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Summary. Quasi-Monte Carlo algorithms are studied for designing discrete ap-
proximations of two-stage linear stochastic programs. Their integrands are piece-
wise linear, but neither smooth nor of bounded variation in the sense of Hardy
and Krause. We show that under some weak geometric condition on the two-stage
model all terms of their ANOVA decomposition, except the one of highest order, are
smooth and, hence, certain Quasi-Monte Carlo algorithms may achieve the optimal
rate of convergence O(n−1+δ) with δ ∈ (0, 1

2
) and a constant not depending on the

dimension if the integrands belong to weighted tensor product Sobolev spaces with
properly selected weights. The geometric condition is generically (i.e., almost every-
where) satisfied if the underlying distribution is normal. We also discuss sensitivity
indices and efficient dimensions of two-stage integrands, and suggest a dimension
reduction heuristic for such integrands.

1 Introduction

Two-stage stochastic programs arise as deterministic equivalents of improperly
posed random linear programs

min{〈c, x〉 : x ∈ X, Tx = h(ξ)}, (1)

where X is a convex polyhedral subset of R
m, T a matrix, ξ is a d-dimensional

random vector, h represents an affine function from R
d to R

r and 〈·, ·〉 denotes
the inner product in R

m. The modeling idea consists in the compensation of
a possible deviation h(ξ(ω)) − Tx for a given realization ξ(ω) of ξ, by intro-
ducing additional costs Φ(x, ξ(ω)) whose mean with respect to the probability
distribution P of ξ is added to the objective of (1). In two-stage stochastic
programming it is assumed that the additional costs represent the optimal
value of a second-stage program, i.e.,

Φ(x, ξ) = inf{〈q, y〉 : y ∈ R
m̄, Wy = h(ξ) − Tx, y ≥ 0}. (2)

The deterministic equivalent program then is of the form
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min
{

〈c, x〉 +

∫

Rd

Φ(x, ξ)P (dξ) : x ∈ X
}

. (3)

In practical applications of stochastic programming the dimension d is often
large, e.g., in economics, energy, finance or transportation (see [40] for a survey
of applied models). It is worth noting that the option pricing models that
served as motivating examples for the further development of Quasi-Monte
Carlo algorithms (e.g. in [42, 43, 46]) may be reformulated as linear two-stage
stochastic programs whose stochastic inputs are means of geometric Brownian
motions paths. So, in a sense, the models considered here may be regarded as
extensions of such financial models (see Example 1).
The standard approach to solving the optimization model (3) consists in ap-
proximating the underlying probability distribution by discrete distributions
based on a finite number n of samples or scenarios ξj ∈ R

d with probabilities
pj , j = 1, . . . , n. While the case of random samples is studied in detail at least
for independent and identically distributed (iid) samples (see e.g. Chapters
6 and 7 in [31], [29, Sect. 4]), where the convergence rate (in probability or

quadratic mean) is O(n− 1
2 ). Only a few papers related to stochastic program-

ming dealt with the situation of deterministic samples with identical weights
pj = 1

n
(see [3, 25, 10, 26] and [30] for an overview).

There exist two main approaches for the generation of discrete approximations
to P based on deterministic samples with identical weights. The first one
is called optimal quantization of probability distributions (see [4], [24]) and
determines such quantizations by (approximately) solving best approximation
problems for P in terms of the Lp-minimal (or Lp-Wasserstein) metric ℓp,
p ≥ 1 (see Section 2.5 in [28]). It is shown in [4] that, under certain conditions,
it holds

ℓp(P, Pn) = O(n− 1
d ) (4)

for the optimal quantization Pn of P having n samples. The dual represen-
tation of ℓ1 reveals that the dimension dependent convergence rate is due to
the fact that the identity

ℓ1(P, Pn) = sup
f∈Fd‖f‖L≤1

∣

∣

∣

∫

Rd

f(ξ)(P − Pn)(dξ)
∣

∣

∣

holds, where the supremum is taken with respect to the unit ball in the normed
space Fd = Lip (Rd) of Lipschitz functions with the Lipschitz norm ‖·‖L. This
unit ball is known to be too large for obtaining better rates.
The second approach utilizes Quasi-Monte Carlo algorithms that are of the
form

Qn,d(f) =
1

n

n
∑

j=1

f(ηj) (n ∈ N)

and relies on the concept of equidistributed point sets or low discrepancy
point sets {ηj}n

j=1 or sequences (ηj)j∈N in [0, 1)d (see [35, 19, 17, 18, 2]).
It turned out that certain reproducing kernel Hilbert spaces Fd of functions
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f : [0, 1]d → R are particularly useful for estimating the quadrature error (see
[8]). Let K : [0, 1]d × [0, 1]d → R be a kernel satisfying K(·, y) ∈ Fd for each
y ∈ [0, 1]d and 〈f,K(·, y)〉 = f(y) for each y ∈ [0, 1]d and f ∈ Fd. With 〈·, ·〉
and ‖ · ‖ denoting the inner product and norm in Fd, the quadrature error
en(Fd) allows the representation

en(Fd) = sup
f∈Fd ,‖f‖≤1

∣

∣

∣

∫

[0,1]d
f(x)dx − Qn,d(f)

∣

∣

∣
= sup

‖f‖≤1

|〈f, hn〉| = ‖hn‖ (5)

according to Riesz’ theorem for linear bounded functionals. The representer
hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫

[0,1]d
K(x, y)dy − 1

n

n
∑

i=1

K(x, ηi) (∀x ∈ [0, 1]d).

In particular, the weighted tensor product Sobolev space [33]

Fd = W(1,...,1)
2,mix ([0, 1]d) =

d
⊗

i=1

W 1
2 ([0, 1]) (6)

equipped with the weighted norm ‖f‖2
γ = 〈f, f〉γ with the inner product (see

Section 3 for the notation)

〈f, g〉γ =
∑

u⊆{1,...,d}

γ−1
u

∫

[0,1]|u|

∂|u|

∂xu
f(xu, 1−u)

∂|u|

∂xu
g(xu, 1−u)dxu (7)

and a weighted Walsh space consisting of Walsh series (see [2, Example 2.8]
and [1]) are reproducing kernel Hilbert spaces and became important for an-
alyzing the recently developed randomized lattice rules (see [34, 13, 14, 21]
and [1, 2]). They allow for deriving optimal error estimates of the form

en(Fd) ≤ C(δ)n−1+δ (n ∈ N, δ ∈ (0, 1
2 )), (8)

where the constant C(δ) does not depend on the dimension d, if the weights γu

are multiplicatively defined from a decreasing sequence of nonnegative weights
(γj) satisfying

∞
∑

j=1

γ
1

2(1−δ)

j < ∞ .

The rate (8) is also obtained for Niederreiter and Sobol’ sequences in [41]
if the integrands belong to weighted tensor product Sobolev spaces and the
weights γj , j ∈ N, satisfy specific conditions.
Unfortunately, typical integrands in linear two-stage stochastic programming
(see Section 2) do not belong to such tensor product Sobolev or Walsh spaces
and are even not of bounded variation in the sense of Hardy and Krause. The
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latter condition represents the standard requirement on the integrand f to
justify Quasi-Monte Carlo algorithms via the Koksma-Hlawka theorem [19,
Theorem 2.11].
Alternatively, it is suggested in the literature to study the so-called ANOVA
decomposition (see Section 3) of such integrands, the smoothness of the
ANOVA terms, the dimension distribution and sensitivity indices of the inte-
grands. As a first step in this direction we show in Section 4 that all ANOVA
terms except the one of highest order are smooth under some algebraic con-
dition on the second stage program and smoothness conditions on the density
of the underlying probability distribution. In addition, we show in Section 5
that the algebraic condition is generically satisfied if the underlying random
vector is Gaussian. Finally, we provide estimates of sensitivity indices and of
the mean dimension in Section 6. We also discuss known techniques for di-
mension reduction and suggest a dimension reduction heuristic for two-stage
models. In the conclusions we argue that our results indicate the efficiency of
randomly shifted and digitally shifted polynomial lattice rules for large scale
two-stage stochastic programs.

2 Integrands of linear two-stage stochastic programs

As described in the introduction, the integrands of two-stage linear stochastic
programs with random right-hand sides are

Φ(x, ξ) = φ(h(ξ) − Tx), (9)

where φ denotes the optimal value function assigning to each t ∈ R
r the

infimum φ(t) = inf{〈q, y〉 : Wy = t, y ≥ 0} in R̄ = R ∪ {−∞,+∞}. Due to
duality in linear programming it holds for t ∈ dom φ = {t ∈ R

r : |φ(t)| < ∞}

φ(t) = sup{〈t, z〉 : W⊤z ≤ q}, (10)

if the dual feasible set D = {z ∈ R
r : W⊤z ≤ q} is nonempty. Here, q ∈ R

m̄,
W is a (r, m̄)-matrix and t varies in the polyhedral cone domφ = W (Rm̄

+ ). If
D is nonempty, the dual feasible set D is of the form

D = conv{v1, . . . , vℓ} + (dom φ)∗,

where v1, . . . , vℓ are the vertices of D, conv means convex hull and (domφ)∗

is the polar cone to the cone dom φ = W (Rm̄
+ , i.e.,

(dom φ)∗ = {d ∈ R
r : 〈d, t〉 ≤ 0,∀t ∈ W (Rm̄

+ )} = {d ∈ R
r : W⊤d ≤ 0}.

Furthermore, there exist polyhedral cones Kj , j = 1, . . . , ℓ, decomposing
dom φ. The cone Kj is the normal cone to the vertex vj , i.e.,

Kj = {t ∈ dom φ : 〈t, z − vj〉 ≤ 0, ∀z ∈ D} (j = 1, . . . , ℓ) (11)

= {t ∈ dom φ : 〈t, vi − vj〉 ≤ 0, ∀i = 1, . . . , ℓ, i 6= j}. (12)
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Moreover, it holds

φ(t) = 〈vj , t〉 (∀t ∈ Kj) and φ(t) = max
j=1,...,ℓ

〈vj , t〉 (∀t ∈ dom φ).

and ∪j=1,...,ℓ Kj = domφ. The intersection Kj ∩ Kj′ for j 6= j′ coincides
with a common closed face of dimension less than d. It is a common closed
face of dimension d − 1 iff the two cones are adjacent. In the latter case, the
intersection is contained in

{t ∈ dom φ : 〈t, vj′ − vj〉 = 0}. (13)

If there exists k ∈ {1, . . . , d} such that the kth components of vj and vj′

coincide, the common closed face of Kj and Kj′ contains at least one of the
two one-dimensional cones

{(0, . . . , 0, tk, 0, . . . , 0) : tk ≥ 0} and {(0, . . . , 0, tk, 0, . . . , 0) : tk ≤ 0}.

The cones Kj may also be represented by

Kj =
{

∑

i∈Ij

λiw
i : λi ≥ 0, i ∈ Ij

}

,

where wi ∈ R
d are the columns of W and Ij = {i ∈ {1, . . . , m̄} : 〈wi, vj〉 = qi}.

Each vertex vj is determined by d linear independent equations out of the m̄

equations 〈wi, v〉 = qi, i = 1, . . . , m̄.
In the following we assume
(A1) h(Rd) ⊆ W (Rm̄

+ ) (relatively complete recourse).
(A2) The dual feasible set D is nonempty (dual feasibility).
(A3)

∫

Rd ‖ξ‖P (dξ) < ∞ (finite first moment).

(A4) P has a density of the form ρD(ξ) =
∏d

i=1 ρi(ξi) (ξ ∈ R
d), where ρi is

a continuous density on R, i = 1, . . . , d.
Conditions (A1), (A2),(A3) imply that the two-stage stochastic program (3)
is well defined and represents an optimization problem with finite convex
objective and polyhedral convex feasible set. For further information on linear
parametric programming and two-stage stochastic programming we refer to
[39, 20] and [31, 32, 47].
To give an example we show that option pricing models considered as stimu-
lating examples for the recent developments in QMC theory (see e.g. [43, 44])
may be reformulated as linear two-stage stochastic programs.

Example 1. Let the first stage variable x represent the strike price at the
expiration date Te. The dimensions are set to m = 1, m̄ = 2 and the matrix
W is set to W = (w,−w) with w = exp (rTe) and r denoting the risk-free
interest rate. The second stage program and its dual are

min{y1 : Wy = ξ − x, y ∈ R
2, y ≥ 0}= max{(ξ − x)z : z ∈ R,W⊤z ≤ (1, 0)⊤}

= max{(ξ − x)z : 0 ≤ wz ≤ 1}.
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Hence, v = 0 and v = 1
w

are the only vertices and the terminal payoff is
exp (−rTe) max{0, ξ − x}. Taking the expectation then leads to the optimiza-
tion model

min{x +

∫

R

exp (−rTe) max{0, ξ − x}ρ(ξ)dξ : x ≥ 0}.

for minimizing the strike price. Now, it depends on the kind of option how
the random variable ξ depends on the geometric Brownian motion S given by

St = S0 exp ((r − 1
2σ2)t + σBt)

with volatility σ and standard Brownian motion (Bt)t≥0. For example, for
arithmetic Asian options one has [42]

ξ =
1

d

d
∑

i=1

Sti
with ti =

iTe

d
, i = 1, . . . , d.

Hence, in a sense, the integrands considered in this paper extend the situations
encountered in such option pricing models.

3 ANOVA decomposition of integrands and effective

dimension

The analysis of variance (ANOVA) decomposition of a function was first pro-
posed as a tool in statistical analysis (see [9] and the survey [38]). In [35] it
was first used for the analysis of quadrature methods.
We consider a density function ρD on R

d and assume (A4) from Section 2.
As in [7] we consider the weighted Lp space over R

d, i.e., Lp,ρD
(Rd), with the

norm

‖f‖p,ρD
=











(

∫

Rd

|f(ξ)|pρD(ξ)dξ
)

1
p

if 1 ≤ p < +∞,

ess sup
ξ∈Rd

ρD(ξ)|f(ξ)| if p = +∞.

Let D = {1, . . . , d} and f ∈ L1,ρD
(Rd). The projection Pk, k ∈ D, is given by

(Pkf)(ξ) :=

∫ ∞

−∞

f(ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ R
d).

Clearly, the function Pkf is constant with respect to ξk. For u ⊆ D we use |u|
for its cardinality, −u for D \ u and write

Puf =
(

∏

k∈u

Pk

)

(f),
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where the product means composition. We note that the ordering within the
product is not important because of Fubini’s theorem. The function Puf is
constant with respect to all ξk, k ∈ u. Note that Pu satisfies the properties of
a projection, namely, Pu is linear and it holds P 2

u = Pu.
The ANOVA decomposition of f ∈ L1,ρD

(Rd) is of the form [42, 15]

f =
∑

u⊆D

fu (14)

with fu depending only on ξu, i.e., on the variables ξj with indices j ∈ u. It
satisfies the property Pjfu = 0 for all j ∈ u and the recurrence relation

f∅ = Id,ρd
(f) = PD(f) and fu = P−u(f) −

∑

v⊆u

fv .

It is known from [15] that the ANOVA terms are given explicitly by

fu =
∑

v⊆u

(−1)|u|−|v|P−vf = P−u(f) +
∑

v⊂u

(−1)|u|−|v|Pu−v(P−u(f)), (15)

where P−u and Pu−v mean integration with respect to ξj , j ∈ D \ u and j ∈
u \ v, respectively. The second representation motivates that fu is essentially
as smooth as P−u(f) due to the Inheritance Theorem [7, Theorem 2]. The
following result is well known (e.g. [42]).

Proposition 1. If f belongs to L2,ρD
(Rd), the ANOVA functions {fu}u⊆D

are orthogonal in L2,ρD
(Rd).

If the variance of f is defined by σ2(f) = ‖f − Id,ρD
(f)‖2

L2
, it holds that

σ2(f) = ‖f‖2
2,ρD

− (Id,ρD
(f))2 =

∑

∅6=u⊆D

‖fu‖2
2,ρD

=:
∑

∅6=u⊆D

σ2
u(f).

To avoid trivial cases we assume σ(f) > 0 in the following. The normalized

ratios
σ2

u(f)
σ2(f) serve as indicators for the importance of the variable ξu in f .

They are used in [36] to define global sensitivity indices of a set u ⊆ D by

Su =
1

σ2(f)

∑

v⊆u

σ2
v(f) and S̄u = 1 − S−u =

1

σ2(f)

∑

v∩u6=∅

σ2
v(f)

If S̄u is small, then the variable ξu is considered inessential for f in [36].
The normalized ratios are also used in [22, 16] to define and study the di-
mension distribution of a function f in two ways. The dimension distribution
of f in the superposition (truncation) sense is a probability measure νS (νT )
defined on the power set of D by

νS(s) := νS({s}) =
∑

|u|=s

σ2
u(f)

σ2(f)

(

νT (s) =
∑

max{j:j∈u}=s

σ2
u(f)

σ2(f)

)

(s ∈ D).
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Hence, the mean dimension in the superposition (truncation) sense is

d̄S =
∑

∅6=u⊆D

|u|σ
2
u(f)

σ2(f)

(

d̄T =
∑

∅6=u⊆D

max{j : j ∈ u}σ2
u(f)

σ2(f)

)

.

It is proved in [16, Theorem 2] that the mean dimension d̄S in the superpo-
sition sense is closely related to the global sensitivity indices of subsets of D

containing a single element. Namely, it holds

d̄S =
d

∑

j=1

S̄{j}. (16)

The paper [16] also provides a formula for the dimension variance based on
S̄u for all subsets u of D containing two indices.
For small ε ∈ (0, 1) (ε = 0.01 is suggested in a number of papers), the effective
superposition (truncation) dimension dS(ε) ∈ D (dT (ε) ∈ D) is the (1 − ε)-
quantile of νS (νT ), i.e.,

dS(ε) = min{s ∈ D : νS(u) ≥ 1 − ε, |u| ≤ s}
dT (ε) = min{s ∈ D : νT ({1, . . . , s}) ≥ 1 − ε}.

Note that dS(ε) ≤ dT (ε) and it holds (see [42, 5])

max
{∥

∥

∥
f −

∑

|u|≤dS(ε)

fu

∥

∥

∥

2,ρd

,
∥

∥

∥
f −

∑

u⊆{1,...,dT (ε)}

fu

∥

∥

∥

2,ρd

}

≤ √
εσ(f).

Small effective superposition dimension dS(ε), even if dT (ε) is large, is con-
sidered as good hint to expect superiority of QMC over MC. We note that
there exist algorithms based on MC or QMC to compute global sensitivity
indices and effective dimensions approximately (see [36, 37, 43] for example).
For large d, however, this becomes computationally expensive.
All these notions are discussed in [22] for different classes of functions, includ-
ing additive and multiplicative functions. We record here the results in case
of additive functions for later reference.

Example 2. For functions f having separability structure, i.e.,

f(ξ) =
d

∑

j=1

gj(ξj) (ξ ∈ R
d)

with gj ∈ L2,ρj
(R), j = 1, . . . , d, the ANOVA terms are (see [22])

f∅(ξ) =

d
∑

j=1

µj , f{j}(ξ) = gj(ξj) − µj , fu(ξ) = 0 if |u| > 1,
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where µj =
∫

R
gj(t)ρj(t)dt, σ2

j =
∫

R
(gj(t) − µj)

2ρj(t)dt, j = 1, . . . , d. Hence,
one obtains for the global sensitivity indices, and the mean dimension in the
superposition and truncation sense, respectively,

S{j} =
σ2

j

σ2(f)
, d̄S = 1 and d̄T =

d
∑

j=1

j
( σj

σ(f)

)2

,

while the superposition and truncation dimensions are

dS(ε) = 1 (∀ε ∈ (0, 1)) and dT (ε) = s if

d
∑

j=s+1

( σj

σ(f)

)2

≤ ε.

with σ2(f) =
∑d

j=1 σ2
j .

The importance of the ANOVA decomposition in the context of this paper is
also due to the fact that the functions fu can be (much) smoother than the
original integrand f under some conditions (see [6, 7] and the next section).

4 ANOVA decomposition of linear two-stage integrands

According to Section 2 the integrands in linear two-stage stochastic program-
ming map from R

d to R and are given by

f(ξ) = fx(ξ) = max
j=1,...,ℓ

〈vj , h(ξ) − Tx〉 (x ∈ X), (17)

where the affine function h is assumed to be of the form h(ξ) = (ξ, h̄) =
(ξ, 0)+(0, h̄) with some fixed element h̄ ∈ R

r−d. The integrands are paramet-
rized by the first-stage decision x. Such functions do not belong to tensor
product Sobolev spaces and, in general, are not of bounded variation in the
sense of Hardy and Krause (see [23, Proposition 17]).
Next we intend to compute projections Pk(f) for k ∈ D. Let x ∈ X be fixed,
ξi ∈ R, i = 1, . . . , d, i 6= k, be given. We set ξ̄k = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd)
and ξ̄k

s = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd). We assume (A1)–(A4) and have

(ξ̄k
s , h̄) − Tx ∈ dom φ =

⋃

j=1,...,ℓ

Kj

for every s ∈ R and by definition of the projection

(Pkf)(ξ̄k) =

∫ ∞

−∞

f(ξ̄k
s )ρk(s)ds =

∫ ∞

−∞

fx(ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds.

The one-dimensional affine subspace {(ξ̄k
s , h̄) − Tx : s ∈ R} intersects a finite

number of the polyhedral cones Kj . Hence, there exist p = p(k) ∈ N ∪ {0},
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si = sk
i ∈ R, i = 1, . . . , p, and ji = jk

i ∈ D, i = 1, . . . , p+1, such that si < si+1

and

(ξ̄k
s , h̄) − Tx ∈ Kj1 ∀s ∈ (−∞, s1]

(ξ̄k
s , h̄) − Tx ∈ Kji

∀s ∈ [si−1, si] (i = 2, . . . , p)

(ξ̄k
s , h̄) − Tx ∈ Kjp+1

∀s ∈ [sp,+∞).

By setting s0 := −∞, sp+1 := ∞, we obtain the following explicit representa-
tion of Pkf .

(Pkf)(ξ̄k)=

p+1
∑

i=1

∫ si

si−1

〈vji , (ξ̄k
s , h̄) − Tx〉ρk(s)ds (18)

=

p+1
∑

i=1

((

d
∑

j=1
j 6=k

v
ji

j ξj + 〈vji , (0, h̄) − Tx〉
)

∫ si

si−1

ρk(s)ds + v
ji

k

∫ si

si−1

sρk(s)ds
)

=

p+1
∑

i=1

((

d
∑

j=1
j 6=k

v
ji

j ξj + 〈vji , (0, h̄) − Tx〉
)

(ϕk(si) − ϕk(si−1)) (19)

+v
ji

k (ψk(si) − ψk(si−1))
)

Here, ϕk is the one-dimensional distribution function with density ρk, ψk the
corresponding mean value function and µk the mean value, i.e.,

ϕk(u) =

∫ u

−∞

ρk(s)ds, ψk(u) =

∫ u

−∞

sρk(s)ds, µk =

∫ +∞

−∞

sρk(s)ds.

Next we reorder the outer sum to collect the factors of ϕk(si) and ψk(si), and
a remainder.

(Pkf)(ξ̄k) =

p
∑

i=1

((

d
∑

j=1
j 6=k

(vji

j − v
ji+1

j )ξj + 〈vji − vji+1 , (0, h̄) − Tx〉
)

ϕk(si) + (20)

(vji

k − v
ji+1

k )ψk(si)
)

+
d

∑

j=1
j 6=k

v
jp+1

j ξj + 〈vjp+1 , (0, h̄) − Tx〉 + v
jp+1

k µk.

Moreover, the points si, i = 1, . . . , p, satisfy the equations

〈(ξsi
, 0), vji+1 − vji〉 =

d
∑

j=1
j 6=k

ξj(v
ji+1

j − v
ji

j ) + si(v
ji+1

k − v
ji

k ) = 0 (i = 1, . . . , p),

according to (13). This leads to the explicit formula
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si =
1

v
ji

k − v
ji+1

k

d
∑

j=1
j 6=k

ξj(v
ji+1

j − v
ji

j ) if v
ji

k 6= v
ji+1

k (i = 1, . . . , p). (21)

Hence, all si, i = 1, . . . , p, are linear combinations of the remaining compo-
nents ξj , j 6= k, of ξ if the following geometric condition is satisfied: All kth
components of adjacent vertices of D are different from each other, i.e., all
facets of D are not parallel to the kth coordinate axis in R

r or, with other
words, not parallel to the canonical basis element ek (whose components are
equal to δik, i = 1, . . . , r).
To simplify notation we set wi = vji − vji+1 and z(x) = (0, h̄) − Tx. If the
above geometric condition is satisfied, we obtain the following form of the
projection Pkf :

(Pkf)(ξ̄k)=

p
∑

i=1

((

d
∑

j=1
j 6=k

wi
jξj + 〈wi, z(x)〉

)

ϕk(si(ξ̄
k)) + wi

kψk(si(ξ̄
k))

)

(22)

+

d
∑

j=1
j 6=k

v
jp+1

j ξj + 〈vjp+1 , z(x)〉 + v
jp+1

k µk (23)

si = si(ξ̄
k) = − 1

wi
k

d
∑

j=1
j 6=k

wi
jξj . (24)

Hence, the projection represents a sum of products of differentiable functions
and of affine functions of ξk.

Proposition 2. Let k ∈ D and x ∈ X. Assume (A1)–(A4) and that all adja-
cent vertices of D have different kth components. Let fx be the integrand (17)
of the linear two-stage stochastic program (3).
Then the kth projection Pkfx is continuously differentiable.
The projection Pkfx belongs to Cs(Rd) if the density ρk is in Cs−1(R) (s ∈ N).
Pkfx is infinitely differentiable if the density ρk is in C∞(R).

Proof. Let l ∈ D, l 6= k. The projection Pkf is partially differentiable with
respect to ξl and it holds according to (22)–(24)

∂Pkf

∂ξl

(ξ̄k) =

p
∑

i=1

(

wi
lϕk(si(ξ̄

k)) −
(

d
∑

j=1
j 6=k

wi
jξj + 〈wi, z(x)〉

)

ρk(si(ξ̄
k))

wi
l

wi
k

−wi
lsi(ξ̄

k)ρk(si(ξ̄
k))

)

+ v
jp+1

l

=

p
∑

i=1

(

wi
lϕk(si(ξ̄

k)) − 〈wi, z(x)〉ρk(si(ξ̄
k))

wi
l

wi
k

)

+ v
jp+1

l

Hence, the behavior of all partial derivatives of Pkf only depends on the kth
marginal densities and distribution functions. They are again continuous with
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respect to ξ̄k if ρk is continuous. If ρk ∈ Cs−1(R) for some s ∈ N, ϕk and,
thus, Pkf belong to Cs(Rd). If ρk ∈ C∞(R), Pkf is in C∞(Rd). ¤

Remark 1. If ρk is not continuous, but belongs to Lp(R), the projection Pkf

is in the Sobolev space W1
p (Rd). For the definition of the Sobolev spaces, we

refer to [7].

Proposition 3. Let ∅ 6= u ⊆ D and x ∈ X. Assume (A1)–(A4) and that all
adjacent vertices of D have different kth components for some k ∈ u. Then the
projection Pufx is continuously differentiable. The projection Pufx is infinitely
differentiable if ρk ∈ C∞

b (R). Here, the subscript b at C∞
b (R) indicates that

all derivatives of functions in that space are bounded on R.

Proof. If |u| = 1 the result follows from Proposition 2. For u = {k, r} with
k, r ∈ D, k 6= r, we obtain from the Leibniz theorem [7, Theorem 1] for l 6∈ u

DlPuf :=
∂

∂ξl

Pufx(ξu) = Pr

∂

∂ξl

Pkfx(ξu)

and from the proof of Proposition 2

DlPuf =

p
∑

i=1

(

wi
l

∫

R

ϕk(si)ρr(ξr)dξr − 〈wi, z(x)〉wi
l

wi
k

∫

R

ρk(si)ρr(ξr)dξr

)

+ v
jp+1

l

If u contains more than two elements, the integrals on the right-hand side
become multiple integrals. In all cases, however, such an integral is a function
of the remaining variables ξj , j ∈ D \ u, whose continuity and differentia-
bility properties correspond to those of ϕk and ρk. This can be shown using
Lebesgue’s theorem as ϕk and all densities ρj , j ∈ u, and their derivatives are
bounded on R. ¤

The following is the main result of this section.

Theorem 1. Let u ⊂ D. Assume (A1)–(A4) and that all adjacent vertices of
D have different kth components for some k ∈ −u = D \u. Then the ANOVA
term fu is infinitely differentiable if ρk ∈ C∞

b (R).

Proof. The result follows from Proposition 3 applied to P−u(fx), the Inheri-
tance Theorem [7, Theorem 2] and the second part of formula (15). ¤

Corollary 1. Let x ∈ X. Assume (A1)–(A4) and that all components of all
adjacent vertices of D are different. Then the ANOVA approximation

fd−1 =
∑

u⊂D

fu (25)

of fx is infinitely differentiable if all densities ρk, k ∈ D, belong to C∞
b (R).



QMC methods for two-stage stochastic programs 13

Proof. The result follows immediately from Theorem 1 when applying it to
all nonempty strict subsets of D. ¤

Remark 2. Under the assumptions of Corollary 1 all ANOVA terms fu are at
least continuously differentiable if ρ is continuous and |u| ≤ d − 1. Hence,
the function fd−1 is in C1(Rd) (C∞(Rd)) if each ρk, k ∈ D, belongs to C(R)
(C∞

b (R)). On the other hand, it holds

f = fd−1 + fD and ‖f − fd−1‖2
L2

= ‖fD‖2
L2

according to (14) and Proposition 1. Hence, the question arises: For which two-
stage linear stochastic programs is the L2-norm of fD small or, equivalently,
is fd−1 a good approximation of f in L2,ρd

? This means in terms of the
truncation dimension that dt should at least be smaller than d. The latter
condition appears to be realistic in models with medium- or long-term time
horizon.

The following example shows that the condition on adjacent vertices in all
results cannot be removed in general.

Example 3. Let m̄ = 3, d = 2, Ξ = R
2, P denote the two-dimensional standard

normal distribution and let the following vector q and matrix W

W =

(

−1 1 0
1 1 −1

)

q =





1
1
0





be given. Then (A1) and (A2) are satisfied and the dual feasible set D is

D = {z ∈ R
2 : W⊤z ≤ q} = {z ∈ R

2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0},

i.e., D is a triangle and has the three vertices

v1 =

(

1
0

)

v2 =

(

−1
0

)

v3 =

(

0
1

)

.

Hence, the second component of the two adjacent vertices v1 and v2 coincides.
According to (12) the normal cones Kj to D at vj , j = 1, 2, 3, are

K1 = {z ∈ R
2 : z1 ≥ 0, z2 ≤ z1}, K2 = {z ∈ R

2 : z1 ≤ 0, z2 ≤ −z1},
K3 = {z ∈ R

2 : z2 ≥ z1, z2 ≥ −z1}.

The function Φ is of the form

ϕ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

and the two-stage stochastic program is
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Fig. 1. Illustration of D, its vertices vj and the normal cones Kj to its vertices

min
{

〈c, x〉 +

∫

R2

max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}ρ2(ξ)dξ : x ∈ X
}

(26)

with the standard normal density

ρ2(ξ1, ξ2) = ρ(ξ1)ρ(ξ2) =
1

2π
exp

(

− ξ2
1

2

)

exp
(

− ξ2
2

2

)

((ξ1, ξ2) ∈ R
2).

The integral I2 in (26) may be rewritten as

I2(f) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

max{|ξ1 − [Tx]1|, ξ2 − [Tx]2} exp
(

− ξ2
1 + ξ2

2

2

)

dξ1dξ2

The ANOVA projection P1f is

(P1f)(ξ2) =

∫ +∞

−∞

max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}ρ(ξ1)dξ1 (ξ2 ∈ R).

Case ξ2 − [Tx]2 ≤ 0:

(P1f)(ξ2) =

∫ +∞

−∞

|ξ1 − [Tx]1|ρ(ξ1)dξ1

=

∫ [Tx]1

−∞

(−ξ1 + [Tx]1)ρ(ξ1)dξ1 +

∫ +∞

[Tx]1

(ξ1 − [Tx]1)ρ(ξ1)dξ1

=

∫ +∞

−∞

(ξ1 − [Tx]1)ρ(ξ1)dξ1 − 2

∫ [Tx]1

−∞

(ξ1 − [Tx]1)ρ(ξ1)dξ1

Case ξ2 − [Tx]2 ≥ 0:
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(P1f)(ξ2)=

∫ 0

−∞

(−ξ1 + [Tx]1)ρ(ξ1)dξ1 +

∫ ξ2−[Tx]2

0

(ξ2 − [Tx]2)ρ(ξ1)dξ1

+

∫ +∞

ξ2−[Tx]2

(ξ1 − [Tx]1)ρ(ξ1)dξ1

=

∫ +∞

−∞

|ξ1 − [Tx]1|ρ(ξ1)dξ1−
∫ ξ2−[Tx]2

0

(ξ1 + ξ2 − [Tx]1 − [Tx]2)ρ(ξ1)dξ1

Hence, P1f belongs to C1(R) for all x ∈ X if ρ is continuous.
Next we calculate the ANOVA projection P2f . Notice that the assumption of
Proposition 1 is violated for k = 2.
Case ξ1 − [Tx]1 ≥ 0:

(P2f)(ξ1) =

∫ +∞

−∞

max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}ρ(ξ2)dξ2

=

∫ ξ1−[Tx]1

−∞

(ξ1 − [Tx]1)ρ(ξ2)dξ2 +

∫ +∞

ξ1−[Tx]1

(ξ2 − [Tx]2)ρ(ξ2)dξ2

Case ξ1 − [Tx]1 ≤ 0:

(P2f)(ξ1) =

∫ −ξ1+[Tx]1

−∞

(−ξ1 + [Tx]1)ρ(ξ2)dξ2 +

∫ +∞

−ξ1+[Tx]1

(ξ2 − [Tx]2)ρ(ξ2)dξ2

Hence, we obtain

(P2f)(ξ1) = |ξ1 − [Tx]1|
∫ |ξ1−[Tx]1|

−∞

ρ(ξ2)dξ2 +

∫ +∞

|ξ1−[Tx]1|

(ξ2 − [Tx]2)ρ(ξ2)dξ2

and P2f does not belong to C1(R) for all x ∈ X.

5 Orthogonal transformations and the Gaussian case

We consider the stochastic program (3) with

Φ(x, ξ) = φ(h(ξ) − Tx)

as in Section 4 and assume that (A1)–(A3) is satisfied. Further we assume
that h(ξ) is of the form h(ξ) = (Qξ, h̄) with some orthogonal d × d matrix Q

and with ξ satisfying (A4). Then the relevant integrand is of the form

f(ξ) = max
j=1,...,ℓ

〈vj , (Qξ, h̄) − Tx〉 = max
j=1,...,ℓ

〈Q̂⊤vj , (ξ, h̄) − Q̂⊤Tx〉,

where the r × r matrix Q̂ is given by

Q̂ =

(

Q 0
0 I

)

(27)
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with I denoting the (r − d) × (r − d) identity matrix. Hence, the results of
Section 4 apply if the vertices Q̂⊤vj , j = 1, . . . , ℓ, of the linearly transformed
dual feasible set Q̂⊤D satisfy the corresponding assumptions. The set Q̂⊤D
may be represented in the form

Q̂⊤D = {Q̂⊤z : W⊤z ≤ q} = {z ∈ R
r : (Q̂⊤W )⊤ ≤ q}

The geometric condition on the vertices is violated only if some face of Q̂⊤D
is parallel to some coordinate axis. Clearly, there are only countably many
orthogonal matrices Q for which this is the case.
Assume now that ξ is normally distributed with zero mean and nonsingular
covariance matrix Σ. Let the nonsingular diagonal matrix D be the result of a
unitary decomposition of Σ, i.e., D = QΣ Q⊤ with an orthogonal matrix Q.
If h(ξ) = (ξ, h̄) enters the integrand (17) with given dual feasible polyhedron
D and vertices vj , j = 1, . . . , ℓ, and Q̂ is defined as in (27), the integrand may
be rewritten as

f(ξ) = max
j=1,...,ℓ

〈Q̂vj , (Qξ, h̄) − Q̂Tx〉.

As Qξ is normal with covariance matrix D and, thus, satisfies (A4), the results
of the preceding section apply when using the transformed dual feasible set
Q̂D and normal cones Q̂⊤Kj , j = 1, . . . , ℓ, respectively. However, given D,
there are only countably many orthogonal matrices Q such that the algebraic
condition on the vertices of Q̂D is not satisfied. When equipping the linear
space of all orthogonal d×d matrices with the standard norm topology, the set
of all orthogonal matrices Q such that Q̂D satisfies the algebraic condition on
the vertices is residual, i.e., the countable intersection of open dense subsets.
A property for elements of a topological space is called generic if it holds in
a residual set. This proves part (a) of

Corollary 2. Let x ∈ X and assume (A1)–(A3) with h(ξ) = (ξ, h̄) with fixed
h̄ ∈ R

r−d to be satisfied.

(a)The algebraic condition that all components of all adjacent vertices of Q̂D
are different is a generic property in the space of all d × d orthogonal
matrices Q where Q̂ is defined by (27).

(b) Let ξ be normally distributed with mean m ∈ R
d and nonsingular co-

variance matrix Σ, and let the orthogonal matrix Q be chosen such that
QΣ Q⊤ = diag(σ2

1 , . . . , σ2
d). Let ρd be the normal density with mean m

and covariance matrix diag(σ2
1 , . . . , σ2

d). If Q belongs to the residual set of
orthogonal matrices satisfying the generic property, the ANOVA approxi-
mation fd−1 of f given by (25) is infinitely differentiable.

Proof. For part (b) it remains to note that the marginal normal densities

ρk(t) =
1√

2πσk

exp
(

− (t − mk)2

2σ2
k

)

(k = 1, . . . , d)

belong to C∞
b (R) and, hence, the result follows from Corollary 1. ¤
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6 Sensitivity and dimension reduction of two-stage

stochastic programs

In this section we discuss sensitivity and possibilities for reducing the effi-
cient dimension of two-stage models. First, we derive an upper bound for the
global sensitivity indices S̄{i}, i = 1, . . . , d, and the mean dimension d̄S in the
superposition sense, respectively.

Proposition 4. Let (A1)–(A4) with h(ξ) = (ξ, h̄) with fixed h̄ ∈ R
r−d be

satisfied and σ2
i denote the variance of ξi, i = 1, . . . , d. Then it holds

S̄{i} ≤ σ2
i

σ2(f)
max

j=1,...,ℓ
|vj

i |2 (i = 1, . . . , d)

d̄S ≤ 1

σ2(f)
max

j=1,...,ℓ
‖vj‖2

∞

d
∑

i=1

σ2
i ,

where vj, j = 1, . . . , ℓ, are the vertices of the dual polyhedron.

Proof. We use [37, Theorem 3] and compute the partial derivatives of f with
respect to ξi, i = 1, . . . , d, which exist almost everywhere on R

d. If h(ξ)− Tx

belongs to the cone Kj , it holds

f(ξ) =

d
∑

i=1

v
j
i (ξi − [Tx]i) +

r
∑

i=d+1

v
j
i (h̄i − [Tx]i),

where x ∈ X is fixed. We obtain for ξ ∈ R
d such that h(ξ) − Tx belongs to

the interior of Kj that
∂f

∂ξi

= v
j
i .

Hence, the partial derivative is piecewise constant and may be bounded from
above by maxj=1,...,ℓ |vj

i |. Using [37, Theorem 3] this proves our estimate for
the global sensitivity index S̄{i}. The second estimate is a consequence of
formula (16). ¤

The variance σ2(f) is greater and grows faster than
∑d

i=1 σ2
i with increasing

dimension d except in case that f is affine (i.e. ℓ = 1). Hence, Proposition 4
implies that the mean dimension in the superposition sense gets smaller with
increasing d. Much better results may be obtained under further assumptions
on the underlying stochastic program as indicated in the following example.

Example 4. We consider two-stage stochastic programs with generalized sim-
ple recourse (and r = d for simplicity), i.e., the recourse matrix W is of the
form W = (V,−V ) with an invertible d × d matrix V . Let the second-stage
costs q ∈ R

2r be decomposed into q = (q+, q−), where q+, q− belong to R
r,

and we assume q+ + q− ≥ 0. Then the dual feasible polyhedron is of the form
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D = (V ⊤)−1([−q−, q+]), where [−q−, q+] = ×r
i=1[−q−i , q+

i ] represents a rect-
angle in R

r. Then (A1) and (A2) are satisfied and it holds for the integrand

f(ξ) = max
z∈D

〈ξ − Tx, (V ⊤)−1V ⊤z〉 = max
x∈[−q−,q+]

〈V −1(ξ − Tx), z〉 =

d
∑

i=1

fi(ξ),

where

fi(ξ) =

{

q+
i [V −1(ξ − Tx)]i, [V −1(ξ − Tx)]i > 0

−q−i [V −1(ξ − Tx)]i, [V −1(ξ − Tx)]i ≤ 0.

If the matrix V −1 is banded (say, containing at most k nonzero elements
in each row), fi depends on at most k components of ξ, hence, the efficient
superposition dimension is at most k. If V is diagonal, Example 2 applies.

Another conclusion from Proposition 4 is that a low truncation dimension can
only be achieved if the variances σi are decreasing with increasing i and if the
first few variances are dominating.
If ξ is normal with nonsingular covariance matrix Σ, the standard (lower
triangular) Cholesky matrix LC performing the decomposition LCL⊤

C = Σ

leads to σi ≡ 1 and is, hence, not suitable to reduce the efficient dimension.
A universal principle for dimension reduction is principal component analysis
(PCA). It is universal in the sense that it does not depend on the structure of
the underlying integrand f . In PCA one uses the decomposition UP U⊤

P = Σ,
where UP = (

√
λ1u1, . . . ,

√
λdud), λ1 ≥ · · · ≥ λd ≥ 0 are the eigenvalues of

Σ in decreasing order and ui, i = 1, . . . , d, are the corresponding orthonor-
mal eigenvectors of Σ. Several authors report an enormous reduction of the
efficient truncation dimension in financial models if PCA is used (see, for ex-
ample, [42], [43, 44]). However, the reduction effect depends on the eigenvalues
of Σ. If the ratio λ1

λd
is even close to 1, the performance of PCA gets worse.

Furthermore, PCA may become expensive for large d.
Several dimension reduction techniques exploit the fact that a normal random
vector ξ with mean µ and covariance matrix Σ can be transformed by ξ =
Bη+µ and any matrix B satisfying Σ = B B⊤ into a standard normal random
vector η with independent components. The following fact is proved as Lemma
1 in [46].

Proposition 5. Let Σ be a d × d nonsingular covariance matrix and A be a
fixed d × d matrix such that AA⊤ = Σ. Then it holds Σ = B B⊤ if and only
if B is of the form B = AQ for some orthogonal d × d matrix Q.

To apply the proposition, one may choose A = LC since computing the stan-
dard Cholesky matrix LC requires only 1

6d3 operations. Then any other de-
composition matrix B with Σ = B B⊤ is of the form B = LC Q with some
orthogonal matrix Q. The approach now consists in determining a good or-
thogonal matrix Q such that the (mean) truncation dimension is minimized
by exploiting the structure of the underlying integrand f . Such an approach
is proposed in [11] for linear functions and refined and extended in [46].
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Linear two-stage integrands are of the form (see proof of Proposition 4)

f(ξ) = G(〈w1, ξ〉 + a1(x), . . . , 〈wℓ, ξ〉 + aℓ(x)), (28)

where G(t1, . . . , tℓ) = max{t1, . . . , tℓ}, wj ∈ R
d, w

j
i = v

j
i , i = 1, . . . , d, and

aj(x) = −〈vj , Tx〉 +

r
∑

i=d+1

v
j
i h̄i,

the vertices vj ∈ R
r, j = 1, . . . , ℓ, of the dual polyhedron and x ∈ X, ξ ∈ R

d.
Hence, f is of the form considered in [46] shortly after Theorem 3.
If ξ is normal with mean µ and nonsingular covariance matrix Σ, we consider
the decomposition Σ = B B⊤, with B = LCQ and some orthogonal matrix Q,
and know that η such that ξ = LCQη +µ has independent standard normally
distributed components. The transformed function is

f̂(η) = G(〈B⊤w1, η〉+ 〈w1, µ〉+a1(x), . . . , 〈B⊤wℓ, η〉+ 〈wℓ, µ〉+aℓ(x)). (29)

It is suggested in [11, 46] to determine the orthogonal matrix Q = (q1, . . . , qd)
with columns qj ∈ R

d, j = 1, . . . , d, such that the (mean) truncation dimension

of f̂ in (29) is minimized. In the following we record a result proved as Theorem
2 in [46] (see also Proposition 1 in [11]).

Proposition 6. Let ℓ = 1 and set w = w1. If the matrix Q = (q1, . . . , qd) is
determined such that

q1 = ± L⊤
Cw

‖L⊤
Cw‖ and Q is orthogonal, (30)

the decomposition Σ = LCQ (LCQ)⊤ leads to the transformed function

f̂(η) = G(‖L⊤
Cw‖η1 + 〈w, µ〉 + a1(x)).

Hence, the mean efficient dimension of f̂ is d̄T = 1.

The orthogonal columns q2, . . . , qd may be computed with 4
3d3 operations

by the Householder transformation or fast Givens rotation starting from the
canonical basis vectors e2, . . . , ed (see e.g. [12, Chapter 3]).

In case 1 < ℓ ≤ d it is proposed in [46] to determine the orthogonal matrix
Q = (q1, . . . , qd) by applying an orthogonalization technique to the matrix

M = (L⊤
Cw1, . . . , L⊤

Cwℓ, bℓ+1, . . . , bd), (31)

where we assume that the w1, . . . , wℓ are linearly independent and bℓ+1, . . . , bd

are selected such that M has rank d. It is shown in [46, Theorem 3] that then

the function f̂ depends only on η1, . . . , ηℓ. The practical computation may
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again be done by the Householder transformation or fast Givens rotation
applied to the matrix M in (31).
Applying the orthogonalization technique to the two-stage integrand (28) is
not straightforward since the vertices vj of the dual polyhedron are not known
in general and the computation of all of them is too expensive. Next we sketch
a possible heuristic for dimension reduction of two-stage models.

Remark 3. (Dimension reduction heuristic)
Let us recall the structure of two-stage integrands from (28)

f(ξ) = max{〈w1, ξ〉 + a1(x), . . . , 〈wℓ, ξ〉 + aℓ(x)},

where x varies in the polyhedral set X, wj ∈ R
d, w

j
i = v

j
i , i = 1, . . . , d, and

aj(x) = −〈vj , Tx〉 +
∑r

i=d+1 v
j
i h̄i. The unknown vertices are again denoted

by vj , j = 1, . . . , ℓ.
An optimal vertex, i.e., a vertex vj∗ such that

f(ξ) = 〈wj∗ , ξ〉 + aj∗(x)

depends on ξ and x, i.e., vj∗ = vj∗(ξ, x).
A heuristic may be based on a small sample ξj ∈ R

d, j = 1, . . . , n < d, of the
underlying probability distribution with uniform weights 1

n
. The two-stage

linear stochastic program based on this sample is solved. Let x∗ be a first-
stage solution and vj = vj(ξj , x∗) a dual optimal vertex that corresponds
to ξj , j = 1, . . . , n. We compute the wj , j = 1, . . . , n and select a linearly
independent subset wj , j ∈ J ⊆ {1, . . . , n}. Next the orthogonal matrix Q

and the decomposition Σ = LCQ (LCQ)⊤ are computed based on wj , j ∈ J .

The transformed function f̂ then hopefully has a lower dimension than f .

7 Conclusions

We have shown in Section 4 that all but one ANOVA terms of two-stage inte-
grands are infinitely differentiable if all marginal densities belong to C∞

b (R)
and a geometric condition on the vertices is satisfied. The QMC quadrature
error (5) allows to derive the following bound (by using the ANOVA decom-
position and then the techniques in [8])

∣

∣

∣

∫

[0,1]d
f(ξ)dξ − 1

n

n
∑

j=1

f(ηj)
∣

∣

∣ ≤
∑

0<|u|

∣

∣

∣

∫

[0,1]d
fu(ξu)dξu − 1

n

n
∑

j=1

fu(ηu
j )

∣

∣

∣(32)

≤
∑

0<|u|<d

Discn,u(ηu
1 , . . . , ηu

n)‖fu‖ (33)

+
∣

∣

∣

∫

[0,1]d
fD(ξ)dξ − 1

n

n
∑

j=1

fD(ηj)
∣

∣

∣
, (34)
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where Discn,u is a discrepancy for n points in [0, 1]|u| and ‖fu‖ a compatible
norm. In particular, this holds for the weighted norm ‖ · ‖γ given by (7) in the
weighted tensor product Sobolev space (6) and the corresponding weighted
L2-discrepancy

Disc2
n,u(ηu

1 , . . . , ηu
n) = γu

∫

[0,1]|u|

disc2
u(ξu)dξu,

where the discrepancy disc is given by

discu(ξu) =
∏

j∈u

ξj −
1

n
|{j ∈ {1, . . . , n} : ηu

j ∈ [0, ξu)}|.

Recalling the arguments in the introduction one may conclude that all terms
in (33) converge with the optimal rate while the term in (34) also converges
to 0 due to Proinov’s convergence result [27] (as fD is continuous). In addi-
tion, one may hope, that this term is small as fD is small by assuming that
the truncation dimension dT has been reduced (see Section 6) and is, thus,
essentially smaller than d. Moreover, by recalling the results in [45], one may
hope that the convergence rate for terms with |u| ≤ dT is even better (at least
if dT is small) than for |u| > dT . In the latter case, however, one can hope
that ‖fu‖ is small.
Altogether, there are good reasons to conclude that recent Quasi-Monte Carlo
methods (like randomly shifted and digitally shifted polynomial lattice rules)
are efficient for two-stage linear stochastic programs (even if the programs are
large scale) if they are accompanied by dimension reduction techniques.
The extension of the results to two-stage stochastic programs with stochastic
costs and right-hand sides and to multi-stage models as well as the presenta-
tion of numerical experience is left to a projected paper.
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ming, MPS-SIAM Series on Optimization, Philadelphia, 2009.
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