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Abstract

We present a mixed-integer multistage stochastic programming model for the
short term unit commitment of a hydro-thermal power system under uncertainty
in load, inflow to reservoirs, and prices for fuel and delivery contracts. The model
is implemented for uncertain load and tested on realistic data from a German
power utility. Load scenario trees are generated by a procedure consisting of two
steps: (i) Simulation of load scenarios using an explicit respresentation of the load
distribution and (ii) construction of a tree out of these scenarios. The dimension
of the corresponding mixed-integer programs ranges up to 200,000 binary and
350,000 continuous variables. The model is solved by a Lagrangian-based decom-
position strategy exploiting the loose coupling structure. Solving the Lagrangian
dual by a proximal bundle method leads to a successive decomposition into single
unit subproblems, which are solved by specific algorithms. Finally, Lagrangian
heuristics are used to construct nearly optimal first stage decisions.

Key Words: Stochastic programming, unit commitment, Lagrangian relaxation, bundle
methods, scenario tree generation

1991 MSC: 90C15, 90C90, 90C11

1 Introduction

Economic needs and the ongoing liberalization of European electricity markets stim-
ulate the interest of power utilities in developing models and optimization techniques
for the generation and trading of electric power under uncertainty. Utilities partic-
ipating in deregulated markets observe increasing uncertainty in load (i.e., demand
for electric power) and prices for fuel and electricity on spot and contract markets.
The mismatched power between actual and predicted demand may be supplied by the
power system or by trading activities. The competitive environment forces the utilities
to rate alternatives within a few minutes.

In this chapter, we describe a mathematical model for optimal short term operation
and trading of a hydro-thermal based electric utility, which is usually called unit com-
mitment problem because of the important role of the commitment or on/off decisions.
Furthermore, we present a methodology for modelling the stochastic data process in



form of a scenario tree and report on a Lagrangian-based decomposition strategy for
solving the optimization model. We also provide some numerical experience obtained
from test runs on realistic data from the German utility Vereinigte Energiewerke AG
(VEAG). In fact, the optimization model has emerged from a collaboration with engi-
neers of VEAG. For our tests we use a configuration of the VEAG system consisting of
25 (coal-fired, gas-burning) thermal units and 7 pumped storage hydro units. Its total
capacity is about 13,000 megawatts (MW), including a hydro capacity of 1,700 MW;
the peak loads of the system are about 8,600 MW. In contrast to other hydro-thermal
based utilities the amount of installed pumped storage capacity enables the inclusion of
pumped storage plants into the optimization. It is an additional feature of the VEAG
system that, for a weekly planning period, inflows to reservoirs are negligible.

In the literature, there is a growing number of contributions to stochastic power sys-
tem optimization with emphasis on modelling aspects and solution methods. Stochastic
models including commitment decisions are considered, for example, in [1, 2, 6, 8, 9,
10, 19, 24, 26, 27, 28, 34, 35, 36, 37]. While the recent papers [1, 19, 26, 37| propose
variants of Lagrangian relaxation methods for their solution and present implementa-
tions, the work in [2, 24, 34] is directed to a comparison of stochastic and deterministic
power system modelling, further engineering aspects and industrial applications. The
solution methods in [1, 19, 37| differ from each other by the nondifferentiable opti-
mization methods, the subproblem solvers, and the Lagrangian heuristics employed as
components of the master algorithm. Modelling issues of stochastic data processes in
power systems are addressed in [16, 18, 20, 28]. We also refer to the state-of-the-art
survey [12] on scenario (tree) generation and to references therein.

The chapter is organized as follows. In Section 2 we describe the stochastic unit com-
mitment model and its particular features. Section 3 contains a brief description of
the solution algorithm based on Lagrangian relaxation. Our strategy for generating
scenario trees for the electrical load process is presented in Section 4. It consists of
two parts: simulation of load scenarios using a statistical model for the electrical load
process and a method for constructing scenario trees out of simulation scenarios. In
Section 5 we report on the performance of the Lagrangian relaxation algorithm and of
the scenario tree generation technique.

2 Stochastic Power System Modeling

We consider a power generation system comprising thermal and hydro units and con-
tracts for delivery and purchase, and address the unit commitment problem in short
term operation planning. This problem concerns the scheduling of start-up/shut-down
decisions and of operation levels for all power units and contracts, respectively, such
that the operation costs over the time horizon are minimal. Although being short
term, the uncertainty of important system parameters like electrical load, streamflows
in hydro units, prices for fuel or electricity is a major modelling issue.

Let the planning horizon be discretized into 7" uniform subintervals and suppose there
are sets Z and J of thermal and hydro units, respectively. The decision variable of
thermal unit ¢ € Z is (u;, p;) where the components of u; are binary variables taking
the values 1 if the unit is on at some time period and 0 if off. The components of p; are



the corresponding operation levels. As usual, contracts for delivery and purchase are
regarded as special thermal units. The decision variable of hydro unit j € J is (vj, w;),
where the components of v; and w; are the generation and pumping levels over time,
respectively.

To formulate a unit commitment model that incorporates fluctuations of uncertain
system parameters, we use a probabilistic description of uncertainty. Let

= {ft = (dt,rta%a ag, b, Ct) }tT:1

be a discrete-time stochastic process on some probability space (2, F,P), where &
is deterministic, d;, 7; and 7, represent the load, the spinning reserve and the hydro
inflows in period ¢, while a;, b; and ¢; collect the cost coefficients.

The scheduling decisions for period ¢ are made after having learnt the realization of the
stochastic data for that period. Denote by F; C F the o-field generated by {& }_;,
i.e., the events observable until period ¢. Since the information on &; is complete,
F1 =40,9Q}, i.e., & is deterministic. By assuming Fr = F we require full information
to be available at the end of the planning horizon. The sequence of scheduling decisions
{(ug, ps, vs, ws) }; also forms a stochastic process on (2, F,P), which is assumed to
be adapted to the filtration of o-fields, i.e., nonanticipative. Nonanticipativity means
that the decisions (u, ps, vs, w;) may only depend on the data observable until period
t, or equivalently, that (u, ps, vy, wy) is Fy-measurable.

We now assume that the data process {£;}]_; has a discrete probability distribution,
i.e., its support consists of a finite number of scenarios (or realizations). Then there
exist finite subsets &; of the g-algebra F;, t = 1,...,T, such that & is a partition of 2
and that the smallest o-algebra containing &; is just F;. Using conditional expectations
w.r.t. J;, the nonanticipativity conditions may be formulated as linear equality con-
straints. As F; C F;y1, every element of & can be represented as the union of certain
elements of &, ;. Since the numbers of elements of &, i.e., ||, and of scenarios of &

coincide, the relations between the elements of & and of &4 fort =1,...,7—1 may be
represented in the form of a tree, called scenario tree. Let N = {1,...,|N|} denote the
set of nodes of the tree. The root node n = 1 stands for period ¢t = 1. Every other node
n has a unique predecessor node n_. Let path(n) be the set {1,...,n_,n} of nodes

t=1 1 t(n) T

Figure 1: Scenario tree with t; =2, T =5, |N| = 23 and 11 leaves



from the root to node n and ¢(n) := |path(n)| denote the time period associated with
node n. Then the nodes in N; := {n : t(n) = t} correspond to the realizations of &,
t =1,...,T. Nodes n belonging to the set N are called leaves. A scenario corresponds
to a path from the root to some leaf, i.e., to path(n) for some n € Nr. Furthermore,
let A, (n) denote the set of successors to node n. Hence, Nz = {n : Ny(n) = 0}.
With the given scenario probabilities {m, },enr,., We associate a probability m, to each
node n by the recursion m, := 3, cnr, (n) gy M € N. Clearly, 3>, cn, T = 1 holds for
each t = 1,...,T. We denote by Mg := UL, N, the set of first-stage nodes, where
t; is the maximal period such that the data process {&}iL, is deterministic, i.e., the
sets NV, t = 1,...,1;, are singletons. We use the following notation for the sequence
of predecessors of any node n € N: ng :=n, n_y :=n_ if n > 1, n_(p1) == (n_y)_ if
t(k) > 1.

Now, we use the notations {£" = (d",r", 4", a",b", ") }pen and {(u™, p", 0", wW™) }nen
for the scenario trees representing the stochastic data process £ and the (stochastic) de-
cision process (u, p, v, w), respectively. The decisions (u", p™, v"™, w™) assigned to nodes
n in N; are the realizations of the stochastic decisions (u¢, ps, vy, wy) fort = 1,...,T. For
the commitment decisions u; we set upath( " (4} )vepatn(n)- To handle initial values of
the u; we introduce a starting time ¢;,; < 0, set n,, := k—t(n) for & = t(n)+ti, . . ., t(n),
and assume that initial values u}” for Kk = ti,...,0, ¢ € T are given. The fuel costs
for operating the thermal unit ¢ at node n are of the form

CP (o} uf) = max {apl + byu?)
with coefficients af} and b} such that C!*(-,1) is convex and increasing on IR,. The
start-up costs of unit 7 at node n depend on its downtime; it may vary from a maximum
cold-start value to a much smaller value when the unit is still relatively close to its
operating temperature. This is modelled by

n path(n) L N_,
S( ).—Ti%’a%c ( Zu >,
where 0 < ¢ < ... < i are cost coefficients, ¢{ is the cool-down time and cj,. the
maximum cold-start costs of unit ¢ € Z. Since the operating costs of hydro units are
negligible in short term planning, the expected total system costs are given by the sum
of fuel and start-up costs of all thermal units

> > [COF (fuf) + 57 (uf* )] (1)
neN i€T

The operation of all thermal units is described by certain operating ranges and mini-
mum up/down-time requirements, namely, by the inequalities

piemu; < pf < pEisul, wf €{0,1}, neN,iel, (2a)

ur —uy " <, k=1,....L -1, neN, i€l (2b)

w, " —ulr<1—u?, k=1,....t;, -1, neN, i€, (2¢)

where pi® and pHa* are the minimum and maximum capacities of unit ¢ at period ¢,

and (2b), (2¢) mean that unit ¢ must remain on (off) for at least #; ( and ¢;, respectively)
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periods if it is switched on (off). The operating ranges and dynamics of hydro units
are described by the constraints

0<of SO, 0<wf Swlifh 0SB <. neN, jed,  (3a)
0=0" -} +nul 497, neN,jed, (3b)
in nd -
l?:lju l?:lj , nENT,jEJ, (30)
where v3;** and w};** are the maximum capacities for the generation and pumping of

hydro unit j € J at period t, 7} is the water inflow to reservoir j at node n and 7

is the reservoir storage volume at the end of period t(n), with upper bound l;?;?;f). By

n; we denote the pumping efficiency and by l;-n and l;?“d the initial and final volumes,
respectively, of unit j. In our model, we disregard spill and head variation effects.
Furthermore, we prefer to prescribe final storage volumes of all hydro units instead of
introducing a water value function depending on {l?}je JmeNy and of maximizing this
water value as part of the objective function (1). The basic system requirements are
the load and the spinning reserve constraint at each node n, i.e.,

Zp?—i—Z(v;‘—w?)zd”, nenN, (4a)
€T jeT
Yo (uipEEs —pf) =", neN, (4b)
icT

where the constraint (4b) means that the total commited capacity at each node n
should exceed d" by a certain amount ", e.g., by a fraction of d". Figure 2 shows
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Figure 2: Typical weekly load scenarios

a collection of weekly load scenarios. They exhibit typical daily cycles, morning and
evening peaks, and night and weekend off-peaks. Constraint (4a) says that the total
generation has to follow the load scenario curves.
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Now, the stochastic unit commitment problem consists in minimizing the expected costs
(1) such that the system constraints (2), (3) and (4) are satisfied. This model forms a
large scale linear mixed-integer program involving |Z||A/| binary and (|Z] + 2|J|)|NV|
continuous decision variables, and (2+|J|)|NV|+|J||Nr| (in)equality constraints (with-
out taking into account the bounds, the constraints of type (2b)—(2c), and the objective
function). As usual, we call the model (1)-(4) with fixed binary decisions {u"},cx the
stochastic economic dispatch problem. We notice that the model (1)-(4) is almost sep-
arable with respect to the unit index sets Z and J and only loosely coupled by the
2| V| constraints (4). This observation becomes particularly important when recalling
that, for a typical weekly time horizon with hourly time steps (i.e., 7" = 168), scenario
trees comprise more than |[A| = 10 nodes and that for mid-size generation systems
one has |Z| + |J| > 30.

3 Lagrangian Relaxation

Due to the enormous size of the stochastic unit commitment model in the previous sec-
tion, the use of standard software for mixed-integer linear programs is appropriate for
smaller models only. In general, one has to resort to decomposition approaches. While
the algorithmic realization of primal decomposition methods leads to serious obstacles
that are impossible to overcome by existing methods (cf. [5]), strategies based on du-
alizing the model (1)-(4) appear to be more promising.

Two general dual decomposition schemes have been elaborated so far: scenario and
nodal decomposition (see 7, 31]). The first scheme is based on dualizing the nonanti-
cipativity constraints and the second one on the dualization of the dynamic constraints.
Due to the loose coupling structure of the model, a third scheme comes into play, which
is called geographical or component decomposition in [11, 31]. It is based on assigning
Lagrange multipliers to the coupling constraints and on minimizing the corresponding
Lagrangian function. As a result, the dual problem decomposes into a finite number
of (much) smaller stochastic subproblems. The application of all these dualization
schemes is justified in convex situations (cf. [30] and [31, Section 2.5]).

When comparing dual decomposition approaches for stochastic integer programmming
models, two arguments appear to be important: the size of the corresponding duality
gaps and the complexity of the dual and of the subproblems. Recent results on a com-
parison of duality gaps for scenario, nodal and geographic decomposition indicate that
the geographic decomposition has the potential to lead to the smallest duality gaps (see
[11]). In addition, in the case of the stochastic unit commitment model its subproblems
have specific structures that allow for the use of efficient solution algorithms.

In the following, we give a brief description of the geographical decomposition or La-
grangian relazation approach and of a Lagrangian-based algorithm for solving (1)—(4).
For a more detailed presentation we refer to [19]. Let z := (u,p, v, w) denote the de-
cision and A = (Ag, Ag) := {(A}, A}) bnen € A := IRLﬁW X R‘i\/l the Lagrange multiplier
in scenario-tree form to be associated with the coupling constraints (4). Then the
Lagrangian function takes the form

L)) = zwn{z [er (e, up) + 87 ()] (5)

neN i€
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and the dual function and the dual problem read

D()) := min {L(z; \) : z satisfies the constraints (2)—(3)} (6)
max {D(\) : A € A}. (7)

Due to the compactness of the constraint sets given by (2) and (3) for (u,p) and (v, w),
respectively, there exists a Lagrangian solution z(\), i.e., a solution of the minimization
problem defining D(A) in (6) for every A € A. Under the assumptions made on the
fuel costs, the dual function D is concave polyhedral. Hence, the dual (7) is solvable if
the primal problem (1)—(4) is feasible. The dual function

D(\) =3 Di(A) + 30 Dj(A) + 3° ma (Afd" + X5r") (8)

i€ JjET neN

decomposes into the thermal subproblems

D) = min{ 3w min{CP07 ) = OF — )t} )

—A3uppiies + S7 (u?ath(n))] : u; satisfies (2)},
and the hydro subproblems

D;(\;) = min { > A (w] —v}) : (v;, w;) satisfies (3)} : (10)
neN

Both subproblems represent multistage stochastic programming models for the opera-
tion of one single unit. While the thermal subproblem (9) represents a combinatorial
multistage program involving stochastic costs, the hydro subproblem (10) is a linear
multistage model with stochastic costs and stochastic right-hand sides. The ther-
mal problem (9) was solved by (stochastic) dynamic programming. Incorporating the
thermal state space into the scenario tree leads to a backward tree recursion for the
cost-to-go of all states. This yields the optimal cost-to-go and, by forward tracing the
tree, the optimal scheduling decisions {(u}(A),pl'(A)) }nen (see [19, Section 3.6] and
[25]). For solving the hydro subproblems (10) a specialized descent method has been
developed. It generates a finite sequence of feasible hydro decisions, where the decision
at some step differs from the preceding one only at the nodes of a certain subtree of
N. Such a subtree exists for each nonoptimal feasible hydro decision and, hence, the
algorithm terminates with an optimal solution {(v}(A), w}(A))}nen (see [19, Section
3.5] and [25, 26] for details and numerical results).

The dual problem (7) serves as the master program. Its iterative solution by a subgra-
dient bundle method leads to a successive decomposition of the primal model (1)—(4).
A subgradient of D at A is given by

€T JjeET €L

gp(A) = { (dn =20 (A) = 2 (WF(A) —wi (W), r" = > (ui (M)l —p?()\))) } :
neN



In particular, the prozimal bundle method [15, 22, 23] is used for solving the dual.
Starting from an arbitrary point A' = A! € A, this method generates a sequence
{M\} e in A that converges to some dual solution, and trial points A* for evaluating
the solutions z(A\¥) of (6), the subgradients gp(A*) of D and its linearizations

D*() := D(A) + (- = A, gp(A*)) > D(),

where (A, 1) == Y, en T (AT U] + A3 p5) is the dual pairing on A. Iteration k uses the
polyhedral model Dy (-) := mineyx D'(-) with k € N*  {1,..., k} for finding the next
trial point A*! as a solution of the quadratic subproblem

1
max{Dg(\) — §pk\)\ — M2 N e}, (11)

where the proximity weight p; > 0 and the penalty term |- |2 := (-,-) should keep A\**1
close to the prox-center A\*. An ascent step to A*™1 = M\¥+1 occurs if D(AF+1) > D(M\F)+
k0x, where k € (0,1) is a fixed Armijo-like parameter and d; := Dy (A1) — D(AF) > 0
is the predicted ascent (if 5 = 0, then A* is a solution and the method may stop).
Otherwise, a null step A¥*1 = A¥ improves the next model Dy, with the new lineariza-
tion D**1. The stopping criterion §; < opt_tol(1 + D(A*)), the choices of the weights
pr and of the index set N**! in particular its upper bound NGRAD, are discussed in
[15, 22] (see also [19, Section 3.4]).

The optimal value D(A*) of (7) resulting from the bundle method provides a lower
bound for the optimal costs of the model (1)—(4). In general, however, the “dual op-
timal” scheduling decisions z(A*) = (u(\*), p(A*), v(A*), w(A*)) violate the load and
reserve constraints (4) such that a low-cost primal feasible solution has to be deter-
mined by a Lagrangian heuristic. Two Lagrangian heuristics (see [19, Section 3.7], [25])
that determine nearly optimal first stage decisions {(u", p™, v", W") }nen.,, Starting from
the optimal multiplier \* and the Lagrangian solution z(A*) have been developed. The
first heuristic LH1 is based on a combination of a water rescheduling procedure and
a known thermal heuristic [39] applied to a (deterministic) unit commitment model
where the stochastic quantities £, A\* and [(\*) are replaced by their mean values.
Clearly, this heuristic provides a nearly optimal decision at nodes n € Ngw only. The
second heuristic LH2 starts by finding some ¢ > 0 such that z(A\* + €1) (1 being the
element in A with unit components) is feasible. Taking u(A\* + 1) as a starting point
then, a finite sequence of binary decisions is constructed such that their components
are decreasing. This is done by selecting a node n € N where the available reserve
capacity Zle(u?pﬁ("}j‘) — pl') — ™ is maximal, and switching some unit ¢ off at node n
and at some predecessor and successor nodes, where the unit 7 and the neighbouring
nodes of n are detected by stochastic dynamic programming. Next, the corresponding
stochastic economic dispatch problem is reformulated as a hydro problem with piece-
wise linear costs and solved by a modification of the descent method mentioned earlier
(see [19, Section 3.5], [25, 26]). This procedure, which generates a sequence of schedul-
ing decisions at all nodes, is continued until infeasibility is detected during economic
dispatch and terminates with a nearly optimal solution at each node in N.

The whole Lagrangian relaxation approach is based on the same, but stochastic, ingre-
dients as in the classical deterministic unit commitment situation [17, 32]: a solver for
the nondifferentiable dual, subproblem solvers, and some Lagrangian heuristic. The
interaction of these ingredients is illustrated in Figure 3.
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solution of the dual problem

solution of subproblems

(proximal bundle method) (stochastic dynamic programming)

(descent algorithm)

‘ Lagrangian heuristics ’.:’

i

‘ (stochastic) economic dispatch‘

Figure 3: Scheme of the Lagrangian relaxation algorithm

4 Load Scenario Trees

4.1 A Statistical Model for the Electrical Load

The identification of a statistical model for the electric load of the VEAG generation
system is based on an hourly load profile for a period of three years (1098 days). A
plot of the hourly load data is displayed in Figure 4. The historical load records show
seasonal variations caused by meteorological factors like temperature, cloud cover etc.
In the weekly and monthly load data there are recurring patterns of length 24 (one day)
and of length 168 (one week). The periodic patterns complete themselves within the
calendar year and are then repeated on a yearly basis. Interruptions of this regularity
are caused by customs like public holidays or the start/end of the daylight saving time.
Thus, in principle the electric load depends on the category of the day (Monday,.. .,
Sunday, public holiday, etc.) and on the season. Figure 4 highlights the periodic
components of our historical data.

In a first step, days of a similar load pattern are identified using daily load records (24
load data of a day). To each such record we assign a day category (1 for a Monday
record, ..., 7 for a Sunday, 8 for a public holiday following a working day, 9 for
days between holidays and weekends, 10 for a public holiday following a weekend or
a holiday). Clustering methods from [33] are applied to answer the question whether
the records can be grouped or classified into useful or informative clusters. After
eliminating seasonal effects of the load records, clustering and ANOVA-tests lead to a
classification of the load records into 8 categories (see Table 1).

The statistical modelling of the load process exploits the decomposition of the load
process into a daily mean load process and a mean-corrected load series which are

7000
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< 6000 ® 5000
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o -
- 4000
4000
3000
2000
0 5000 10000 15000 20000 25000 0 50 100 150 200 250 300
Hour s Hours

Figure 4: Hourly load data — three years (left) and two weeks (right)



Category
1 Monday or working day after a public holiday

working day (Tuesday, Wednesday, Thursday)

Friday or working day before a public holiday

Saturday

Sunday

public holiday not following days of the categories 2,3

public holiday following days of the categories 2,3

working day between days of the categories 4-7

O O Ui W N

Table 1: Categories of daily load records

treated separately. Let z;, be the observed load at time period 7 = 1,...,24 of day
j€J:={1,...,1098} (i.e., record j of the data base), d; := & Y22, x;, the mean load
of day j and cat(j) the category of day j according to Table 1. Then the historical
load records are decomposed according to

Tjr = jT+Ej (T:L---a24;j€‘])7 (12)

where d;,, 7 = 1,...,24, is the mean corrected load record of day 7 € J. The daily
mean load series versus the day number is plotted in Figure 5. Figure 6 displays the

8000}

7000+

6000

5000

Mean Load

4000

0 200 400 600 800 1000
Days

Figure 5: Daily mean load versus the day number

mean-corrected load records (djT)cat(j):k for days of category kK = 2 and k = 5.

The mean load depends on the category of the day and on the season. Further, there
is an interaction between the mean load and meteorological factors like temperature,
cloud cover etc. The meteorological impact on the daily mean demand could not be
modelled because of missing meteorological parameters.

To select an appropriate class of (time series) models for the daily mean load series
{d;}je; with J C Z, {d;};c; is considered as a part of a realization of the stochastic
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Figure 6: Mean-corrected load records for days of category 2 (left) and 5 (right)
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mean load process {d;};cz. Data analysis methods [3] are used to detect any seasonal
(periodic) or trend (nonconstant mean) components, outlying observations or sharp
changes in behaviour. Then suitable transformations are applied to the data to obtain
a new stationary series (residuals) with zero mean and unit variance. The trend and
seasonal components may be removed by estimating these components and subtracting
them from the data. Another transformation is called differencing; it replaces the
original process by differences of the process at ¢ and at ¢ — s for some lag s € IN
and eliminates a seasonal component of period s. The mean load series {Ej }jes clearly
contains a recurring pattern with the seasonal period of 365 (one year). There are
further periodic components of length 7 (one week) and change points due to the
start/end of the daylight saving time. Irregularities of the weekly patterns have been
removed from the time series by replacing outlying observations by the value of the
nearest day of the same category.

Many approaches for fitting a time series to the deseasonalized data rely on classical
linear models. Autoregressive moving average (ARMA) models are characterized by
finite-order linear difference equations with constant coefficients. A real stochastic
process {X;}iez is called ARMA(p, q) if it is stationary, i.e., if IE[X?] < oo, IE[X;] is
constant and E[X, X;]| = FE[X, X4, Vr,s,t € Z, and

Xt - ¢1Xt_1 — ... ¢pXt—p = Zt + 91Zt_1 + ...+ qut—q ,Vt € Z, (13)

where ¢, k=1,...,p,and 0,1 = 1,...,q, are real coefficients and {Z;};cz is the white
noise process WN(0, 0?) with zero mean and variance o2, i.e., [E[Z;] = 0, [E[Z2] = o2,
Vt € Z, and [E[Z,.Z;]) = 0 if r # t. Using the backward shift operator B defined by

B'X, = X,_, for t,£ € Z, the ARMA equations (13) can be rewritten as
¢(B)X, =0(B)Z, VteZ, {Z}~WN(0,0?),

where ¢ and 6 denote the polynomials ¢(z) =1 — 1z — ... — ¢p2?, 0(z) = 1+ 612 +
...+ 0,29. An ARMA(p, q) process {X;}icz is said to be causal if there exists a real
sequence {1} such that Y92, 1, < oo and Xy = Y2 Ve, Vt € Z.
Seasonal autoregressive integrated moving average (SARIMA) models are defined as
follows. The process { X;}icz is said to be a SARIMA(p, d, q) x (P, D, Q)s process with
period S if the differenced process Y; := (1 — B)4(1 — B%)P X, is the causal ARMA
process

¢(B)®(B®)Y; = 0(B)O(B*)Z;, {Z;} ~WN(0,0%),
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where ¢(2) = 1 — ... — @2, ®(z) = 1 — ... — ®pzF, 0(z) = 1+ ... + 6,27 and
O(z) =1+ ...+ Ogz¥. Hence, the model for {X;};cz reads ¢(B)®(B%)(1 — B)4(1 —
B%)P X, = 0(B)©(B?%)Z,.

To identify a suitable SARIMA model for a given time series, the differencing orders d,
D, the model orders p, P, q, @), and the length S of the seasonal component must be
identified. They can be discovered by inspecting the empirical autocorrelation function,
the empirical counterpart of the autocorrelation function IE[X,Xy|, £ € Z; see, e.g., [3].
The model coefficients {¢,}2_,, {® 35, {632, {©.}2.,, and the white noise variance
o? can be estimated via parameter estimation procedures for ARMA processes. The
maximum likelihood method produces the most efficient estimates in the special case
of Gaussian time series. Initial values for the model coefficients can be obtained by
the Hannan-Rissanen algorithm (cf. [3, Section 5]), which solves the problem of order
selection and parameter estimation for ARMA processes simultaneously.

In case of the daily mean load process, stationary residuals were obtained after three
differencing operations (two lag-364 differencing operations followed by one lag-1 dif-
ferencing). The residuals were treated as part of a realization of the stochastic process

{V; :=d; —dj_1 — 2d;_364 + 2d;j_365 + dj_728 — dj_729}.

For {Y;} the Hannan-Rissanen algorithm from the Mathematica Time Series Pack
[38] selected an ARMA(1,1) model that served as an initial model for the maximum
likelihood method. The maximum likelihood estimates for the model coefficients and
random noise process led to the time series model

Y; — ¢21Yj_1 = Z; +é1Zj_1, j € Z, where

¢y = 0.357756, 6 = —0.639978, {Z;} ~ N(0,15533.88), j € Z.
Accordingly, for the daily mean load process {Hj}je z we obtain the SARIMA(1,1,1) x
(0,2,0)364 model

(1= B)(1—B*)*(1 - 1 B)d; = (1 + 61 B)Z, (14)
which can be converted into the general ARMA(730, 1) model

aj - 1+ 9231)&]’—1 + leaj—z — 2aj—364 +2(1+ le)aj—%s — 2&16]'—366
+ dj s+ (91— 1)dj 720+ 1dj 7m0 = Z; + 6.7, 4, j € Z. (15)

For modelling the time dependence of the mean-corrected load records corresponding
to days of the same category k, k = 1,...,8, polynomial-based linear regression models
of the form

dpr = Z/Blel+6kmk (T= 1,...,24) (16)
=0

have been fitted, where the error term ey, is normally distributed with zero mean and
variance ank. The degree m;, of the polynomials will be fixed later. For model fitting,
regression diagnostics, and forecasting we used the statistical package S-PLUS [33].

The statistical model for the load is obtained by combining the models for the daily
mean load and the mean-corrected load records according to (12). The regression
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models for the mean-corrected load records that correspond to different day categories
are included into (12) by using day category variables Dj; defined by

|1, cat(y) =k, . o
Djlc = { 07 OthGI‘WlSG, (] S J, k= 1, .. ,8)

With these definitions (12) may be rewritten as

8
x]T:ZDjkdkT+Ej (]eJaT:17a24) (17)
k=1

The different time scales for the historical load records and the load process can be
synchronized by an index transformation:

8
dy = Z D|_ kdkr (t/24) + d 3R t e Z, (18)
k=1

where || denotes the lower integer part of & and 7(t/24) the remainder of ¢ upon
division by 24. Finally, the statistical model of the load is obtained by inserting (15)

and (16) into (18), i.e., it reads

ZDL JkZﬁkl r(t/24))’ (19)

(]‘ + ¢1) %Jfl - ¢1d|_ﬁjf2 + 2HL%J —364 (1 + él)al_ t J 365
+2¢1d | ]—366 — HL;—4J—728 - (¢1 - 1) —729 ¢1dL b |—730

k=1

2

To select the degrees my, of the regression polynomials we measured the squared dis-
tance between (19) and the historical load data for the third year. The best fit was
obtained for my =10, k=1,...,8.

The stochastic model (19) for the electrical load is used to simulate a number of load
scenarios for the time horizon {1,...,T} by employing a (pseudo) random number gen-
erator for the independent normal random variables €, , k =1,...,8, and Z;, j € J.
In thls way, S load scenarios {d‘}7_, are generated which have 1dent1ca1 probabilities
pi=%,t=1,...,5, and coincide fort =1,. . Hence, the nodesatt =1,...,%; are
the ﬁrst stage nodes of a specific scenario tree forming a fan of individual scenarios.
Clearly, this tree could be used as input of the optimization algorithm described in
Section 3. We notice, however, that such a tree contains a relatively large number of
nodes, namely, |N| =t + (T —t1)S.

4.2 Construction of Scenario Trees

Next we describe a general methodology that successively reduces the number of nodes
of a fan & = {¢'}%, of individual scenarios by modifying the tree structure and by
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bundling similar scenarios. This methodology is based on a successive scenario reduc-
tion technique developed in [13, 21] (see also the forthcoming work [14]). The idea is to
compare the probability distance of original and reduced trees, and to delete scenarios
if the reduced tree is still close enough to the original one. The probability distance has
to be chosen such that the underlying stochastic program behaves stable with respect
to this distance when changing the probability distribution. Here, stability means that
the optimal costs and solution sets behave continuously with respect to such changes.
The interested reader is referred to the discussion in [13].

In the context of stochastic power scheduling models, we use the Kantorovich distance
Dy of (multivariate) probability distributions (cf. [29, Section 5]). For discrete prob-
ability distributions with finitely many scenarios the distance Dy is just the optimal
value of a linear transportation problem. Let P denote the probability distribution of
¢ with scenarios &' and probabilities p;, 4 = 1,...,5, and @ that with scenarios éj and
probabilities ¢;, 7 =1,..., S. Then it holds

S

s 8 . s
Dx(P,Q) =inf{D_> mijer(&,&) tmy; > 0, mij = q;, > mij = i, Vi, ¥4}, (20)

i=1j=1 i=1 j=1

where ¢, is defined by ¢,(&%,&7) ;== ¥t _, [¢6 — €| foreach t =1,...,T.

Now, let ) be the probability distribution of a reduced tree of &, i.e., the support
of @ consists of scenarios & for j € {1,...,S}\ J and J denotes some index set of
deleted scenarios. For fixed J C {1,..., S}, the scenario tree @, based on the scenarios
{€} ;¢ having minimal Dx-distance to P may be computed explicitly ([13, Theorem
3.1]). The minimal distance is

Dk(P,Q.) =Z“i1}1€i}CT(§i,§j) (21)

icJ

and the probability ¢} of scenario £, 43¢ J, of Q, is given by the rule

¢ =pi+ Y pi,JG)={ie:j=4@} jt)e argrjgg}lcT(gi,gj),w eJ (22
i€J(j)

This means that the scenario &’ of the reduced tree represents the bundle {£%};c J(5) of
original scenarios and its probability is given by formula (22). Since the solution sets of
min;g; cr (€', €7) are non-unique in general, the optimally reduced tree is not uniquely
determined.

Our approach for constructing a scenario tree &,p, that approximates the original fan
¢ of indivudual scenarios consists in a successive reduction procedure by applying the
above reduction argument recursively to (sub)trees on the time horizons {1,...,t} for
t="T,...,t;. More precisely, given some tolerance € > 0 and constant o > 1, an index
set J; is determined in the (7' — ¢ + 1)-th step such that |J;,| =S — 1 and

Zﬁi%%]?ct(fi,ﬁj) < ela—1) t=T,...,t1) (23)

T—t+1
1€EJt «

by the simultaneous backward reduction algorithm ([21, Algorithm 2.2]). While J; is
the index set of deleted scenarios in the (7" — ¢ + 1)-th step, the index set of remaining
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scenarios is denoted by Iy, t = t1,...,T+1,1i.e., it holds that [UJ; = L1, t =t1,..., T,
|I;;| =1 and I, ={1,...,S}.

The approximate scenario tree Eapp With sets M of nodes at time period ¢ is then defined
by setting |NV;| := || and {&} }nen; = {é‘t }ier, for every t = tq,...,T. According
to redistribution rule (22) the probability 77 of £t is recursively given by Ty = Di,
1=1,...,5, and

m=mlg 4+ Y, my, J(tg) ={i€ Ji:j=7(t9)}, j(t,i) € argmine (&, &),
i€J(t,j) JEJ
for every j € Iy and t = T,...,t;. Hence, the approximate tree ,p, exhibits the
following structure. It holds that {™ = & for every n € Nirss and |Np| = |I7]. The
cardinality of N, (n) is equal to |{j} U J(¢, )| if the node n € N; corresponds to the
index j € I;. This means that the index sets {J(t,j)};e1, characterize the branching
degree of &, at period t.

5 Numerical Results

The Lagrangian relaxation algorithm was implemented in C++ except for the proximal
bundle method, for which the Fortran package NOA 3.0 [23] was used as a callable
library. For numerical tests we considered the hydro-thermal power system of VEAG
(with T'= 168, |Z| = 25 and |J| = 7) under uncertain load (i.e., the remaining data
were deterministic). The test runs were performed on an HP 9000 (780/J280) computer
with 180 MHz frequency and 768 MByte main memory under HP-UX 10.20.
For testing the performance of the optimization algorithm a bunch of load scenario
trees was randomly generated. The upper part of Table 2 contains test results of
the Lagrangian relaxation algorithm based on the heuristic LH1 with the parameters
opt_tol = 1072 and NGRAD = 50 for NOA 3.0. In particular, it provides computing
times and gaps for different numbers of scenarios (S) and four randomly generated
scenario trees, each having a different number of nodes (N). The gap refers to the
relative difference .

Di (Z D [Cit(pir, wir) + Sie(ws)] — D*)

* \t=1iez

of the costs of the scheduling decision (u,p,v,w) and the optimal value D, of the
dual. We note that, in general, this gap does not provide a quality measure for the
approximate first stage solution (it may even become nonpositive). When reading the
computing times in Table 2, it is worth recalling that N = 4000 and N = 8000 corre-
spond to 100,000 and 200,000 binary variables in the model (1)—(4), respectively.
The lower part of Table 2 reports computing times and gaps for the Lagrangian relax-
ation algorithm based on LH2. Here, the parameters for NOA 3.0 are opt_tol = 107°
and NGRAD = 200, and the gap refers to the following bound of the relative duality

gap

5 (S mE et + st ()] - ).
D, neN €T

This bound provides an accuracy certificate for the approximate primal-feasible solution
{(u™, p", v"™, w")) }nen- Figure 7 displays the final output of the Lagrangian relaxation
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Lagrangian relaxation algorithm based on heuristic LH1
S N | time[s] | gap[%] N | time[s] | gap[%]
20 | 1982 89 0.15 | 1627 94 0.10
20 | 1651 68 0.37 | 1805 85 0.07
50 | 4530 475 0.18 | 4060 274 0.10
50 | 4041 313 0.10 | 4457 288 0.43
100 | 9230 1183 0.11 | 9224 1072 0.13
100 | 7727 930 0.09 | 8867 1234 0.30
Lagrangian relaxation algorithm based on LH2

S N | NOA timels] | total time[s] | gap[%)]
1 168 10 16 0.20
5| 542 65 101 0.19
10 | 983 128 230 0.71
17 | 1786 278 733 0.45
21 | 2098 351 531 0.39
27 | 2208 380 8349 0.73
32 | 2173 359 3337 0.66
39 | 3848 874 4092 0.82

Table 2: Test results for randomly generated load trees

algorithm based on LH2 and on a load scenario tree with 17 scenarios and 1786 nodes.
While the “deterministic” Lagrangian heuristics LH1 requires only short computing
times, this becomes quite different for the “stochastic” heuristics LH2. Table 2 gives
more insight into the (total) computing times of different test runs. Higher computing
times are always due to lots of economic dispatch runs required by LH2. Tt is worth
mentioning here that LH2 is quite sensitive to the accuracy of the dual solution, i.e., to
the optimality tolerance of the proximal bundle method. The advantage of using LH1
consists in low running times even for mid-size scenario trees, while its drawbacks are
that only first-stage solutions are provided with no accuracy bounds. The advantage
of LH2 is that it produces a “stochastic” solution together with a guaranteed accuracy

10000 T T T T T T T T

8000

6000

4000

2000

-2000
0 20 40 60 80 100 120 140 160 180

therm. generation hydro generation ------- load

Figure 7: Weekly optimal stochastic solution with 17 scenarios

16



Erel S N Variables Constraints | Nonzeros | time][s]
binary | continuous
0.6 1 168 4200 7728 16975 44695 7.83
0.1 67 | 515 | 12875 23690 52484 137459 17.09
0.05 81| 901 | 22525 41446 91568 240233 37.82
0.01 94 | 2660 | 66500 122360 269318 708218 | 150.14
0.005 | 96 | 3811 | 95275 175306 385583 | 1014398 | 291.65
0.001 | 100 | 9247 | 231175 425362 934647 | 2460402 | 1176.38

Table 3: Test results for solving the stochastic dual based on a reduced load scenario
tree of relative tolerance .o

bound, but at the expense of higher computing times even for scenario trees of smaller
size. For further information the interested reader is referred to [25].

Another test combined the Lagrangian relaxation algorithm with the load scenario tree
generation technique of Section 4.2. First, we used the statistical model to generate
S = 100 load scenarios d' with identical probabilities p; = 0.01 for an hourly discretized
time horizon of one week in summer. The accuracy of the load model for the summer
season allowed to choose the first day of the optimization horizon as the first stage
period, i.e., t; := 24. Hence, the scenario values for the first-stage periodst =1,...,24
coincide with the load prediction for this period. Given an appropriate number of
starting load values, the prediction can be computed from (19) by ignoring the realiza-
tions of the random noise process {Z;} and of the error terms €g,,. To compute the
remaining 7' —t¢; = 144 values of a single scenario from (19) we simulated realizations of
the random noise process and of the error terms using the random number generators
contained in the RANLIBC library [4]. Table 3 reports the computing times for solving
the stochastic dual (7) based on different reduced load scenario trees, each having a
different numbers of scenarios (S) and of nodes (V). The trees are constructed by
the algorithm in Section 4.2 for o := 2 and different relative tolerances €.q := sjax
where €, is the best possible Kantorovich distance Dg of the probability distribution
P =10.01 2}22 04i to one of its scenarios endowed with unit mass. Figure 8 provides
an impression of the improved accuracy of the dual optimum and of the scenario tree
structure for different relative tolerances.

b

100
80
€
g 60
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o
— 40
[
a3
20
0 0.2 0.4 0.6 0.8 1
relative tolerance for the scenario tree 0 25 0 75 100 125 150
Hour s
Figure 8: Dual optimum (left) and |I;| (¢ = 1,...,T) for scenario trees with relative

tolerance e = 0.001 (2), 0.005 (x), 0.01 (=) (right)
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