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Abstract. The pole condition approach for deriving transparent boundary conditions is ex-
tended to the time-dependent, two-dimensional case. Non-physical modes of the solution are iden-
tified by the position of poles of the solution’s spatial Laplace transform in the complex plane.
By requiring the Laplace transform to be analytic on some problem dependent complex half-plane,
these modes can be suppressed. The resulting algorithm computes a finite number of coefficients
of a series expansion of the Laplace transform, thereby providing an approximation to the exact
boundary condition. The resulting error decays super-algebraically with the number of coefficients,
so relatively few additional degrees of freedom are sufficient to reduce the error to the level of the
discretization error in the interior of the computational domain. The approach shows good results
for the Schrödinger and the drift-diffusion equation but, in contrast to the one-dimensional case,
exhibits instabilities for the wave and Klein-Gordon equation. Numerical examples are shown that
demonstrate the good performance in the former and the instabilities in the latter case.
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1. Introduction. Transparent boundary conditions (TBCs) are required when-
ever a problem is posed on a domain that has to be truncated in order to become
numerically treatable, either because it is unbounded or too large to compute solu-
tions in a reasonable amount of time. Usually, TBCs have to avoid reflections at the
artificial boundary, although more complex situations can arise, for example if inho-
mogeneities are present in the truncated part. Exact TBCs are typically non-local in
time and space and suitable approximations have to be derived in order to be able to
efficiently compute numerical solutions to the truncated problem. The study of this
type of boundary conditions started in the 1970s, see the paper of E. L. Lindman [15]
and references given there. In their seminal paper [5] Engquist and Majda devised a
general strategy for the derivation of approximate TBCs. Comprehensive overviews
of the subject can be found, for example, in [2, 7, 8, 9, 23].

The pole condition approach for the derivation of TBCs was introduced in a first
version in [20, 22] for time-dependent Schrödinger-type equations, later in [12, 13, 19]
for time-harmonic scattering problems. It was further explored in [6, 11, 16, 21]. An
alternative formulation of the pole condition is presented in [17], which provides a
noticeably simplified implementation and is also used in the present paper. A com-
parison of different techniques to derive TBCs for Schrödinger’s equation can be found
in [2], finding the pole condition to be one of the most efficient. In [18], the pole condi-
tion approach is adopted for a larger class of time-dependent problems, showing good
performance for different types of partial differential equations (PDEs) ranging from
Schrödinger’s equation, the heat equation to wave and Klein-Gordon equation. How-
ever, the experiments involved only one-dimensional or two-dimensional wave-guide
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geometries. The present paper extends this approach to the fully two-dimensional
case and investigates its performance through numerical experiments. While the very
good performance of the pole condition is confirmed in the two-dimensional case for
Schrödinger’s equation and the drift-diffusion equation, instabilities are found for the
wave equation.

As the infinite element method, see [3], the pole condition does not truncate the
exterior domain at some finite length. Nevertheless, the finite number of expansion
coefficients of the Laplace transform also results in some form of truncation and the
pole condition realizes a radiation boundary condition at the boundary of the in-
terior domain and does not aim at providing a meaningful solution in the exterior.
In some special cases, see [25], the pole condition is closely related to the perfectly
matched layer approach introduced in [4], but as it does not require complex coordi-
nate stretching, the pole condition provides a more general framework. Note that in
contrast to other approaches to TBC involving Laplace transforms, for example [1],
the pole condition applies the Laplace transform in space and not in time.

The class of problems considered are, as in [18], initial value problems for linear
PDEs of the form

p(∂t)u(t,x) = c2Δu(t,x)− d · ∇u(t,x)− k2u(t,x) for x ∈ R
2, t ≥ 0. (1.1)

Included here are the Klein-Gordon equation for p(∂t) = ∂tt and d = (0, 0)T, the
drift-diffusion equation for p(∂t) = ∂t and k = 0, the heat equation for p(∂t) = ∂t and
d = (0, 0)T , k = 0 and finally Schrödinger’s equation for p(∂t) = i∂t and d = (0, 0)T,
k = 0. Equation (1.1) is to be solved on a finite computational domain Ω ⊂ R2 with
some boundary condition B(u) = 0 on ∂Ω, such that on the domain Ω the solution
of the initial boundary value problem approximates the solution of the unrestricted
initial value problem.

If the support of the initial value u(0,x) is a subset of Ω and the exterior domain
is homogeneous, in the linear case the boundary condition has to suppress all modes
traveling from the exterior R2\Ω into the computational domain. Section 2 illustrates
the main concept of the pole condition by means of a simple one-dimensional example.
Section 3 introduces the details of the discretization employed in the two-dimensional
case and section 4 shows several numerical examples.

2. Pole condition. This section provides a brief sketch of the key idea of the
pole condition. Denote the Laplace transform of some function f along some (spatial)
coordinate r by

L(f)(s) =
∫ ∞

0

exp(−sr)f(r) dr. (2.1)

The pole condition exploits the identity

exp(ar)
L�→ 1

s− a
, (2.2)

that is a mode with phase a in physical space corresponds to a pole of the Laplace
transform located at a. The poles of the Laplace transform of the solution are decom-
posed into poles corresponding to incoming and outgoing modes or, more generally,
into poles corresponding to physical and non-physical modes. If the locations of the
poles in the complex plane corresponding to these modes can be separated by a line,
one can decompose the complex plane into a half-plane Cin containing all incoming
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Table 2.1

Region Cin for different equations as derived in [18].

Equation Parameters in (1.1) Cin

Schrödinger equation p(∂t) = i∂t, d = 0, k = 0 {z ∈ C : Re(z) > −Im(z)}
Drift-diffusion equation p(∂t) = ∂t, k = 0 {z ∈ C : Re(z) > 0}

Wave equation p(∂t) = ∂tt, d = 0, k = 0 {z ∈ C : Im < 0}
Klein-Gordon equation p(∂t) = ∂tt, d = 0 {z ∈ C : Im < 0}

modes and a half-plane Cout containing all outgoing modes. Note that these half-
planes depend on the equation at hand: Table 2.1 quotes the regions corresponding
to the equations mentioned above as derived in [18]. For a given Cin, the pole condi-
tion is then defined as follows:

Definition 2.1. Let u(t, r) be a function depending on time t and some spatial
coordinate r. Denote its Fourier transform in t by û and the dual variable to t by
ω. Then u satisfies the pole condition, if U(ω, s) := L(û(ω, ·))(s) has an analytic
extension to Cin for every ω.

To illustrate this concept, consider the one-dimensional wave equation on a semi-
infinite interval

∂ttu(x, t) = ∂xxu(x, t), x ∈ Ω = [−1,∞) (2.3)

and assume that a boundary condition at x = 0 is sought such that the solution of
(2.3) coincides with the solution on the restricted domain [−1, 0]. Here, the r from
Definition 2.1 is identical to the spatial coordinate x. Inserting an ansatz

u(x, t) = exp(−iωt) exp(ikx) (2.4)

into (2.3) yields the dispersion relation

ω = ±k (2.5)

and assuming ω > 0 without loss of generality yields solutions of the form

u(x, t) = c1 exp (−iωt) exp (iωx) + c2 exp (−iωt) exp (−iωx) , (2.6)

where the first term corresponds to the positive branch of the dispersion relation and
is rightward moving while the second term corresponds to the negative branch and is
leftward moving. Let the non-physical modes in this example be the modes traveling
leftwards from (0,∞) into the interval [−1, 0]. The pole condition then has to suppress
the pole corresponding to the second term in (2.6).

In order to point out the connection between the two modes in (2.6) and their
corresponding poles, we derive an equation for U = L(u) from (2.3). The Laplace
transform satisfies the identity

L(∂xxf)(s) = s2L(f)(s) − sf0 − f ′
0, (2.7)

where f0 and f ′
0 denote the Dirichlet and Neumann data at x = 0. Further, as in

Definition 2.1, denote by U the function obtained by applying to u Fourier transform
in time and Laplace transform in space. Using (2.7), we obtain from (2.3) the equation

−ω2U(ω, s) = s2U(ω, s)− sû0(ω)− û′
0(ω)

⇒ U(ω, s) =
1

2

û0 − (i/ω)û′
0

s− iω
+

1

2

û0 + (i/ω)û′
0

s+ iω
, (2.8)
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where û0(ω), û
′
0(ω) are the Fourier transforms of the time-dependent Dirichlet and

Neumann data u0(t), u
′
0(t) at x = 0. By (2.2), the first term with pole at iω cor-

responds to the physically correct rightward propagating mode with coefficient c1
in (2.6), the second term with pole at −iω to the non-physical leftward traveling
mode with coefficient c2. In order to exclude the non-physical mode, one could for
example set Cin = {z ∈ C : Im(z) < 0}, so that the pole condition requires U to be
analytic at −iω, thus removing this pole from U and the corresponding mode from
the solution. Note that in this simple one-dimensional example, the pole condition
can also be enforced by requiring the numerator of the right term in (2.8) to vanish,
leading to

iωû0 + û′
0 = 0 ↔ ∂tu0 − u′

0 = 0, (2.9)

which is the well known transparent boundary condition for the one-dimensional wave
equation, see for example [5].

For more complex problems, an explicit decomposition of U like (2.8) is usually
not available. However, the Laplace transform can often still be decomposed into
incoming and outgoing parts in terms of path integrals in the complex plane, see [18],
hence still allowing to define a region Cin and a pole condition based transparent
boundary condition. In particular, this is possible for the different types of equations
listed in Table 2.1.

3. Discretization. This section presents the employed discretizations. Subsec-
tion 3.1 describes the discretization of the exterior domain with special semi-infinite
elements and how the pole condition is incorporated. The mapping between the
exterior elements and the corresponding reference element introduces a generalized
distance coordinate, along which the pole condition is enforced. As the exterior el-
ements are semi-infinite, integrals arise that have one limit infinite. A mapping is
introduced, converting these integrals into proper integrals in the Hardy space on the
complex unit-disc. The discretization of the interior uses standard finite elements and
is not elaborated further. Subsection 3.2 describes the employed integration schemes,
including the choices of the parameter of the mappings.

3.1. Space discretization. The discretization of the exterior domain uses semi-
infinite trapezoids as proposed in [24, 25]. The construction of these exterior meshes is
discussed in [14]. Possible other choices would be semi-infinite triangles and rectangles
as in [17]. In any case the exterior discretization has to be such that there is a uniform
distance variable. For the sake of simplicity, we assume that the computational domain
Ω is convex, although a generalization to star-shaped domains should be possible.

3.1.1. Transformation of exterior elements. We mainly use the notation
of [17]. Figure 3.1 sketches the used mesh including the exterior elements and the
mapping between the semi-infinite trapezoids in the exterior and the corresponding
reference element. Each of the semi-infinite elements T is the image of the semi-
infinite reference rectangle [0, 1] × [0,∞) under the bilinear mapping g for a set of
parameters (hη, hξ, a, b). Denoting the Jacobian matrix of g by J and its determinant
by |J |, the mass and stiffness integrals of the variational formulation, which may by
found in [17], are repeated below for the convenience of the reader. Additionally the
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Fig. 3.1. Left: Employed basic mesh. Elements triangulating the interior domain are marked
in dark grey while the trapezoids decomposing the exterior are marked in light grey. Finer meshes are
generated by uniform refinements of the triangles and adding additional rays and exterior elements
when new nodes on the boundary emerge. Right: Transformation mapping the reference semi-
infinite rectangle to an exterior trapezoidal element.

drift term is given.∫
T

∇xu · ∇xv dx =

∫
[0,1]×[0,∞]

J−T∇ηξũ · J−T∇ηξ ṽ|J | d(η, ξ),∫
T

d · ∇xu v dx =

∫
[0,1]×[0,∞]

d · J−T∇ηξũ ṽ|J | d(η, ξ).∫
T

u v dx =

∫
[0,1]×[0,∞]

ũ ṽ|J | d(η, ξ),

(3.1)

The Jacobian of the bilinear mapping g and its determinant are

J = R

(
hη + (a+ b)ξ −b+ (a+ b)η

0 hξ

)
, |J | = hξ(hη + (a+ b)ξ), (3.2)

where R is the rotation around the first point, hη is the width of the trapezoid, hξ

is a scaling factor measuring the distance to the boundary and a and b are signed
distance variables, compare for Figure 3.1 (right). As in [17] we use a product ansatz
ũ(η, ξ) := u(g(η, ξ)) = ũξ(ξ)ũη(η) on the reference strip, where ũξ and ũη are functions
in ξ and η, respectively. The stiffness term, for example, is given by∫

[0,1]×[0,∞]

J−T∇ηξũ · J−T∇ηξṽ|J | d(η, ξ) =

∫ 1

0

∫ ∞

0

(
∂ηũηũξ

ũη∂ξũξ

)T
⎛
⎝ h2

ξ+(b−(a+b)η)2

hη+ξ(a+b)
b−(a+b)η

hξ

b−(a+b)η
hξ

hη+(a+b)ξ
hξ

⎞
⎠( ∂η ṽηṽξ

ṽη∂ξṽξ

)
dξdη.

(3.3)

Functions ũη will be approximated using standard finite element basis functions
{φj(η)}, j = 1, . . . , Nη and therefor integrals over the radial coordinate η can be
evaluated by quadrature formulas.

3.1.2. Hardy Space. Infinite integrals over the radial coordinate ξ are trans-
formed to finite integrals in the Hardy space H+(D0) using the identity∫ ∞

0

f̃(ξ)g̃(ξ)dξ = −2s0
1

2π

∫
∂D0

(MLf)(z̄)(MLg(z))|dz| (3.4)
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Fig. 3.2. Sketch of the Möbius transform M : H−(Ps0 ) → H+(D0), mapping functions defined
on the complex half-plane Ps0 to functions defined on the complex unit-disc D0. The parameter s0
has to be chosen such that Ps0 corresponds to the Cin suitable for the problem at hand.

where M denotes the modified Möbius transform

H−(Ps0) → H+(D0) : F �→ MF defined by (MF )(z) := F

(
s0

z + 1

z − 1

)
1

z − 1
.

(3.5)
Here, Ps0 denotes a half-plane in the complex plane, depending on the parameter s0,
and D0 denotes the complex unit-disc, see Figure 3.2. Further, M is an isomorphism
between the Hardy spaces H−(Ps0) and H+(D0). Details can be found in [16, 17].

The parameter s0 has to be chosen such that the half-plane Ps0 coincides with
the half-plane Cin of non-physical poles for the considered problem. As functions in
the space H−(Ps0) are analytic on the half-plane Ps0 and M is an isomorphism, a
function MF is analytic on D0 if and only if F is analytic on Ps0 .

Hence the pole condition, stating that the Laplace transform L(f) of some func-
tion f has to be analytic on Cin, is equivalent to the condition that ML(f) is analytic
on D0 for the correct choice of the parameter s0. In short, we established the following
sequence of reformulations of the pole condition

f satisfies pole condition :⇔ F has analytic extension to Cin

⇔ F ∈ H−(Ps0 ) for correct choice of s0

⇔ MF ∈ H+(D0),

(3.6)

see [16] for details.
In order to derive a formulation, which is easy to implement, some more transfor-

mations are required: Given a function f , its image under L and M is decomposed
into

ML(f)(z) = 1

2s0
(f0 + (z − 1)F (z)) =:

1

s0
T−
(

f0
F

)
(z) (3.7)

in order to get a local coupling with the boundary data f0. As the Laplace transform
maps differentiation to multiplication by s0(z+1)/(z−1), straightforward calculation
yields

ML(f ′)(z) =
1

2
(f0 + (z + 1)F (z)) =: T+

(
f0
F

)
(z). (3.8)

For motivating this coupling, note that it follows from general theory on Laplace
transforms that if F is the Laplace transform of f one has lims→∞ sF (s) = f(0),
whenever f(0) exists. For details on the decomposition we again refer to [16, 17].
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It remains to take care of terms which contain multiplications by ξ and ((a +
b)ξ + hη)

−1 in (3.3). To this end, an additional operator P : H+(D0) → H+(D0)
(multiplication by ξ) 1 is implicitly defined by

ML{(·)f(·)} = M
{
− (Lf(·))′

}
= s−1

0 P (MLf) .

Direct calculations yield

(PF ) (z) =
(z − 1)2

2
F ′(z) +

z − 1

2
F (z), F ∈ H+(D0). (3.9)

Assembling the discrete system involves basically the assembly of discrete counterparts
of the operators T+, T− and P .

3.1.3. Choosing Basis Functions. Up to now, all transformations were on a
continuous level and no approximations were made. Because functions that are ana-
lytic on the complex unit-disc can be expanded in power series, the set of monomials{
zj
}∞
j=0

constitutes a basis of H+(D0). By using the space spanned by a finite num-

ber of monomials {zj}Nξ

j=0 as test and ansatz space, one obtains finite dimensional
approximations of T±

TNξ,+ =

⎛
⎜⎜⎜⎝

1 1
1 1

. . .
. . .

1

⎞
⎟⎟⎟⎠ , TNξ,− =

⎛
⎜⎜⎜⎝

1 −1
1 −1

. . .
. . .

1

⎞
⎟⎟⎟⎠ , (3.10)

and P

PNξ
=

⎛
⎜⎜⎜⎝

−1 1
1 −3 2

. . .
. . .

. . .

(Nξ − 1) −(2Nξ + 1)

⎞
⎟⎟⎟⎠ . (3.11)

The Hardy space monomials can also be transformed back to give a representation of
the corresponding ansatz and test functions in physical space, see [16]. To define the
local stiffness matrix, set for the ξ-integrals

L
(−1)
ξ,11 := −2 T�

Nξ,−
(
hηs0 I + (a+ b)PNξ

)−1
TNξ,−,

L
(0)
ξ,12 := −2 T�

Nξ,−TNξ,+, L
(0)
ξ,21 := −2 T�

Nξ,+
TNξ,−,

L
(1)
ξ,22 := −2hηT

�
Nξ,+

TNξ,+, L
(0)
ξ,22 := −2(a+ b)T�

Nξ,+
PNξ

TNξ,+.

(3.12)

1This operator is denoted by D in [17].
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Here the superscript counts the leading order in s0 and the subscripts correspond to
the position in the matrix in (3.3). For the η-integrals set

Lη,11 :=
(∫ 1

0

φ′
i(η)

(
hξ +

((a+ b)η − b)2

hξ

)
φ′
j(η)

)Nη

i,j=1
,

Lη,12 :=
(∫ 1

0

φ′
i(η)

b− (a+ b)η

hξ
φj(η)

)Nη

i,j=1
,

Lη,21 :=
(∫ 1

0

φi(η)
b− (a+ b)η

hξ
φ′
j(η)

)Nη

i,j=1
,

Lη,22 :=
(∫ 1

0

φi(η)
1

hξ
φj(η)

)Nη

i,j=1
.

(3.13)

For equations with second order temporal derivatives, the parameter s0 is chosen to
be frequency dependent in Fourier space, to be precise s0 = iω, translating back to

∂t in physical space. To avoid the inversion in L
(−1)
ξ,11 in (3.12), additional unknowns

are introduced such that the local stiffness matrices are given by

L
(0)
loc =

[
Lη,22 ⊗ L

(0)
ξ,22 + Lη,12 ⊗ L

(0)
ξ,12 + Lη,21 ⊗ L

(0)
ξ,21 −2Lη,11 ⊗ T�

Nξ,−
2I ⊗ TNξ,− −2I ⊗ (a+ b)MNξ

]

L
(1)
loc =

[
Lη,22 ⊗ L

(1)
ξ,22 0

0 −2I ⊗ hηI

]
. (3.14)

Similarly, local mass matrices corresponding to the mass integral in (3.1) are given by

M
(−1)
loc :=

[
M

(−1)
ξ ⊗Mη 0

0 0

]
, M

(−2)
loc :=

[
M

(−2)
ξ ⊗Mη 0

0 0

]
(3.15)

where

M
(−1)
ξ := −2hξhηT

�
Nξ,−TNξ,−

M
(−2)
ξ := −2hξ(a+ b)T�

Nξ,−PNξ
TNξ,−

and Mη :=
( ∫ 1

0

φi(η)φj(η)
)Nη

i,j=1
. (3.16)

For the drift term set

D
(0)
ξ,1 := −2T�

Nξ,−TNξ,+

D
(−1)
ξ,2 := −2(a+ b)T�

Nξ,−PNξ
TNξ,+

D
(−1)
ξ,3 := −2T�

Nξ,−TNξ,−

(3.17)

and

Dη,1 := hηd̃2

(∫ 1

0

φi(η)φj(η)
)Nη

i,j=1

Dη,2 := d̃2

( ∫ 1

0

φi(η)φj(η)
)Nη

i,j=1

Dη,3 :=
(∫ 1

0

φi(η)(d̃2(b− (a+ b)η) + d̃1hξ)φ
′
j(η)

)Nη

i,j=1

(3.18)
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where (d̃1, d̃2)
T = d̃ = Rd is the rotated d vector. The local drift matrices are then

given by

D
(0)
loc :=

[
D

(0)
ξ,1 ⊗Dη,1 0

0 0

]
, D

(−1)
loc :=

[
D

(−1)
ξ,2 ⊗Dη,2 +D

(−1)
ξ,3 ⊗Dη,3 0

0 0

]
(3.19)

In the computational domain Ω standard local finite element matrices M
(0)
loc , D

(0)
loc L

(0)
loc

without the s0-parameter are obtained. By assembling the local matrices to global
matrices, a spatial semi-discretization of (1.1) is obtained

p(∂t)

(
M (0) +

1

s0
M (−1) +

1

s20
M (−2)

)
u(t) =

(
L(0) + s0L

(1)
)
u(t)+(

D(0) +
1

s0
D(−1)

)
u(t)− k2

(
M (0) +

1

s0
M (−1) +

1

s20
M (−2)

)
u(t)

(3.20)

where u(t) is the time-dependent vector of degrees-of-freedom, including the coeffi-
cients of the monomial basis functions of the subset ofH+(D0) providing the boundary
condition.

3.2. Time discretization. All conducted simulations rely on the method-of-
lines approach: The PDE at hand is first discretized in space, as described in sub-
section 3.1, leading to the ODE (3.20) for the coefficients. This equation is then
integrated forward in time using different time-stepping schemes indicated below.

3.2.1. Schrödinger’s equation. For Schrödinger’s equation, (3.20) is solved by
the second order accurate, A-stable trapezoidal/mid-point rule. Denoting by un the
approximation to u(nh) at t = nh for some time-step size h, the discretization reads

∂tMu(t) = −ic2Lu(t) ↔ M
un+1 − un

h
= −ic2L

un+1 + un

2
(3.21)

where the mass and stiffness matrix are given by M = M (0) + s−1
0 M (−1) + s−2

0 M (−2)

and L = L(0) + s0L
(1). As in the one-dimensional case, non-physical solutions corre-

spond to poles in the first quadrant, hence s0 is chosen in the third quadrant and set
to

s0 = −1− i, (3.22)

in order to exclude poles in the region Cin indicated in Table 2.1.

3.2.2. Drift-Diffusion equation. In the examples for the drift-diffusion equa-
tion, (3.20) is integrated with the A-stable Radau IIA method with three stages of
order five, see [10, Sec. IV.5]. The parameter s0 is chosen to be real and negative, such
that the poles in the positive half-plane are excluded, corresponding to non-physical
exponentially increasing solutions. We set

s0 = −5, (3.23)

hence poles with positive real part, see Table 2.1, are excluded. The chosen value of
s0 produces good results, but some optimization is probably still possible. However,
the sensitivity of the results to the specific value is rather low, as long as the correct
half-plane is excluded.
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3.2.3. Wave equation. For the wave equation, poles in the lower complex half-
plane have to be excluded, see 2.1. For the wave equation it is p(∂t) = ∂tt, correspond-
ing to p(ω) = −ω2 in frequency space. As in the one-dimensional case, we choose the
parameter s0 to be frequency dependent, setting

s0 = iω. (3.24)

Transforming back to physical space yields

∂ttM
(0)u− ∂tM

(−1)u+M (−2)u = L(0)u− ∂tL
(1)u. (3.25)

Discretization is done again with the implicit trapezoidal rule, resulting in

M (0)u
n+1 − 2un + un−1

h2
−M (−1)u

n+1 − un−1

2h
+M (−2)u

n+1 + 2un + un−1

4
=

L(0)u
n+1 + 2un + un−1

4
− L(1)u

n+1 − un−1

2h
.

(3.26)

4. Numerical results. The computational domain in all simulations is a square
[−4, 4] × [−4, 4] in the two-dimensional plane with slightly smoothed corners, see
Figure 3.1. Sketched in light gray are the trapezoidal elements spanned by the rays
in the exterior domain while the darker triangles correspond to the triangulation of
the interior domain. In order to obtain higher resolutions, the shown mesh is refined
using up to five uniform refinement steps. As the original mesh is very coarse, no
errors are reported for simulations on the unrefined grid, because at least lower order
finite elements do not produce reasonable solutions there.

4.1. Schrödinger’s equation. For p(∂t) = i∂t, c = k = 0 and d = (0, 0)T ,
equation (1.1) yields Schrödinger’s equation. For this case, exact solutions of the
form

uα(x, y, t;α) =
i

4t+ i
exp

(
−i
(
x2 + y2

)
− α (x+ y)− 2α2t

4t+ i

)
(4.1)

with a parameter α are available. We use a superposition of two such solutions, that
is

u(x, y, t) = uα(x, y, t;α = 1.4) + uα(x, y, t;α = −2), (4.2)

and employ u(x, y, 0) as initial value. The discretization in space employs finite el-
ements of orders one to four in the interior. Simulations are run until T = 10 with
time-steps Δt = 1/800, 1/1600, 1/3200, 1/6000 on meshes refined up to five times and
for values of Nη (coefficients per ray) between Nη = 1 and Nη = 20. Output is gener-
ated at two hundred points in time, distributed equally over the time interval [0, 10].

Figure 4.1 shows the maximum relative l2-error over all generated outputs versus
the refinement levels of the mesh for finite elements of order one to four. All elements
converge with the expected rate or better until the error saturates at about 3×10−6 in
the case of the higher order finite elements. At this point, the error from the temporal
discretization starts dominating, compare for Table 4.1, and increasing the accuracy
of the spatial discretization yields no more improvement unless the accuracy of the
time-discretization is also increased.
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Fig. 4.1. Verification of the spatial order of convergence for the Schrödinger equation. Shown
is the maximum of the relative l2-errors over all outputs versus the refinement level of the mesh
for finite elements of order one to four. The employed time-step is Δt = 1/6000 and Nη = 20
coefficients along each ray are used. As a guide to the eye, lines with slopes one to four have been
added.

time-step log10(error) Conv. Rate
1/800 -3.8 –
1/1600 -4.4 2.0
1/3200 -5.0 2.0
1/6000 -5.5 2.0

Table 4.1

Maximum relative l2-error over all generated outputs for the Schrödinger equation, depending
on the time-step size. The simulation used finite elements of order four, a five times refined mesh
and Nη = 20 coefficients along each exterior ray.

Table 4.1 shows the maximum relative l2-error versus the length of the time-step,
confirming the convergence rate of two expected from the employed second order
accurate trapezoidal rule.

Figure 4.2 shows how the error decays with increasing Nη. The left figure shows
the maximum relative l2-error for simulations with finite elements of order one to
four, a three times refined mesh and a time-step of Δ = 1/6000. In all cases, the error
decays super-algebraically with Nη until it saturates at the level of the respective
spatial discretization error. Only for fourth order elements, an influence from the
boundary condition error is visible at Nη = 20. The right figure shows the error at
four different points in time for the fourth order elements. The error decays super-
algebraically at all four points in time, even at later times where most of the solution
has left the domain.

Figure 4.3 shows the relative l2-error over time for different values of Nη. In all
cases, the error increases as the wave packets hit the boundary of the computational
domain and subsequently decays to a level determined by the number of coefficients
per ray Nη. The error decays faster for larger values of Nη, but for values of Nη = 10



12 D. Ruprecht, A. Schädle, F. Schmidt

Fig. 4.2. Relative l2-error depending on the number of coefficients Nη per ray in the exterior
domain for Schrödinger’s equation. Left: Maximum error over all generated outputs for finite
elements of order one to four on a three times refined mesh. Right: Error at four fixed points in
time for the simulation with finite elements of order four. In all cases, a time-step of Δ = 1/6000
has been used.

Fig. 4.3. Relative l2-error over time for the Schrödinger equation for six different values of
Nη. The simulation used finite elements of order four, a five times refined mesh and a time-step
Δt = 1/6000.

or larger, the levels at which the error saturates and in particular the error at the end
of the simulation is identical.

4.2. Drift-diffusion equation. Setting p(∂t) = ∂t and k = 0 in (1.1) yields the
drift-diffusion equation. Note that the heat equation is included here as the special
case d = (0, 0)T. An analytic solution is given by

u(x, y, t) =
1

t
exp

(
− 1

4tc2

[
(x− d1t)

2
+ (y − d2t)

2
])

. (4.3)

Set

d = (d1, d2) = (1.5, 1.5) , and c = 0.5 (4.4)
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Fig. 4.4. Verification of the spatial order of convergence for the drift-diffusion equation inte-
grated until T = 5. Shown is the maximum of the relative l2-errors over all generated outputs. The
number of coefficients per ray is Nη = 51 and the time-step is Δt = 1/160.

time-step log10(error) Conv. Rate
1/10 -3.6 –
1/20 -5.0 4.6
1/30 -5.9 4.9
1/40 -6.5 4.9
1/60 -7.4 4.9
1/80 -8.0 5.0
1/160 -9.2 4.0

Table 4.2

Maximum relative l2-error over all generated outputs depending on the time-step size for finite
elements of order six, a four times refined mesh and Nη = 51 coefficients per ray.

and start the integration at t0 = 0.2 with initial value u(x, y, t0). This yields a
Gaussian function with a peak initially close to the origin which is subsequently
advected to the upper right corner of the square while being spread out by diffusion.
Integration in time is done by the fifth order Radau IIA(5) scheme. The simulations
are run until T = 5 with finite elements of order one to six, on meshes refined up to
four times, values of Nη between 1 and 51 and time-steps ranging from Δ = 1/10 to
Δt = 1/160.

Figure 4.4 shows the maximum relative l2-error over all generated outputs versus
the refinement level of the mesh. The number of coefficients per ray is Nη = 51 and
the time-step is Δt = 1/160. As a guide to the eye, lines with slopes from one to six
are added. All elements converge with the expected rate or better, confirming again
that the pole condition does not compromise the order of convergence of the spatial
discretization.

Table 4.2 shows the maximum relative l2-error versus the length of the employed
time-step for finite elements of order six, a four times refined mesh and Nη = 51.
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Fig. 4.5. Relative l2-error depending on the number of coefficients Nη per ray in the exterior
domain for the drift-diffusion equation. Left: Maximum error over all generated outputs for finite
elements of order one to six on a three times refined mesh. Right: Error at four fixed points in time
for the simulation with finite elements of order six. In all cases, a time-step Δt = 1/160 has been
used.

From Δt = 1/10 to Δt = 1/20, a slightly reduced convergence rate is observed,
probably because the time-step size is still in the pre-asymptotic regime. The reduced
convergence rate in the last refinement is because the error approaches the spatial
discretization error, see Figure 4.4. Beside that, the expected fifth order convergence
is observed, demonstrating that the pole condition can not only preserve the accuracy
of high order finite elements but also of high order integration schemes.

Figure 4.5 shows the relative l2-error versus the number of coefficients Nη. The
left figure shows the maximum error over all outputs for finite elements of order
one to six, a three times refined mesh and a time-step Δt = 1/160. In contrast to
Schrödinger’s equation, for small values of Nη there is only a minor decrease of the
error. Also, below Nη, the error is not decreasing monotonically with the number of
coefficients. After Nη = 10, rapid super-algebraically decrease of the error is again
observed until the error saturates at a level determined by the accuracy of the spatial
discretization. Note that Nη = 30 coefficients per ray are sufficient here to reduce the
boundary condition error to the level of the spatial discretization error in all cases.
The right figure shows the relative error at four different points in time. Again the
error generally decays super-algebraically with the number of coefficients, but now
the decay rates are noticeably lower at later points in time. Note that at t = 0.43, the
Gauss peak has not yet reached the boundary, so that the boundary condition has no
visible effect on the error at this time.

Figure 4.6 shows the relative l2-error over time for different values of Nη, finite
elements of order six and a four times refined mesh. As for Schrödinger’s equation,
the error starts increasing at some point in time, but the increase starts later as the
number of coefficients increases. On the other hand, for the simulations with Nη = 15
or less coefficients, the errors at the end of the simulation are about the same and
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Fig. 4.6. Relative l2-error over time for the drift-diffusion equation for different values of Nη

at a four times refined mesh, finite elements of order six and a time-step Δt = 1/160.

only for larger values of Nη a significantly reduced error is observed at the end of
the simulation. Together with Figure 4.5, this illustrates that for the drift-diffusion
example, the error is not monotonically decreasing with Nη for small values of Nη

and a certain minimum number of coefficients per ray is required before the onset of
the super-algebraic decay.

4.3. Wave and Klein-Gordon equation. For p(∂t) = ∂tt and d = (0, 0)T,
(1.1) becomes the Klein-Gordon equation, containing the wave equation as the special
case k = 0. While the pole condition could successfully provide TBCs for both
equations in the one-dimensional case as well as in a two-dimensional wave-guide
problem, stability problems arise in the fully two-dimensional case, rendering the pole
condition in the here presented form inapplicable to both equations for finite elements
of order two or higher. Resolving these issues to is planned for future research.

Below, the instability is documented briefly. Use an initial distribution

u(x, y) = exp
(
−2x2 − 2y2

)
, (4.5)

finite elements of order one to four and up to four refinement steps for the mesh.
Integrate in time using implicit trapezoidal rule with a time-step Δt = 1/1280 until
T = 100.

Figure 4.7 shows the maximum l2-error over all generated outputs versus the size
of the elements of the employed mesh for finite elements of order one to four. In
order to obtain a readable plot, the error is capped at 101 and values of 10 correspond
to unstable runs. While first order elements are stable on all five meshes, showing
again better than expected convergence, for higher order elements and fine meshes,
the method becomes unstable. Second order elements are unstable only on the finest
mesh while third and fourth order elements already become unstable after three or
two refinement steps. Note that on the coarser meshes where the method is stable,
the expected or better decay rates of the error are observed. Similar behavior is found
for the Klein-Gordon equation.

Figure 4.8 shows the energy of the discrete solution over time for different values
of Nη on the finest mesh for finite elements of order two. The simulations are stable
for Nη = 2, 4, 6. They are also stable until about t = 20 for Nη = 10, 12, 15, but
an exponential instability occurs after this point in time. The instability also occurs
when the simulation is run on a circular domain. Note that the employed integration
scheme is A-stable, so that the instability on finer mesh is not arising from a violation
of some CFL-type stability limit.
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Fig. 4.7. Spatial order of convergence for the wave equation integrated until T = 100. Shown
is the maximum l2-error over all generated outputs. The error is capped at 101, so depicted error
values of 10 correspond to unstable runs.

Fig. 4.8. Energy over time for the wave equation for different values of Nη. The refinement
level of the mesh is two and the order of the used finite elements is four.

5. Conclusions. The pole condition approach to transparent boundary condi-
tions, derived in [18] for the time-dependent, one-dimensional case, is extended to
time-dependent two-dimensional problems. The pole condition identifies in- and out-
going modes by associating them with poles of the spatial Laplace transform in the
complex plane. The complex plane is then divided into two half-planes, Cin and
Cout, containing the poles corresponding to incoming and outgoing modes respec-
tively. To suppress modes traveling from the exterior into the computational domain,
the Laplace transform is required to be analytic in Cin. In order to obtain a numer-
ically implementable formulation, Cin is mapped to the unit circle by a conformal
Möbius transformation. The Laplace transform is then extended in a power series on
the unit circle with the coefficients of the expansion being connected to the interior
degrees of freedom on the boundary. Truncating the series after a finite number of
terms yields an approximate and implementable TBC.

Numerical examples are presented in order to investigate the performance of the
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pole condition approach: As in the 1D-case, the considered generic PDE contains
different well-known equations for specific choices of parameters. Excellent results are
obtained for Schrödinger’s equation and the drift-diffusion equation: The presented
numerical experiments demonstrate that the convergence order of finite elements up to
order six is retained and also that the convergence order of the temporal discretization
is not affected if sufficiently many coefficients are used for the boundary condition.
Further it is shown that the error introduced by the approximate boundary condition
decays super-algebraically as the number of coefficients in the expansion of the Laplace
transform increases. For the drift-diffusion equation, a small minimal number of
coefficients was found to be required to reach the regime of super-algebraic error
decay.

Unfortunately, in contrast to the one-dimensional case, the approach exhibits
instabilities for the two-dimensional wave and Klein-Gordon equation if using finite
elements of order two or higher. Hence in the present form the pole condition is of
limited use for these second order hyperbolic equations. A further investigation of the
instability and hopefully a remedy will be subject of future research.

REFERENCES

[1] B. Alpert, L. Greengard, and T. Hagstrom, Rapid evaluation of nonreflecting boundary
kernels for time-domain wave propagation, SIAM J. Numer. Anal., 37 (2000), pp. 1138–
1164.

[2] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle, A review of trans-
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