, j)-position,
so an interchange of the (1, 2) and (1, j) entries (as described in the previous bullet)
completes the degree reduction operation. If deg p12 > deg p1j , then simply doing an
interchange of the (1, 2) and (1, j) entries completes the degree reduction operation.

• “Sweep of the first two rows (and columns)”:
Input: any skew-symmetric P such that p12 6= 0 and p12 | R2(P ).
Output: a unimodular congruence transforming P into a skew-symmetric P̃ in the

block-diagonal form (5.1), with p̃12 = p12 6= 0.
(Note that this P̃ may not necessarily satisfy property D.)

Since p12 | R2(P ), we can write pij(λ) = p12(λ)qij(λ) for each i = 1, 2 and 3 ≤ j ≤ n.
Then the elementary unimodular congruences that add the −q1j multiple of column
2 to the jth column for j = 3, . . . , n (and similarly for rows) will zero out the (1, 3)
through (1, n) entries, while leaving the (2, 3) through (2, n) entries unchanged. To
zero out the (2, 3) through (2, n) entries, do the elementary unimodular congruences
that add the +q2j multiple of column 1 to the jth column (and similarly for rows) for
j = 3, . . . , n. The composition of all these congruences constitutes a sweep of the first
two rows (and columns).

With these operations in hand, we can now describe the key part of the reduction of
P to canonical form K, i.e., the reduction of P to (5.1) satisfying property D. Using an
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appropriate interchange, we initialize the reduction process by ensuring that the (1, 2)-entry
is nonzero, then proceed as follows.

Step 1 (achieving block-diagonal form (5.1)): Check whether p12 divides R2(P ) or not.
As long as p12 does not divide all the entries of R2(P ), continue doing degree reductions
of the (1, 2)-entry. In the extreme case the (1, 2)-entry reduces all the way to a nonzero
constant (with degree zero); in this case we would clearly have a (1, 2)-entry that divides
every entry of the first two rows. Thus in general we can be sure that after finitely many
such degree reductions, one eventually obtains a skew-symmetric P̃ such that p̃12 | R2(P̃ ).
Once this divisibility property is attained, then doing a sweep to P̃ yields the block-diagonal
form (5.1).

Step 2 (block-diagonal form (5.1) with property D ): With a skew-symmetric P̂ in
block-diagonal form (5.1), check whether p̂12 divides all the entries of the block Q or not. If
so, then Step 2 is completed by a congruence that simultaneously scales the first row and
column to make p̂12 monic. If not, then pick any nonzero entry qij(λ) of Q such that p̂12
does not divide qij , and do the congruence that simultaneously adds the ith row of Q (i.e.,
the i+2nd row of P̂ ) to the first row of P̂ , and the ith column of Q (the i+2nd column of P̂ )
to the first column of P̂ . Then return to Step 1 with this no-longer-in-block-diagonal-form
skew-symmetric polynomial.

Observe that every return from Step 2 to Step 1 results in at least one further degree
reduction. Thus after finitely many times through this loop we will achieve block-diagonal
form (5.1) that satisfies property D. (At worst, the (1, 2)-entry in (5.1) reduces all the way
to a nonzero constant, which after scaling clearly results in property D holding.)

The complete reduction of P (λ) to canonical form K(λ) can now be formulated as an
induction on n. Clearly if n = 1 or n = 2, then the assertion of the theorem is trivially
true. So suppose that n ≥ 3. By the previous paragraph there is a unimodular congruence
that transforms P (λ) into the block-diagonal B(λ) as in (5.1), satisfying property D. The
divisibility property D now implies that B(λ) can be factored as

B(λ) = d(λ)

 0 1
−1 0

Q̃(λ)

 ,
where Q̃(λ) is an (n− 2)× (n− 2) skew-symmetric polynomial such that Q(λ) = d(λ)Q̃(λ).
By the induction hypothesis Q̃(λ) is unimodularly congruent to a skew-symmetric canonical
form K̃(λ), and thus P (λ) is unimodularly congruent to the canonical form

K(λ) =

 0 d(λ)
−d(λ) 0

d(λ)K̃(λ)

 .
This completes the proof of the existence part of the theorem.

For the uniqueness part of the theorem, observe that the Smith form ofK, and hence also
the Smith form of P , is just diag

(
d1(λ), d1(λ), d2(λ), d2(λ), . . . , dr(λ), dr(λ), 0n−2r

)
. Thus

the uniqueness of K(λ) follows from the uniqueness of the Smith form of P (λ).

Remark 5.5. It is important to note that the result of Theorem 5.4 is far from being
just a trivial addendum to Corollary 4.3. By contrast to the situation for skew-symmetric
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matrix polynomials, there are many classification problems where restricting the class of
equivalence transformations leads to the introduction of additional invariants.

For example, consider the problem of classifying symmetric pencils over the field R. It
is easy to see that the pencils

L1(λ) = λ

[
1 0
0 1

]
+

[
1 0
0 1

]
and L2(λ) = λ

[
1 0
0 −1

]
+

[
1 0
0 −1

]
are strictly equivalent, since there exist nonsingular matrices P,Q ∈ R2×2, e.g., P = I2 and
Q = diag(1,−1), such that PL1(λ)Q = L2(λ). But L1(λ) and L2(λ) are not congruent, i.e.,
there is no single nonsingular matrix P ∈ R2×2 such that PL1(λ)P

T = L2(λ); this follows
immediately from Sylvester’s Law of Inertia.

Thus an important consequence of Theorem 5.4 is that, for skew-symmetric matrix poly-
nomials, there are no additional invariants introduced when the set of unimodular equiva-
lence transformations is restricted to the set of unimodular congruence transformations.

Remark 5.6. It is worth highlighting a property of skew-symmetric matrix polynomials that
was crucial for the success of our reduction of such polynomials to Smith-like form under
unimodular congruence in Theorem 5.4; they have all zeroes on the diagonal. Attempting to
reduce matrix polynomials with other symmetry structures (like symmetric, T -alternating,
Hermitian, or ∗-alternating matrix polynomials) in an analogous fashion fails due to the
possible presence of nonzero entries on the diagonal of the matrix polynomial. It is an open
problem to derive Smith-like forms under unimodular congruence for matrix polynomials
with other types of symmetry structures.

6 Applications of the Skew-Smith Form

The Skew-Smith form theorem has a number of important applications that we explore in
this section. In particular, we are easily able to extend some well-known properties of the
elementary divisors of skew-symmetric pencils [50] to general skew-symmetric polynomials.
We also investigate the impact of the Skew-Smith form theorem on the question of the
existence of structured linearizations for skew-symmetric matrix polynomials. Using the
Smith form of structured classes of polynomials as a means to probe for any obstructions
to the existence of structured linearizations has been a continuing theme starting with
the papers [37, 38], and has been one of our main motivations for studying the Smith
form in the first place. In addition, we consider the properties of matrices expressible as
the product of two skew-symmetric matrices, the Smith-McMillan form of skew-symmetric
rational matrices R(λ), and the existence of minimal symmetric factorizations of such R(λ).

We begin, though, with a well-known result that is a special case of the Skew-Smith
theorem. Applying Theorem 4.2 to a matrix polynomial of degree zero, i.e., to a constant
matrix, immediately yields the following result:

Corollary 6.1. Let A ∈ Fn×n be a skew-symmetric matrix over an arbitrary field F. Then
the rank of A is even.

Thus Theorem 4.2 gives a new and independent (albeit somewhat roundabout) proof of this
well-known fact.
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6.1 Elementary divisors of skew-symmetric matrix polynomials

A fundamental property of the elementary divisors of an arbitrary skew-symmetric matrix
polynomial P (λ) can be immediately deduced from the Skew-Smith form— every elementary
divisor of P (λ) has even multiplicity. Since revP is also skew-symmetric, this holds for every
infinite elementary divisor of P (λ) as well. Thus we obtain the following result.

Theorem 6.2. Let P (λ) be an n×n skew-symmetric matrix polynomial, regular or singular,
over an arbitrary field F. Then every (finite or infinite) elementary divisor of P (λ) occurs
with even multiplicity.

When F is not an algebraically closed field, then the elementary divisors of P (λ) will not
necessarily all be powers of linear factors. Note, however, that the uniqueness property of
Smith forms implies that the Smith form of P (λ) is unchanged by viewing P (λ) as a matrix
polynomial over any field extension F̃ ⊇ F, including the algebraic closure F. Thus the
invariant polynomials of P (λ) are insensitive to change of field, and pairing of elementary
divisors will still be present, regardless of whether P is viewed as a matrix polynomial over
F or as a matrix polynomial over any extension field F̃.

Note that in the classic paper [50] it is shown that all (finite and infinite) elementary
divisors of any skew-symmetric matrix pencil over an algebraically closed field (of character-
istic different from two) occur with even multiplicity. Theorem 6.2 generalizes and extends
this result to skew-symmetric matrix polynomials of arbitrary degree k, over an arbitrary
field.

Remark 6.3. For n× n skew-symmetric matrices A with entries in a commutative ring R,
Lemma 3.3 shows that detA is always zero when n is odd. When n is even, then it is well
known that detA is always a perfect square in R, i.e., detA = p2 for some p ∈ R; this fact is
usually proved using the notion of the Pfaffian (see [26] or [33]). The results in Theorems 4.2
and 6.2 can be viewed as a kind of generalization and simultaneous refinement of both the
perfect square result and the zero determinant result, at least for the case of skew-symmetric
matrices A = P (λ) with entries in the specific ring R = F[λ ]. Observe, in particular, that
even when P (λ) is singular, with detP (λ) = 0 and r = rankP (λ) < n, there is still a kind
of hidden “perfect squareness” about P (λ); for any even ` with 0 < ` ≤ r, the GCD of all
`× ` minors of P (λ) will be a nonzero perfect square in R = F[λ ].

6.2 Products of two skew-symmetric matrices

Skew-Hamiltonian matrices are a much-studied class [7, 13, 15, 23, 43, 44, 51, 52] of even-
sized structured matrices, closely related to Hamiltonian and symplectic matrices. Among
the various ways to characterize these matrices, the one most relevant to this paper is the
following: a 2m × 2m matrix W is skew-Hamiltonian if and only if W = JK, where J is
the particular 2m× 2m skew-symmetric matrix

J =

[
0 Im
−Im 0

]
that defines the standard symplectic bilinear form, and K is an arbitrary 2m × 2m skew-
symmetric matrix. Up to this point we have been primarily concerned with investigating the
spectral properties of skew-symmetric matrix polynomials of all sizes, the natural extension
of skew-Hamiltonian matrices to the matrix polynomial world.
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In this section we consider instead a generalization of skew-Hamiltonian structure in
a somewhat different direction, this time within the world of matrices. In particular, we
consider the class of all matrices expressible as the product of an arbitrary pair of n × n
skew-symmetric matrices, where n is even or odd. It is known that all nonzero eigenvalues
of any such “product-of-two-skew-symmetric-matrices” have even multiplicity [14]. We easily
recover this property as a corollary of the Skew-Smith form.

Corollary 6.4. Let A := BC, where B,C ∈ Fn×n are any two skew-symmetric matrices
over an arbitrary field F. Then every nonzero eigenvalue of A (in any extension field of F )
has even multiplicity, while the multiplicity of the eigenvalue 0 has the same parity as n. In
particular, if r = min

{
rankB, rankC

}
, then there exists a scalar polynomial p(λ) ∈ F[λ ] of

degree r/2 such that the characteristic polynomial of A is λn−r[ p(λ) ]2.

Proof. Since the characteristic polynomials of BC and CB are identical [21], we may assume
without loss of generality that the first term in the product BC has the minimal rank r. Note
that r = rankB is even, by Corollary 6.1. Letting Q ∈ Fn×n be any nonsingular matrix such
that Q−1B is in row echelon form, then from Lemma 3.4 it follows that B̃ := Q−1BQ−T is
skew-symmetric and block-diagonal of the form B̃ = diag(B̂, 0n−r), where B̂ is a nonsingular
r × r skew-symmetric matrix. Now A is similar to

Ã := Q−1AQ = (Q−1BQ−T ) (QTCQ) =: B̃C̃ ,

where C̃ is also skew-symmetric. Partitioning C̃ conformally with B̃ = diag(B̂, 0n−r) as

C̃ =

[
Ĉ D̂

Ê F̂

]
,

where Ĉ is r × r and skew-symmetric, we see that

Ã =

[
B̂Ĉ B̂D̂
0 0

]
. (6.1)

Thus the characteristic polynomial of Ã has the form λn−rq(λ), where q(λ) is the character-
istic polynomial of B̂Ĉ. Characteristic polynomials are always monic, so the characteristic
polynomial of the product B̂Ĉ must be exactly the same as the determinant of the Smith
form of the regular pencil λB̂−1− Ĉ, which is a skew-symmetric pencil by Lemma 3.5. The
desired result now follows immediately from Theorem 4.2.

Remark 6.5. This result for characteristic polynomials, proved in Corollary 6.4 for matrices
A = BC over an arbitrary field, also holds when B and C are skew-symmetric matrices with
entries from an arbitrary commutative ring. This was shown in [14].

The elementary divisor structure of skew-Hamiltonian matrices is also well known (every
elementary divisor has even multiplicity), and has been proved in various ways [15, 23]. The
next result shows the extent to which this even multiplicity property is retained by general
“product-of-two-skew-symmetrics” matrices.

Corollary 6.6. Let A := BC, where B,C ∈ Fn×n are any two skew-symmetric matrices
over an arbitrary field F. Then every elementary divisor of A has even multiplicity, with
the possible exception of elementary divisors associated with the eigenvalue 0. When either
B or C is nonsingular, then all elementary divisors of A have even multiplicity.
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We will see that Corollary 6.6 is rather easy to prove when either B or C is nonsingular.
Indeed, this case has been previously treated by a completely different approach in [23].
However, some extra work is needed to handle the case when both B and C are singular, in
the form of two preliminary lemmas (both of independent interest). Recall that unimodular
equivalence of matrix polynomials P and Q is denoted by P ∼ Q.

Lemma 6.7 (Exchange Lemma).
Suppose f, g, h ∈ F[λ] are scalar polynomials over an arbitrary field F such that f is relatively
prime to both g and h. Then

(a)
[
fg 0
0 h

]
∼
[
g 0
0 fh

]
,

(b) For any k, ` ∈ N, we have
[
fkg 0
0 f `h

]
∼
[
f `g 0
0 fkh

]
.

Proof. (a) Since f is relatively prime to g and h, there exist scalar polynomials a, b, c, d ∈
F[λ] such that af + bg ≡ 1 and cf + dh ≡ 1. Now from these scalar polynomials define
unimodular E(λ) and F (λ) as products of elementary unimodulars:

E(λ) :=

[
1 −a
0 1

] [
0 1
−1 0

] [
1 −f
0 1

] [
1 0
c 1

]
=

[
a− afc+ c 1− af
fc− 1 f

]
,

F (λ) :=

[
1 0
dg 1

] [
1 −bh
0 1

]
=

[
1 −bh
dg 1− bhdg

]
.

Using the relations af + bg ≡ 1 and cf + dh ≡ 1, one can simplify E(λ) to
[
adh+ c bg
−dh f

]
,

and then verify that

E(λ)

[
fg 0
0 h

]
F (λ) =

[
g 0
0 fh

]
,

thus proving (a).
(b) Begin by observing that f being relatively prime to g and h implies that fm is also
relatively prime to g and h, for any m ∈ N. Now for exponent pairs k, ` ∈ N, there are three
cases to consider. If k = `, then (b) holds trivially. If k > ` ≥ 0, then using part (a) we see
that [

fkg 0
0 f `h

]
= f `

[
fk−`g 0

0 h

]
∼ f `

[
g 0
0 fk−`h

]
=

[
f `g 0
0 fkh

]
. (6.2)

The same kind of argument as in (6.2) proves (b) for the case 0 ≤ k < `, by factoring out
fk rather than f `.

Lemma 6.8 (Cancellation Lemma).
Let A(λ) and B(λ) be regular matrix polynomials over a field F, with sizes m×m and n×n,
respectively. Suppose that the finite spectra of A(λ) and B(λ) are disjoint, i.e., suppose that
A(λ) and B(λ) have no common finite eigenvalues in the algebraic closure F. Then

P (λ) :=

[
A(λ) C(λ)
0 B(λ)

]
∼
[
A(λ) 0
0 B(λ)

]
, (6.3)
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for any matrix polynomial C(λ) over F of size m×n. Furthermore the equivalence in (6.3)
may always be achieved by unimodular transformations over F. Thus the elementary divisors
of P (λ) are just the union of the elementary divisors of A(λ) and B(λ).

Proof. Begin by reducing the diagonal blocks A(λ) and B(λ) of P (λ) to their respective
Smith forms SA(λ) and SB(λ) via a block-diagonal unimodular transformation of P (λ), so
we have

P (λ) ∼
[
SA(λ) C̃(λ)

0 SB(λ)

]
=: P̃ (λ) .

Now observe that A(λ) and B(λ) having disjoint finite spectrum implies that each diagonal
entry of SA is relatively prime to every diagonal entry of SB. This relative primeness can
now be used to eliminate all entries of C̃(λ) by a kind of unimodular Gaussian elimination.
For example, to eliminate the ij-entry c̃ij(λ) of C̃(λ), consider the principal submatrix[

ãii(λ) c̃ij(λ)

0 b̃jj(λ)

]
of P̃ (λ) in rows (and columns) i and m + j. Here ãii(λ) denotes the (i, i)-entry of SA(λ),
and b̃jj(λ) the (j, j)-entry of SB(λ). Since ãii(λ) and b̃jj(λ) are relatively prime, there exist
polynomials q(λ) and r(λ) in F[λ] such that ãiiq + b̃jjr ≡ 1, and hence such that

ãii q c̃ij + b̃jj r c̃ij ≡ c̃ij .

Thus we have the following unimodular elimination of c̃ij :[
1 −r(λ)c̃ij(λ)
0 1

] [
ãii(λ) c̃ij(λ)

0 b̃jj(λ)

] [
1 −q(λ)c̃ij(λ)
0 1

]
=

[
ãii(λ) 0

0 b̃jj(λ)

]
.

Repeating this for each entry of C̃(λ) yields a unimodular equivalence of the form[
Im Ỹ (λ)
0 In

] [
SA(λ) C̃(λ)

0 SB(λ)

] [
Im X̃(λ)
0 In

]
=

[
SA(λ) 0

0 SB(λ)

]
,

showing that P (λ) ∼ diag
(
SA(λ), SB(λ)

)
. Finally, a block-diagonal unimodular trans-

formation can be used to “un-Smith” the blocks SA(λ) and SB(λ), thus getting us to
diag

(
A(λ), B(λ)

)
, and completing the proof.

Remark 6.9. Note that Lemma 6.8 generalizes a well-known matrix result — if square
matrices A and B have disjoint spectra, then[

A C
0 B

]
and

[
A 0
0 B

]
are similar for any C. Also note that the proof idea of Lemma 6.8 can be adapted to
show that, under the given hypotheses on A(λ) and B(λ), the matrix polynomial Sylvester
equation

A(λ)X(λ) + Y (λ)B(λ) + C(λ) = 0

always has a polynomial solution
(
X(λ), Y (λ)

)
, for any m× n matrix polynomial C(λ).
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With Lemmas 6.7 and 6.8 in hand, we now return to and complete the proof of Corol-
lary 6.6.

Proof. (of Corollary 6.6) Consider first the case when at least one of B or C is nonsingular.
Then the pencil λI − A is strictly equivalent to either λB−1 − C or λC−1 − B, so the
elementary divisors of the matrix A = BC are the same as those of a regular skew-symmetric
pencil, which by Theorem 6.2 all have even multiplicity.

So now let us assume that both B and C are singular. Letting r := rankB < n, then
by an argument like the one used in the proof of Corollary 6.4, we see that A is similar to
a matrix

Ã =

[
B̂Ĉ B̂D̂
0 0

]
as in (6.1), where B̂ and Ĉ are r × r skew-symmetric matrices and B̂ is nonsingular. From
this point we aim to manipulate the regular pencil L(λ) := λIn − Ã so as to reveal the
elementary divisors of Ã, and hence of A.

Letting S(λ) be the Smith form of λIr− B̂Ĉ, do unimodular transformations on the first
r rows and r columns of L(λ) to see that

L(λ) ∼
[
S(λ) M(λ)
0 λIn−r

]
.

Note that all elementary divisors in S(λ) have even multiplicity, since λIr − B̂Ĉ is strictly
equivalent to the regular skew-symmetric pencil λB̂−1− Ĉ. Now by repeated applications of
the Exchange Lemma 6.7 to S(λ), we can unimodularly transform S(λ) to an r× r diagonal
D(λ) of the form D(λ) = diag

(
D1(λ), D2(λ)

)
, where D2 contains all the elementary divisors

in S(λ) associated with the eigenvalue 0, while D1 contains every other elementary divisor
in S(λ), all with even multiplicity. (Note that there is “enough room” in the r × r D(λ)
to achieve this separation of the elementary divisors from S(λ), because S(λ) is the Smith
form of an r × r pencil, and so possesses at most r elementary divisors.) Thus we see that

L(λ) ∼

 D1(λ) 0 M̃1(λ)

0 D2(λ) M̃2(λ)
0 0 λIn−r

 =: L̃(λ) .

Now re-partition L̃(λ) into

L̃(λ) =

[
D1(λ) M̂(λ)

0 Z(λ)

]
,

where

M̂(λ) =
[
0 M̃1(λ)

]
and Z(λ) =

[
D2(λ) M̃2(λ)

0 λIn−r

]
,

and note that Z(λ) has only elementary divisors associated with the eigenvalue 0. Since
D1(λ) and Z(λ) are regular polynomials with disjoint finite spectra, we can now apply the
Cancellation Lemma 6.8 to conclude that L̃(λ) ∼ diag

(
D1(λ), Z(λ)

)
.

Therefore the elementary divisor list of L̃(λ) is just the concatenation of the elementary
divisors of D1(λ), none of which are associated with the eigenvalue 0 and all having even
multiplicity, together with the elementary divisors of Z(λ), which are all associated with the
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eigenvalue 0, but have indeterminate multiplicities because of the presence of the off-diagonal
block M̃2(λ) in Z(λ). Since L̃(λ) is unimodularly equivalent to L(λ) := λIn − Ã, and Ã is
similar to A, the desired conclusion about the elementary divisors of A is proved.

Corollary 6.6 allows for the possibility that elementary divisors of A = BC associated
with the eigenvalue 0 may not necessarily have even multiplicity, at least when both B and
C are singular. The next example shows that this possible loss of even multiplicity can
indeed occur; in fact all these multiplicities can be odd, even when An×n has even size n.

Example 6.10. Consider the 8× 8 skew-symmetric matrices

B :=

 03 I3
−I3 03

02

 and C :=

 03 −ET −F T
E 03 −GT
F G H

 ,
where 0k is the k × k zero matrix, and the blocks E,F,G,H are defined as follows:

E =

 0 1 0
0 0 0
0 0 a

 with a 6= 0 , F =

[
0 0 b
0 0 c

]
and G =

[
0 1 d
0 0 e

]

with arbitrary b, c, d, e ∈ F , and H =

[
0 h
−h 0

]
is an arbitrary 2 × 2 skew-symmetric

matrix. Then the product

A := BC =

 E 0 −GT
0 ET F T

0 0 0


is easily seen to have eigenvalues λ = 0 with algebraic multiplicity 6, and λ = a with
algebraic multiplicity 2. A little further manipulation (mainly just permutation of Jordan
blocks) shows the elementary divisor list of A to be {λ − a, λ − a, λ, λ2, λ3}, illustrating
both the retention of the even multiplicity property for elementary divisors associated with
nonzero eigenvalues, as well as the complete loss of even multiplicity for elementary divisors
associated with the eigenvalue zero. (Note also that both B and C are indeed singular, as
is necessary for any example illustrating this loss of even multiplicity.)

6.3 Structured linearizations of skew-symmetric matrix polynomials

Let us begin by briefly recalling some of the background context of known results on the
existence of structured linearizations for two other classes of structured matrix polynomials,
alternating and palindromic. In [35] it was shown (constructively) that many regular matrix
polynomials that are alternating or palindromic have a strong linearization with the same
structure. However, it was also shown that there exist some alternating and some palindromic
polynomials for which a structured strong linearization is impossible. This motivated the
subsequent investigation of the possible Smith forms of alternating matrix polynomials (in
[37]) and of palindromic matrix polynomials (in [38]), with the goal of systematically probing
for any elementary divisor obstructions to the existence of structured linearizations. It was
found that the elementary divisors of alternating or palindromic polynomials satisfy certain
necessary conditions, but these conditions are somewhat different for even degree vs. odd
degree polynomials. This dichotomy between the behavior of even and odd degree led to
several conclusions about structured linearizations in [37, 38]:
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(a) Since all odd degree polynomials in a given structure class (including structured pen-
cils) have the same elementary divisor constraints, it was natural to conjecture that
every odd degree structured polynomial has a structured linearization. That this is in-
deed the case was demonstrated by the explicit construction of structured companion
forms for every odd degree.

(b) There is a mismatch between the allowed multiplicities of elementary divisors (associ-
ated with certain critical eigenvalues) for even degree structured matrix polynomials
vs. what is possible for pencils of the same structure type. This mismatch constitutes
a fundamental obstruction to the existence of structured linearizations for certain even
degree matrix polynomials, and thus precludes the existence of structured companion
forms in the even degree case. (See [37, 38] for the technical details of these elementary
divisor obstructions.)

Theorems 4.2 and 6.2 on the Smith form and elementary divisor structure of skew-
symmetric matrix polynomials now put us in a position to consider the analogous issues for
this class of structured matrix polynomials. These theorems reveal no apparent elementary
divisor obstruction to the existence of structured linearizations for any degree; all elementary
divisors occur with even multiplicity, no matter whether the degree of the skew-symmetric
polynomial is even or odd. Thus it would seem reasonable to conjecture that every skew-
symmetric matrix polynomial, of any degree, has a skew-symmetric (strong) linearization.

In the next two sections we will show that this conjecture is once again true for odd
degree, but false for even degree skew-symmetric polynomials. For this structure class, the
obstruction to the universal existence of structured linearizations in the even degree case
arises not from any incompatibility of elementary divisors between polynomial and pencil,
but rather from considerations related to the structure of minimal indices of singular matrix
polynomials, a topic which Theorems 4.2 and 6.2 simply do not address. For the purposes
of this paper, the result of Lemma 2.5 will suffice to point out some of the problems that
can prevent an even degree skew-symmetric polynomial that is singular from having a skew-
symmetric linearization. A more detailed treatment of some of the subtle issues involved
in linearizing singular matrix polynomials is discussed in [12]. However, if we put aside the
singular case and only consider even degree skew-symmetric polynomials that are regular, we
find that structured linearizations now always exist. Since the ideas and techniques involved
in addressing the odd and even degree cases are rather different, we consider these two cases
in separate sections.

6.3.1 The odd degree case

Structured linearizations for any odd degree skew-symmetric matrix polynomial can be found
in a manner analogous to that used in [37], [38], and [11] to handle odd degree alternating
or palindromic polynomials — by building structured companion forms. A companion form
for square matrix polynomials P (λ) of degree k is a uniform template for constructing a
matrix pencil CP (λ) directly from the matrix coefficients of P , such that CP (λ) is a strong
linearization for every square polynomial P of degree k, regular or singular, over an arbitrary
field. A structured companion form for structure classM is a companion form CP (λ) with
the additional property that CP ∈M whenever P ∈M. Alternating companion forms were
constructed for each odd degree in [37], while palindromic companion forms for each odd
degree were constructed in [38] and [11].
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We show now how to fashion skew-symmetric companion forms for any odd degree. To
this end, for a general n × n polynomial λkAk + · · · + λA1 + A0 with Ak 6= 0 and k odd,
consider the block-tridiagonal nk × nk pencil SP (λ) = [Sij(λ)]i,j=1,...,k with n × n blocks
Sij(λ) of the form

Sjj(λ) =

{
λAj +Aj−1 if j is odd,
0 if j is even,

Sj,j+1(λ) = Sj+1,j(λ) =

{
λIn if j is odd,
In if j is even,

and Sij(λ) = 0 for |i − j| > 1. These pencils, also considered in [37], are slightly modified
versions of certain companion pencils introduced in [3]. As an illustration, here is SP (λ) for
k = 5:

SP (λ) =


λA1 +A0 λI

λI 0 I
I λA3 +A2 λI

λI 0 I
I λA5 +A4

 .
Observe that SP (λ) is block-symmetric. If P (λ) is skew-symmetric, then it is immediate
that the pencil

KP (λ) := diag
(
In,−In, In,−In, . . . , (−1)k−1In

)
SP (λ)

is skew-symmetric as well. It was shown in [3] that SP (λ) is always a strong linearization
for P (λ) for any regular P of odd degree k over the field F = C. This result was extended
in [37] to include regular and singular (square) matrix polynomials over arbitrary fields.
Since KP (λ) is built from SP (λ) by multiplication with a nonsingular constant matrix, we
immediately obtain the following result.

Lemma 6.11. Let P (λ) be any n × n matrix polynomial of odd degree (not necessarily
regular ) over an arbitrary field F. Then KP (λ) is a structured companion form for the class
of skew-symmetric matrix polynomials; in particular, KP is always a strong linearization for
P , and KP is skew-symmetric whenever P is skew-symmetric.

6.3.2 The even degree case

In contrast to the odd degree case, there exist many skew-symmetric matrix polynomials
of even degree that do not even admit a linearization that is skew-symmetric, let alone a
strong linearization that is skew-symmetric. In the next example we show how to construct
such polynomials for any even degree.

Example 6.12. Let n be odd and k be even, and consider any n × n skew-symmetric
matrix polynomial P (λ) of degree k, over an arbitrary field F. Note that by Lemma 3.3
we have detP (λ) ≡ 0, so such a P (λ) is necessarily singular. Next assume that P (λ) has
a skew-symmetric linearization; i.e., suppose there exists a kn × kn skew-symmetric pencil
L(λ) over F and unimodular matrix polynomials E(λ) and F (λ) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0
0 I(k−1)n

]
. (6.4)
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Then clearly (6.4) implies that

rank(L) = (k − 1)n + rank(P ) . (6.5)

Note that (6.5) is equivalent to one of the necessary conditions listed in Lemma 2.5, namely
that dimNr(L) = dimNr(P ). Now if both P (λ) and L(λ) are skew-symmetric, then by
Corollary 6.1 both will have even rank. But this would contradict (6.5), since (k − 1)n is
odd. Thus P (λ) cannot have any skew-symmetric linearization. Indeed, these examples show
that skew-symmetric companion forms for matrix polynomials of any even degree cannot
exist.

On the other hand, if P (λ) is a skew-symmetric polynomial of even degree that is regular,
then there always exists a skew-symmetric strong linearization.

Theorem 6.13. Let P (λ) be a regular skew-symmetric n × n matrix polynomial of even
degree k = 2s, over an arbitrary field F. Then P (λ) has a skew-symmetric strong lineariza-
tion.

Proof. By Corollary 4.3, P (λ) is unimodularly equivalent to a matrix polynomial of the form[
0 d1(λ)

−d1(λ) 0

]
⊕ · · · ⊕

[
0 dr(λ)

−dr(λ) 0

]
, (6.6)

where dj is monic with gj = deg dj ≥ 0 for j = 1, . . . , r, and dj | dj+1 for j = 1, . . . , r − 1.
Note that n = 2r must be even, because P (λ) is regular.

Let m be the sum of the degrees of the finite elementary divisors of P (λ); then m = 2`
is even, because all elementary divisors occur with even multiplicity by Theorem 6.2, and
` = g1 + g2 + · · · + gr by (6.6). Similarly the sum of the degrees of the infinite elementary
divisors of P (λ) is even, say δ = 2β, and because of even multiplicity the list of infinite
elementary divisors can be partitioned into two identical copies of a list with (nonzero)
degrees α1, α2, . . . , αν . Then β = α1 + α2 + · · · + αν and ` = g1 + g2 + · · · + gr, and the
sum of the degrees of all the elementary divisors of P (λ) is m+ δ = 2`+2β = kn = 2sn by
Remark 2.6, so `+ β = ns.

Now define L(λ) to be the block-diagonal ns× ns pencil

L(λ) = diag
(
D1(λ), . . . , Dr(λ), N1(λ), . . . , Nν(λ)

)
,

where Di(λ) for i = 1, . . . , r is empty if gi = deg di = 0, but if gi ≥ 1 then Di(λ) is the
gi×gi companion linearization (2.4) for the monic 1×1 matrix polynomial di(λ). The blocks
Nj(λ) for j = 1, . . . , ν are the αj × αj unimodular matrices

Nj(λ) =


1 λ

1
. . .
. . . λ

1

 ,
each with exactly one elementary divisor, an infinite elementary divisor with degree αj .
Finally consider the nk × nk pencil

L̃(λ) :=

[
0 L(λ)

−LT (λ) 0

]
.
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Then clearly L̃(λ) is skew-symmetric, and the list of elementary divisors of L̃(λ) consists
of two identical copies of the list of elementary divisors of L(λ). Thus by the construction
of L(λ) we see that P (λ) and L̃(λ) have exactly the same (finite and infinite) elementary
divisors. Since P (λ) is regular by hypothesis and L̃(λ) is regular by Remark 2.6, both have
trivial nullspaces, so dimNr(P ) = 0 = dimNr(L). Therefore L̃(λ) is a strong linearization
for P (λ) by Lemma 2.5.

Although Theorem 6.13 shows that skew-symmetric strong linearizations always exist for
any regular skew-symmetric matrix polynomial P (λ) of even degree, it is unclear how such
linearizations can be constructed in general without first computing either the Smith form
of P (λ), or the skew-symmetric canonical form of P (λ) as in Corollary 4.3 or Theorem 5.4.
However, for skew-symmetric polynomials P (λ) over the field F = C or F = R, we can use
the pencils in the vector space DL(P ) (introduced in [36]) as a source of easy-to-construct
structured linearizations for regular P (λ) of even (or odd) degree k. It was shown in [20]
that for any square polynomial P , every pencil in DL(P ) is always block-symmetric. As a
consequence we see that when P (λ) is skew-symmetric, then every L(λ) ∈ DL(P ) is also
skew-symmetric. All that remains, then, is to find a regular pencil L(λ) in DL(P ), since
regularity of L was shown in [36] to be equivalent to L being a strong linearization for P .
This can always be achieved by choosing an L(λ) ∈ DL(P ) that has an associated ansatz
vector v ∈ Fk such that the roots of the corresponding v-polynomial are disjoint from the
spectrum of P . We refer the reader to [36] and [20] for further details.

6.4 Skew-symmetric rational matrices

Our results on matrix polynomials can readily be extended to rational matrices, where the
corresponding canonical form is usually referred to as the Smith-McMillan form [9, 24, 40,
41, 47]. Recall that a rational matrix over a field F is a matrix with entries from the field
of rational functions F(λ).

Theorem 6.14 (Smith-McMillan form [24]). Let R(λ) be a n × n rational matrix over an
arbitrary field F. Then there exists r ∈ N and unimodular matrix polynomials E(λ), F (λ)
over F such that

E(λ)R(λ)F (λ) = diag

(
ν1(λ)

µ1(λ)
, . . . ,

νr(λ)

µr(λ)

)
⊕ 0n−r, (6.7)

where νj , µj are monic and pairwise co-prime polynomials in F[λ] for j = 1, . . . , r, satisfying
the divisibility chain conditions νj | νj+1 and µj+1 |µj for j = 1, . . . , r − 1. Moreover, the
canonical form (6.7) is unique.

6.4.1 Smith-McMillan form for skew-symmetric rational matrices

As a direct consequence of the Skew-Smith form for skew-symmetric matrix polynomials in
Theorem 4.2, we immediately obtain the Smith-McMillan form for skew-symmetric rational
matrices, i.e., rational matrices R(λ) = [rij(λ)] satisfying R(λ) = −R(λ)T and rii(λ) ≡ 0
for i = 1, . . . , n. Here rii(λ) ≡ 0 means that each diagonal entry rii(λ) is the zero element
in the field F(λ), not just that rii(λ) is the identically zero function on F.

Corollary 6.15 (Smith-McMillan form for skew-symmetric rational matrices).
Let R(λ) = [rij(λ)] be a skew-symmetric n × n rational matrix over an arbitrary field F.
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Then there exists r ∈ N with 2r ≤ n and unimodular matrix polynomials E(λ), F (λ) over F
such that

E(λ)P (λ)F (λ) =

[
ν1(λ)
µ1(λ)

0

0 ν1(λ)
µ1(λ)

]
⊕ · · · ⊕

[
νr(λ)
µr(λ)

0

0 νr(λ)
µr(λ)

]
⊕ 0n−2r, (6.8)

where νj , µj are monic and pairwise co-prime polynomials in F[λ] for j = 1, . . . , r, satisfying
the divisibility chain conditions νj | νj+1 and µj+1 |µj for j = 1, . . . , r − 1. Moreover, the
polynomials νj(λ), µj(λ) for j = 1, . . . , r are uniquely determined by these conditions.

Proof. Let ψ(λ) be the least common multiple of all denominator polynomials in the entries
rij(λ), i, j = 1, . . . , n and form the skew-symmetric matrix polynomial P (λ) = ψ(λ)R(λ).
Then by Theorem 4.2 there exists r ∈ N with ` = 2r ≤ n and unimodular matrix polynomials
E(λ), F (λ) over the field F such that E(λ)P (λ)F (λ) is in the form (4.2), where dj is monic
for j = 1, . . . , `, dj | dj+1 for j = 1, . . . , ` − 1, and d2i−1(λ) = d2i(λ) for i = 1, . . . , r.
Cancelling common factors in the rational functions dj(λ)

ψ(λ)
yields rational functions νi(λ)

µi(λ)

having numerators and denominators with the desired properties. The uniqueness of the
polynomials νi(λ) and µi(λ) follows immediately from the uniqueness of the general Smith-
McMillan form (Theorem 6.14).

As a corollary of Theorem 5.4 we analogously obtain the corresponding Smith-McMillan-
like canonical form under unimodular congruence.

Corollary 6.16 (Skew-symmetric Smith-McMillan-like canonical form).
Let R(λ) be a skew-symmetric n × n rational matrix over an arbitrary field F. Then there
exists r ∈ N with 2r ≤ n and a unimodular matrix polynomial F (λ) over F such that

F T (λ)P (λ)F (λ) =

[
0 ν1(λ)

µ1(λ)

− ν1(λ)
µ1(λ)

0

]
⊕ · · · ⊕

[
0 νr(λ)

µr(λ)

− νr(λ)
µr(λ)

0

]
⊕ 0n−2r =: Σ(λ), (6.9)

where νj , µj are monic and pairwise co-prime polynomials in F[λ] for j = 1, . . . , r, satisfying
the divisibility chain conditions νj | νj+1 and µj+1 |µj for j = 1, . . . , r − 1. Moreover, the
skew-symmetric canonical form Σ(λ) is unique.

6.4.2 Minimal symmetric factorizations of skew-symmetric rational matrices

The Smith-McMillan form is an important tool in the construction of (minimal) factoriza-
tions of complex matrix-valued functions, see [6, 25, 47]. To introduce this concept, let us
first consider the notion of McMillan degree. Let R(λ) = [rij(λ)] be an n×n rational matrix
over C. We will assume that R(λ) is regular, i.e., detR(λ) does not vanish identically. Let
µ(λ) = µ1(λ) · · ·µn(λ), where µi(λ) are the denominator polynomials of the Smith-McMillan
form of R(λ) as in (6.7), and let λ0 ∈ C be a root of µ. Then λ0 is called a finite pole of
R(λ), and the multiplicity of λ0 as a root of µ is called the local pole multiplicity δ(R, λ0)
of λ0 as a pole of R(λ). We say that λ0 = ∞ is a pole of R(λ) if λ0 = 0 is a pole of R( 1λ),
and the local pole multiplicity δ(R,∞) of λ0 =∞ as a pole of R(λ) is by definition the local
pole multiplicity of λ0 = 0 of R( 1λ). Finally, the McMillan degree of R is defined as

δ(R) =
∑

λ0∈C∪{∞}

δ(R, λ0),
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where we define δ(R, λ0) := 0 whenever λ0 is not a pole of R. The McMillan degree has
an important meaning in the theory of realizations. It is well known [5, 6, 25, 47] that if
R(λ) = [rij(λ)] is proper, i.e., that for each rij the degree of the numerator does not exceed
the degree of the denominator, then R(λ) has realizations of the form

R(λ) = D + C(λIk −A)−1B .

If the dimension k is minimal among all such realizations of R(λ), then k is equal to the
McMillan degree δ(R) and the poles of R(λ) coincide with the eigenvalues of A.

Using this notion, a factorization

R(λ) = R1(λ)R2(λ) (6.10)

with n × n rational matrices R1(λ), R2(λ) is called minimal if δ(R) = δ(R1) + δ(R2), or,
equivalently, if

δ(R, λ) = δ(R1, λ) + δ(R2, λ), for all λ ∈ C ∪ {∞}.

Loosely speaking, this condition means that there is no cancellation of poles and zeros
between the factors R1(λ) and R2(λ). It was noted in [27] that the class of factorizations
that are minimal on all of C ∪ {∞} is not adequate for every application. Therefore, the
slightly weaker concept of minimality on a set σ ⊆ C∪ {∞} was considered in [27]. We say
that the factorization (6.10) is minimal at λ0 ∈ C ∪ {∞} if

δ(R, λ0) = δ(R1, λ0) + δ(R2, λ0) ,

and it is called minimal on the set σ ⊆ C∪{∞} if it is minimal at all λ0 ∈ σ. In the special
case σ = C, we will say that the factorization (6.10) is minimal everywhere except at ∞.

For the case of n× n skew-symmetric rational matrices, it is natural to consider factor-
izations of the form

R(λ) = R1(λ)R2(λ) = R2(λ)
TJR2(λ),

where J ∈ Cn×n is a constant skew-symmetric matrix. Such factorizations are called sym-
metric factorizations. In [46] minimal symmetric factorizations for real skew-symmetric
rational matrices were constructed in a rather technical process. If we drop the require-
ment that the factorization has to be minimal everywhere, then applying Corollary 6.16 we
immediately obtain the following factorization result.

Corollary 6.17 (Minimal symmetric factorization of skew-symmetric rational matrices).
Let R(λ) be an n × n regular skew-symmetric rational matrix over C. Then there exists a
symmetric factorization

R(λ) = R1(λ)R2(λ) = R2(λ)
TJR2(λ)

which is minimal everywhere except for ∞, where R2(λ) is an n × n rational matrix over
C and J is an invertible real constant n × n skew-symmetric matrix. If R(λ) is real, then
R2(λ) can also be chosen to be real.

Proof. Let F = R or F = C. Then Corollary 6.16 implies that there exists a unimodular
matrix polynomial F (λ) over F such that

R(λ) = F T (λ)Σ(λ)F (λ)
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with Σ(λ) as in (6.9) with n = 2r. Setting

R̃2(λ) =

[
0 ν1(λ)

µ1(λ)

−1 0

]
⊕ · · · ⊕

[
0 νr(λ)

µr(λ)

−1 0

]
,

J =

[
0 1
−1 0

]
⊕ · · · ⊕

[
0 1
−1 0

]
︸ ︷︷ ︸

r times

,

and R2(λ) = R̃2(λ)F (λ), we have a factorization of the desired form. Clearly, R2(λ) is real
if R(λ) is. The assertion on the minimality follows immediately from the fact that the local
pole multiplicities of finite poles are invariant under multiplication with unimodular matrix
polynomials, see [5, 25], so that δ(R2, λ0) = δ(R̃2, λ0) for any λ0 ∈ C.

7 Conclusions

The elementary divisor structure of skew-symmetric matrix polynomials over an arbitrary
field has been completely analyzed in this paper, via a characterization of all possible Smith
forms of such polynomials. The use of the properties of compound matrices as a key tool
in this investigation constitutes the third success (along with [37, 38]) of this approach
to analyzing structured matrix polynomials, and now firmly establishes this as a standard
technique for addressing such problems.

We have shown that a Smith-like canonical form that is itself skew-symmetric can be
achieved for any skew-symmetric matrix polynomial, even when the unimodular transfor-
mations used are restricted to the subclass of unimodular congruences. This implies that no
additional invariants are introduced into the classification of skew-symmetric matrix poly-
nomials by the restriction of unimodular equivalences to congruences.

Three significant applications of these results have also been presented: the character-
ization of the eigenvalue and elementary divisor structure of matrices expressible as the
product of two skew-symmetric matrices, the construction of symmetric factorizations of
skew-symmetric rational matrices that are minimal everywhere except for infinity, and the
investigation of the existence of structured linearizations for skew-symmetric matrix poly-
nomials. Previous results on structured linearizations for alternating [37] and palindromic
polynomials [38] exhibit a clear dichotomy between the behavior of the even and odd degree
cases, due to incompatibilities between the elementary divisor structures of even and odd
degree structured polynomials. Such elementary divisor incompatibilities do not occur for
skew-symmetric matrix polynomials; all elementary divisors have even multiplicity, regard-
less of the degree of the polynomial. However, our results on structured linearizations of
skew-symmetric polynomials still show a clear difference between the even and odd degree
cases. Every odd degree skew-symmetric polynomial has a structured strong linearization;
indeed, a skew-symmetric companion form that provides a single uniform template for con-
structing a structured strong linearization for every skew-symmetric matrix polynomial,
regular or singular, regardless of the underlying field, has been constructed for each odd
degree. By contrast, although every regular skew-symmetric polynomial is shown to have
a structured strong linearization, there are large classes of singular skew-symmetric matrix
polynomials of each even degree for which skew-symmetric linearizations are shown to be
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impossible. Thus we see that skew-symmetric companion forms for matrix polynomials of
any even degree cannot exist.
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