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Abstract. This paper is devoted to an optimal control problem of Maxwell’s equations in the presence of
pointwise state constraints. The control is given by a divergence–free three–dimensional vector function representing
an applied current density. To cope with the divergence–free constraint on the control, we consider a vector potential
ansatz. Due to the lack of regularity of the control–to–state mapping, existence of Lagrange multipliers cannot be
guaranteed. We regularize the optimal control problem by penalizing the pointwise state constraints. Optimality
conditions for the regularized problem can be derived straightforwardly. It also turns out that the solution of the
regularized problem enjoys higher regularity which then allows us to establish its convergence towards the solution
of the unregularized problem. The second part of the paper focuses on the numerical analysis of the regularized
optimal control problem. Here the state and the control are discretized by Nédélec’s curl–conforming edge elements.
Employing the higher regularity property of the optimal control, we establish an a priori error estimate for the
discretization error in the H(curl)–norm. The paper ends by numerical results including a numerical verification of
our theoretical results.
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1. Introduction. Maxwell’s equations describe the interaction between magnetic and electric
fields given by a coupled system of first–order partial differential equations (see e.g. [17]). If implicit
time-stepping is used (cf. [7, 11, 23]), then we are faced with a degenerate elliptic boundary value
problem of the following type:

(1.1)

{
curlα curly + βy = j in Ω

y × n = 0 on ∂Ω.

Here Ω ⊂ R3 is a bounded, simply connected Lipschitz polyhedral domain with a connected bound-
ary ∂Ω. Further the coefficients α, β ∈ L∞(Ω) satisfy

(1.2) α ≤ α(x) ≤ α a.e. in Ω β ≤ β(x) ≤ β a.e. in Ω,

with some constants 0 < α < α <∞ and 0 < β < β <∞. As far as the analysis and the numerical
treatment of the solution to (1.1) are concerned, we refer to [1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 18, 19,
20, 21, 23]. Maxwell’s equations play an essential role in many modern technologies and applications
including fusion energy, magnetohydrodynamics (MHD), electromagnetic induction heating, signal
processing, magnetic levitation, and many more. Optimal control of Maxwell’s equations is truly
delicate and calls for a careful study. The present paper is devoted to the mathematical and
numerical analysis of a class of state–constrained optimal control problems governed by (1.1) with
j as the control representing an applied current density. In view of the charge conservation law, the
applied current j needs to satisfy the following consistency condition:

(1.3) div j = 0 in Ω j · n = 0 on ∂Ω.
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We consider a vector potential ansatz to cope with the divergence–free constraint (1.3). More
precisely, since

{j ∈ L2(Ω) | div j = 0 in Ω, j · n = 0 on ∂Ω} = {curlu | u ∈H(curl), u× n = 0 on ∂Ω}

(cf. [10]), we are justified to employ the ansatz

(1.4) j = curlu,

and use the vector potential u ∈ H0(curl) := {q ∈ H(curl) | q × n = 0 on ∂Ω} as our control.
Based on (1.4), we concentrate throughout this paper on the following optimal control problem:

(P) min
(u,y)∈H0(curl)×H0(curl)

J(u,y) :=
1
2

∫
Ω

|y − yd|2 dx+
τ

2

∫
Ω

|curly − yc|2 dx+
κ

2
‖u‖2H(curl)

subject to

(1.5)

{
curlα curly + βy = curlu in Ω

y × n = 0 on ∂Ω

and to the pointwise state constraints

(1.6) ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω.

Here, the cost parameters κ > 0, τ ≥ 0 and yd,yc,ya,yb ∈ L
2(Ω) are given data, where yd and yc

represent the desired state and the desired curl of the state, respectively. Further ya(x) ≤ yb(x)
holds a.e. in Ω. Provided that the feasible set of (P) is not empty, the optimal control problem
(P) admits a unique solution. Let us remark that the pointwise state constraints in (1.6) are of
importance for instance to avoid undesired singularities in the optimal state y of (P) (see Costabel
et al. [8, 9] concerning singularities in the solution of Maxwell’s equations). In particular, if
ya, yb ∈ L

∞(Ω), then (1.6) guarantees that y lives also in L∞(Ω).
One of the main complexities involved in (P) is raised by the lack of regularity of the control–

to–state mapping u 7→ y associated with the Maxwell’s equations (1.5). Even if ya and yb are
assumed to be continuous, (1.6) cannot be considered in the space of continuous functions since the
control–to–state mapping is not well–defined as an operator fromH0(curl) to C(Ω). For this reason
we do not know how to derive existence of Lagrange multipliers under a reasonable assumption as
the cone of nonnegative functions of the space associated with the state constraints has an empty
interior.

We regularize the optimal control problem (P) by penalizing the pointwise state constraints.
The corresponding regularized optimal control problem reads as follows:

(Pγ)

{
min

(u,y)∈H0(curl)×H0(curl)
Jγ(u,y)

subject to (1.5),

where Jγ(u,y) := J(u,y) + γ
2 (‖max(0,y − yb)‖2L2(Ω)

+ ‖max(0,ya − y)‖2
L2(Ω)

). Here, for every
three–dimensional vector function q = (q1, q2, q3), max(0, q) = (max(0, q1),max(0, q2),max(0, q3))
with max(0, ·) in the pointwise sense. In literature, the penalization method above is also known
as the Moreau–Yosida regularization. This type of regularization was introduced by Ito and Ku-
nisch [15, 16] to deal with measure–valued Lagrange multipliers of H1(Ω)–elliptic optimal control
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problems with pointwise state constraints. See Casas [6] for the analysis of H1(Ω)–elliptic state–
constrained optimal control problems. As an approximation of (P), Moreau–Yosida regularization
seems to be quite suitable due to the availability of its Karush–Kuhn–Tucker (KKT) type optimality
conditions with regular Lagrange multipliers.

To the best knowledge of the author, this article is the first contribution towards optimal control
of Maxwell’s equations in the presence of pointwise state constraints. Our main theoretical results
established in this paper are as follows: First, by using a Helmholtz–decomposition, we show that
the optimal control u of (P) satisfies u ∈H0(curl)∩H

1
2 +ε(Ω) with some ε > 0. Further, exploiting

the optimality conditions for the regularized problem (Pγ), we prove that the optimal control uγ

of (Pγ) possesses the following regularity property:

(1.7) uγ , curluγ ∈H
1
2 +ε(Ω).

Here we see that uγ enjoys better regularity than u. With (1.7) at hand and using certain regularity
properties of the control–to–state mapping, we are able to show the strong convergence of (uγ)γ>0

towards u with respect to the H(curl)–topology as γ →∞. The last part of this paper deals with
the numerical analysis of (Pγ). We discretize both the control and the state by Nédélec’s edge
elements of the first family (see [20]). Employing (1.7), we are able to establish an a priori estimate
for the H(curl)–error between uγ and its finite element approximation. The rate of convergence
is 0.5 + ε and seems to be optimal.

The rest of this paper is organized as follows: in the next section we introduce our notation
and present a regularity result for (P). Section 3 is devoted to the mathematical analysis of the
regularized optimal control problem (Pγ). Here, we discuss the regularity property of uγ and prove
the strong H(curl)–convergence of (uγ)γ>0 as γ → ∞. In Section 4, we consider a finite element
approximation of (Pγ) based on an edge element discretization, and an a priori error estimate for
the discretization error is derived. Finally, in Section 5, we present a report on numerical tests
including a numerical verification of the error estimate.

2. Preliminaries. We begin by introducing the notation used in this article. Thereafter we
prove a regularity result for the solution to the optimal control problem (P).

2.1. Notation. Throughout the paper, c denotes a generic positive constant which can take
different values on different occasions. If V is a Hilbert space, then we use the notation ‖ · ‖V and
(·, ·)V for a standard norm and a standard inner product used in V . If V is continuously embedded
in another normed function space Y , then we write V ↪→ Y . We use a bold typeface to indicate
a three–dimensional vector function or a Hilbert space of three–dimensional vector functions. The
following spaces are used throughout the paper:

H(curl) = {q ∈ L2(Ω) | curl q ∈ L2(Ω)} H0(curl) = {q ∈H(curl) | q × n = 0 on ∂Ω}
Hs(curl) = {q ∈Hs(Ω) | curl q ∈Hs(Ω)} Hs

0(curl) = Hs(curl) ∩H0(curl)
H(div) = {q ∈ L2(Ω) | div q ∈ L2(Ω)} H0(div) = {q ∈H(div) | q · n = 0 on ∂Ω}
H0,0(div) = {q ∈H0(div) | div q = 0},

where s is a nonnegative real number. The spaces H(curl), H(div), Hs(curl), with s ≥ 0, are
endowed with the following norms:

‖q‖H(curl) = (‖q‖2L2(Ω) + ‖curl q‖2L2(Ω))
1
2

‖q‖H(div) = (‖q‖2L2(Ω) + ‖div q‖2L2(Ω))
1
2

‖q‖Hs(curl) = (‖q‖2Hs(Ω) + ‖curl q‖2Hs(Ω))
1
2 .
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2.2. Regularity result. In the upcoming lemma, we recall an embedding result important
for our subsequent analysis.

Lemma 2.1 (Amrouche et al. [3]). There exists a constant ε > 0 such that

(2.1) H0(curl) ∩H(div) ↪→H
1
2 +ε(Ω) and H(curl) ∩H0(div) ↪→H

1
2 +ε(Ω).

If Ω is convex, then (2.1) holds with ε = 1
2 .

Let us further introduce the solution operator S : H0(curl) −→ H0(curl) that assigns to
every element u ∈H0(curl) the solution y ∈H0(curl) of

(2.2) (α curly, curl q)L2(Ω) + (βy, q)L2(Ω) = (curlu, q)L2(Ω) ∀q ∈H0(curl).

Employing the solution operator S, we can rephrase the optimal control problem (P) as follows:

(P) min
u∈Ufeas

f(u) := J(u,Su),

where the feasible set Ufeas ⊂H0(curl) is given by the following convex and closed set:

Ufeas := {u ∈H0(curl) | ya(x) ≤ (Su)(x) ≤ yb(x) a.e. in Ω}.

We assume that Ufeas is not empty. For instance, if ya(x) ≤ 0 and yb(x) ≥ 0 hold a.e. in Ω, then
Ufeas 6= ∅ since 0 ∈ Ufeas. In view of Ufeas 6= ∅, existence and uniqueness of an optimal solution
u ∈ H0(curl) of (P) follow from classical arguments. This solution turns out to satisfy a higher
regularity property as demonstrated in the following theorem:

Theorem 2.2. The optimal solution of (P) satisfies u ∈ H0(curl) ∩H
1
2 +ε(Ω) with ε > 0 as

in Lemma 2.1.
Proof. To demonstrate the higher regularity property of u, we make use of the following

Helmholtz–decomposition:

(2.3) H0(curl) = ∇H1
0 (Ω)⊕XN,0,

withXN,0 := {z ∈H0(curl) | (z,∇φ)L2(Ω) = 0 ∀φ ∈ H1
0 (Ω)} = {z ∈H0(curl)∩H(div ) | div z =

0}. According to (2.3), there exists a unique pair (φ, z) ∈ H1
0 (Ω)×XN,0 such that

(2.4) u = ∇φ+ z.

Now, for any δ ∈ R, let us introduce

(2.5) uδ := δ∇φ+ z.

Obviously, since curl∇φ = 0, we have

(2.6) curluδ = curl z = curlu =⇒ Suδ = Su ∀δ ∈ R.

As a consequence, uδ ∈ Ufeas holds for all δ ∈ R, and hence

(2.7) f(u) ≤ f(uδ) =⇒ ‖u‖2L2(Ω) ≤ ‖uδ‖
2
L2(Ω).
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As (z,∇φ)L2(Ω) = 0, the latter inequality along with (2.4)–(2.5) implies that

0 ≥ ‖u‖2L2(Ω) − ‖uδ‖
2
L2(Ω) = ‖∇φ‖2L2(Ω) + ‖z‖2L2(Ω) − δ

2‖∇φ‖2L2(Ω) − ‖z‖
2
L2(Ω)

= (1− δ2)‖∇φ‖2L2(Ω).
(2.8)

Since (2.8) holds for any δ ∈ R, it follows that ∇φ = 0 and thus, by Lemma 2.1, we come to the
conclusion that u = z ∈XN,0 ↪→H

1
2 +ε(Ω).

3. Analysis of (Pγ). Analogously to (P), the regularized optimal control problem (Pγ) can
be equivalently expressed as follows:

(Pγ) min
u∈H0(curl)

fγ(u) := Jγ(u,Su).

As (Pγ) belongs to a class of unconstrained linear–quadratic optimization problems, its sufficient
and necessary optimality condition at the optimal solution uγ is given by

(3.1) fγ ′(uγ)q = 0 ∀q ∈H0(curl).

This variational equality yields the following characterization for the solution uγ :
Theorem 3.1. Let γ > 0. Then uγ ∈H0(curl) is the optimal solution of (Pγ) if and only if

there exist pγ ∈H0(curl) and λγb ,λ
γ
a ∈ L

2(Ω) such that

(α curlpγ , curl q)L2(Ω) + (βpγ , q)L2(Ω) = (Suγ − yd + λγb − λ
γ
a, q)L2(Ω)(3.2)

+τ(curl Suγ − yc, curl q)L2(Ω) ∀q ∈H0(curl)

(curluγ , curl q)L2(Ω) + (uγ , q)L2(Ω) = −κ−1(pγ , curl q)L2(Ω) ∀q ∈H0(curl)(3.3)

λγb = γmax(0,Suγ − yb) λγa = γmax(0,ya − Suγ).(3.4)

Proof. By the Lax-Milgram lemma, (3.2) admits a unique solution pγ ∈H0(curl). Setting Sq
with q ∈H0(curl ) as a test function in (3.2), we obtain

(α curlpγ , curl Sq)L2(Ω) + (βpγ ,Sq)L2(Ω) =(Suγ − yd + λγb − λ
γ
a,Sq)L2(Ω)

+ τ(curl Suγ − yc, curl Sq)L2(Ω) ∀q ∈H0(curl ).

According to the definition of S, we have

(α curl Sq, curlpγ)L2(Ω) + (βSq,pγ)L2(Ω) = (curl q,pγ)L2(Ω),

from which we deduce that

(Suγ−yd+λ
γ
b−λ

γ
a,Sq)L2(Ω)+τ(curl Suγ−yc, curl Sq)L2(Ω) = (pγ , curl q)L2(Ω) ∀q ∈H0(curl).

By the latter variational equality, we see that (3.1) is equivalent to (3.3).
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Next, we investigate the regularity property of the solution to the regularized problem (Pγ).
Exploiting the structure of the optimality system in Theorem 3.1, we are able to extract a regularity
result for the optimal solution uγ of (Pγ) which is better than Theorem 2.2.

Theorem 3.2. Let ε > 0 be as in Lemma 2.1. Then

uγ ∈H
1
2 +ε
0 (curl)

holds for all γ > 0. Furthermore, there exists a positive constant c independent of γ such that

(3.5) ‖uγ‖
H

1
2 +ε(Ω)

≤ c‖uγ‖H(curl).

Proof. Setting q = ∇φ with φ ∈ C∞0 (Ω) in the variational equality (3.3) results in

(uγ ,∇φ)L2(Ω) = 0 ∀φ ∈ C∞0 (Ω),

from which we deduce that

(3.6) uγ ∈H0(curl) ∩H(div)

and

(3.7) ‖uγ‖H(curl)∩H(div) = ‖uγ‖H(curl).

Further, the variational equality (3.3) also implies that

(curluγ , curl q)L2(Ω) = −(uγ , q)L2(Ω) − κ−1(pγ , curl q)L2(Ω)

= −(uγ + κ−1curlpγ , q)L2(Ω) ∀q ∈ C∞0 (Ω)3.

Therefore, the distributional definition of the curl yields

(3.8) curl curluγ = −uγ − κ−1curlpγ ∈ L2(Ω) =⇒ curluγ ∈H(curl).

In addition, as uγ ∈H0(curl), we obtain curluγ ∈H0,0(div) such that

(3.9) curluγ ∈H0,0(div) ∩H(curl).

In view of (3.6) and (3.9), Lemma 2.1 ensures that uγ ∈ H
1
2 +ε
0 (curl). Also, the estimate (3.5) is

an immediate consequence of Lemma 2.1 along with (3.7). In conclusion, the assertion is valid.

Invoking Theorem 3.2, we obtain the following convergence result:
Lemma 3.3. Let ε > 0 be as in Lemma 2.1. Then

uγ → u strongly in L2(Ω) as γ →∞
curluγ ⇀ curlu weakly in L2(Ω) as γ →∞.

Proof. Since u ∈ Ufeas and uγ is the optimal solution of (Pγ), we have

(3.10) f(uγ) ≤ fγ(uγ) ≤ fγ(u) = f(u) ∀γ > 0,
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from which we deduce that
κ

2
‖uγ‖2H(curl) ≤ f(u) ∀γ > 0.

By the latter inequality, Theorem 3.2 guarantees that (uγ)γ>0 is uniformly bounded in H0(curl)∩
H

1
2 +ε(Ω). For this reason, there exists a subsequence of (uγ)γ>0, denoted w.l.o.g. by (uγ)γ>0,

such that

uγ ⇀ ũ weakly in H
1
2 +ε(Ω) as γ −→∞,(3.11)

uγ ⇀ ũ weakly in H0(curl) as γ −→∞,(3.12)

and hence

(3.13) Suγ ⇀ Sũ weakly in H0(curl) as γ −→∞.

Thanks to the weak lower semicontinuity of f : H0(curl)→ R, (3.12) and (3.10) yield

(3.14) f(ũ) ≤ lim inf
γ→∞

f(uγ) ≤ lim sup
γ→∞

f(uγ) ≤ f(u).

Let us now demonstrate that ũ ∈ Ufeas. By the definition of fγ , we infer from (3.10) that

‖max(0,Suγ − yb)‖2L2(Ω) + ‖max(0,ya − Suγ)‖2L2(Ω) ≤ 2γ−1f(u).

In view of the weak lower semicontinuity of M : L2(Ω) −→ R, M(q) = ‖max(0, q)‖2
L2(Ω)

, we
obtain from the latter inequality and (3.13) that

max(0,Sũ− yb) = max(0,ya − Sũ) = 0,

and thus ũ ∈ Ufeas. Consequently, since u is the optimal solution of (P), (3.14) implies that u = ũ.
In conclusion, the assertion follows from the latter identity along with (3.11) and the compactness
of the embedding H

1
2 +ε(Ω) ↪→ L2(Ω).

Remark 3.4. Lemma 3.3 does not necessarily guarantee that uγ → u strongly in H0(curl )
as γ → ∞. To establish the strong convergence of (uγ)γ>0 in H0(curl), we require some higher
regularity properties of the solution operator S which we shall address in the upcoming propositions.

Proposition 3.5. Let β ∈ C0,1(Ω). Then the solution operator S is well–defined and bounded
from H0(curl) to H0(curl) ∩H

1
2 +ε(Ω) with ε > 0 as in Lemma 2.1.

Proof. Let u ∈H0(curl) and y = Su. Since β is away from zero and Lipschitz–continuous, we
have 1

β ∈ C
0,1(Ω) and consequently 1

βφ ∈ H
1
0 (Ω) holds for all φ ∈ C∞0 (Ω). Then setting q = ∇( 1

βφ)
with φ ∈ C∞0 (Ω) in the variational equality (2.2) results in

(βy,∇(
1
β
φ))L2(Ω) = (curlu,∇(

1
β
φ))L2(Ω)=0 ∀φ ∈ C∞0 (Ω).

Since ∇φ = ∇(β 1
βφ) = β∇( 1

βφ) + (∇β) 1
βφ, we obtain

0 = (βy,∇(
1
β
φ))L2(Ω) = (y, β∇(

1
β
φ))L2(Ω) = (y,∇φ)L2(Ω) − (

1
β
∇β · y, φ)L2(Ω) ∀φ ∈ C∞0 (Ω),
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or equivalently

(y,∇φ)L2(Ω) = (
1
β
∇β · y, φ)L2(Ω) ∀φ ∈ C∞0 (Ω).

Consequently, by the distributional definition of the divergence, we obtain

(3.15) divy = − 1
β
∇β︸ ︷︷ ︸
∈L∞

· y︸︷︷︸
∈L2

∈ L2(Ω).

Hence, thanks to Lemma 2.1 , y ∈H0(curl) ∩H(div) ↪→H
1
2 +ε(Ω). Also (3.15) implies that

‖y‖H(curl)∩H(div) = (‖y‖2L2(Ω) + ‖curly‖2L2(Ω) + ‖divy‖2L2(Ω))
1
2 ≤ c‖y‖H(curl) = c‖Su‖H(curl)

≤ c‖u‖H(curl)

with c > 0 independent of y and u. This completes the proof.

Proposition 3.6. Let α, β ∈ C0,1(Ω). Then the solution operator S is well–defined and

bounded from H0(curl) to H
1
2 +ε
0 (curl) with ε > 0 as in Lemma 2.1.

Proof. Let u ∈H0(curl) and Su = y. From variational equality (2.2), y satisfies

(αcurly, curl q)L2(Ω) = (−βy + curlu, q)L2(Ω) ∀q ∈ C∞0 (Ω)3,

from which we infer that

(3.16) curl (αcurly) = −βy + curlu ∈ L2(Ω) =⇒ αcurly ∈H(curl).

Since α is away from zero and Lipschitz–continuous, 1
α is also Lipschitz–continuous such that

curly =
1
α︸︷︷︸
∈C0,1

αcurly︸ ︷︷ ︸
∈H(curl)

∈H(curl),

and consequently Lemma 2.1 yields

(3.17) curly ∈H0,0(div) ∩H(curl) ↪→H
1
2 +ε(Ω).

Furthermore

‖curly‖H(div)∩H(curl) = (‖curly‖2L2(Ω) + ‖curl curly‖2L2(Ω))
1
2

≤ c(‖u‖2H(curl) + ‖curl curly‖2L2(Ω))
1
2

(3.18)

with a constant c > 0 independent of y and u. Further, as 1
α ∈ C

0,1(Ω) and αcurly ∈ H(curl),
we have

curl curly = curl
1
α
αcurly = ∇(

1
α

)× αcurly +
1
α

curlαcurly

=︸︷︷︸
(3.16)

∇(
1
α

)× αcurly +
1
α

(−βy + curlu).
(3.19)
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Using (3.19) in (3.18), we infer that

‖curly‖H(div)∩H(curl) ≤ c‖u‖H(curl)(3.20)

holds with a positive constant c independent of y and u. Combining (3.17), (3.20) and Proposition
3.5, we see that the assertion is valid.

We are now in the position to establish the convergence of (uγ)γ>0 with respect to the
H0(curl)–topology:

Theorem 3.7. Assume that α, β ∈ C0,1(Ω). Then

(3.21) uγ → u strongly in H0(curl) as γ →∞.

Proof. We recall from Lemma 3.3 that

uγ → u strongly in L2(Ω) as γ →∞(3.22)
curluγ ⇀ curlu weakly in L2(Ω) as γ →∞.(3.23)

Then Proposition 3.6 together with the compactness of the embedding H
1
2 +ε
0 (curl) ↪→ H0(curl)

implies that

(3.24) Suγ → Su strongly in H0(curl) as γ →∞.

Now, according to (3.14), lim
γ→∞

f(uγ) = f(u) such that (3.22) and (3.24) yield

lim
γ→∞

‖curluγ‖L2(Ω) = ‖curlu‖L2(Ω).

From the latter norm convergence and the weak convergence (3.23), it follows that that curluγ →
curlu strongly in L2(Ω) as γ →∞. In conclusion, the assertion is valid.

Remark 3.8. In the case of τ = 0 or equivalently

f(u) =
1
2
‖Su− yd‖2L2(Ω) +

κ

2
‖u‖2H(curl),

the compactness of S from H0(curl) to L2(Ω) is sufficient for the convergence (3.21). Thus the
Lipschitz–continuity assumption α ∈ C0,1(Ω) in Theorem 3.7 can be dropped, if τ = 0.

4. Finite element approximation of (Pγ). This section is concerned with the numerical
analysis of (Pγ). Based on an edge element discretization for the state and the control, we will soon
propose a finite element approximation of (Pγ). Our ultimate goal is to set up an a priori estimate
for the error between the optimal solution uγ and its finite element approximation. The key point
to establish the error estimate lies in the regularity uγ ∈ H

1
2 +ε
0 (curl) as proven in Theorem 3.2.

Let {Th}h>0 be a regular family of triangulations Th = {T} consisting of tetrahedron T such that
Ω =

⋃
T∈Th

T. Here h stands for the maximal diameter of all elements T . We define the space of

lowest order edge elements of Nédélec’s first family by

Vh := {qh ∈H0(curl) | qh|T = aT + bT × x with aT , bT ∈ R3}.
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The finite element approximation of (Pγ) we focus on reads as follows:

min
uh∈Vh

fγh (uh) :=
1
2
‖Shuh − yd‖2L2(Ω) +

τ

2
‖curl (Shuh)− yc‖2L2(Ω) +

κ

2
‖uh‖2H(curl)

+
γ

2
(‖max(0,Shuh − yb)‖2L2(Ω) + ‖max(0,ya − Shuh)‖2L2(Ω)),

(Pγh)

where Sh : H0(curl) −→ Vh denotes the solution operator associated with the discrete state
equation. More precisely, it assigns to every element u ∈H0(curl) the solution yh ∈ Vh of

(4.1) (αcurlyh, curl qh)L2(Ω) + (βyh, qh)L2(Ω) = (curlu, qh)L2(Ω) ∀qh ∈ Vh.

We denote the optimal solution of (Pγh) by uγh. As in the continuous case, the sufficient and
necessary optimality condition at the optimal solution uγh is given by

(4.2) fγh
′(uγh)uh = 0 ∀uh ∈ Vh.

4.1. Error analysis. We start by providing a well–known error estimate for the Nédélec
interpolation operator Πh (see [20] for its definition):

Theorem 4.1 (Alonso and Valli [1, Proposition 5.6] or [19, Theorem 5.41]). Let 1
2 < s ≤ 1.

Then there exists a positive constant c, independent of h and u, such that

(4.3) ‖u−Πhu‖H(curl) ≤ chs‖u‖Hs(curl) ∀u ∈Hs
0(curl).

Let us further introduce a projection operator Φh : H0(curl) −→ Vh defined by

(4.4) (Φhu, qh)H(curl) = (u, qh)H(curl) ∀qh ∈ Vh.

It is evident that the projection Φh satisfies the following optimal error estimate:

(4.5) ‖u−Φhu‖H(curl) ≤ inf
qh∈Vh

‖u− qh‖H(curl) ∀u ∈H0(curl).

Corollary 4.2. Let α, β ∈ C0,1(Ω). Then there exists a constant c > 0, independent of h and
u, such that

(4.6) ‖Su− Shu‖H(curl) ≤ ch
1
2 +ε‖u‖H(curl) ∀u ∈H0(curl),

with ε > 0 as in Lemma 2.1.
Proof. Using the projection Φh together with (4.5), we can verify that

(4.7) ‖Su− Shu‖H(curl) ≤ c inf
qh∈Vh

‖Su− qh‖H(curl) ∀u ∈H0(curl)

holds with a constant c > 0 depending only on α, α and β, β.
Since α, β ∈ C0,1(Ω), Proposition 3.6 ensures that S is well–defined and bounded as an operator

from H0(curl) to H
1
2 +ε
0 (curl) with ε > 0 as in Lemma 2.1. Inserting qh = ΠhSu in (4.7) results

in

‖Su− Shu‖H(curl) ≤ c‖Su−ΠhSu‖H(curl) ≤︸︷︷︸
(4.3)

ch
1
2 +ε‖Su‖

H
1
2 +ε(curl)

≤ ch 1
2 +ε‖u‖H(curl),
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with a positive constant c independent of h and u.

Next, we split the objective functionals fγ and fγh into

(4.8) fγ(u) = f(u) + γ l(u) and fγh (u) = fh(u) + γ lh(u),

where

l(u) :=
1
2

(‖max(0,Su− yb)‖2L2(Ω) + ‖max(0,ya − Su)‖2L2(Ω))

lh(u) :=
1
2

(‖max(0,Shu− yb)‖2L2(Ω) + ‖max(0,ya − Shu)‖2L2(Ω))

fh(u) :=
1
2
‖Shu− yd‖2L2(Ω) +

τ

2
‖curl (Shu)− yc‖2L2(Ω) +

κ

2
‖u‖2H(curl).

Lemma 4.3. It holds that

(max(0,y)−max(0,w),w − y)L2(Ω) ≤ 0 ∀y,w ∈ L2(Ω).

Proof. For any a, b ∈ R, we have
(
max(0, a)−max(0, b)

)(
b−max(0, b)

)
≤ 0. For this reason,

(max(0,y)−max(0,w),w −max(0,w))L2(Ω) ≤ 0 ∀y,w ∈ L2(Ω).

Using this inequality, we obtain

(max(0, y)−max(0, w), w − y)L2(Ω)

= (max(0, y)−max(0, w), w)L2(Ω) + (max(0, w)−max(0, y), y)L2(Ω)

= (max(0, y)−max(0, w), w −max(0, w))L2(Ω) + (max(0, w)−max(0, y), y −max(0, y))L2(Ω)

− ‖max(0, y)−max(0, w)‖2 ≤ 0.

By Lemma 4.3, we obtain

(l′h(u)− l′h(v))(v − u) = (max(0,Shu− yb)−max(0,Shv − yb),Shv − Shu)L2(Ω)

+(max(0,ya − Shu)−max(0,ya − Shv),Shu− Shv)L2(Ω) ≤ 0 ∀u,v ∈H0(curl).
(4.9)

Now we have all ingredients to establish the following error estimate result:
Theorem 4.4. Let γ > 0 and assume that α, β ∈ C0,1(Ω). Then there exists a constant c > 0,

independent of h, such that

‖uγh − u
γ‖H(curl) ≤ ch

1
2 +ε‖uγ‖

H
1
2 +ε(curl)

where ε > 0 is defined as in Lemma 2.1. In particular, if Ω is convex, then we obtain

‖uγh − u
γ‖H(curl) ≤ ch‖uγ‖H 1

2 +ε(curl)
.
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Proof. We set wh = uγh−Πhu
γ . The linear–quadratic structure of fh yields f ′′h (uγ)[wh,wh] =

f ′h(uγ)wh − f ′h(Πhu
γ)wh. By the latter identity, we have

κ‖wh‖2H(curl) ≤ f
′′
h (uγh)[wh,wh] = f ′h(uγh)wh − f ′h(Πhu

γ)wh =: I + II.(4.10)

Using (4.2) and (4.9), the first term I can be estimated as follows:

I = f ′h(uγh)wh − fγh
′(uγh)wh = −γ l′h(uγh)wh

= γ (l′h(Πhu
γ)− l′h(uγh))wh − γ l′h(Πhu

γ)wh ≤ −γ l′h(Πhu
γ)wh.

(4.11)

From (4.11) and (3.1), it follows then:

I + II ≤ −fγh
′(Πhu

γ)wh = fγ ′(uγ)wh − fγh
′(Πhu

γ)wh

= (fγ ′(uγ)− fγ ′(Πhu
γ))wh + (fγ ′(Πhu

γ)− fγh
′(Πhu

γ))wh.
(4.12)

In view of (4.3) along with the regularity uγ ∈H
1
2 +ε
0 (curl), we deduce that

(fγ ′(uγ)− fγ ′(Πhu
γ))wh ≤ c‖uγ −Πhu

γ‖H(curl )‖wh‖H(curl )

≤ ch 1
2 +ε‖uγ‖

H
1
2 +ε(curl)

‖wh‖H(curl ),
(4.13)

with a constant c > 0 independent of h. Furthermore, using Corollary 4.2, we can also infer that

(fγ ′(Πhu
γ)− fγh

′(Πhu
γ))wh ≤ ch

1
2 +ε‖Πhu

γ‖H(curl)‖wh‖H(curl )

≤ ch 1
2 +ε‖uγ‖

H
1
2 +ε(curl)

‖wh‖H(curl ).
(4.14)

Combining (4.10), (4.12)–(4.14), we come to the conclusion that

‖uγh −Πhu
γ‖H(curl) = ‖wh‖H(curl) ≤ ch

1
2 +ε‖uγ‖

H
1
2 +ε(curl)

,

which along with Theorem 4.1 yields the assertion.

5. Numerical experiments. In this section, we report on some numerical results including
a numerical verification of Theorem 4.4. For the numerical solution of (Pγh), we utilize standard
gradient descent. The iterations are stopped as soon as the H(curl)–norm of the gradient drops
below 10−4. Note that the computation of fγh

′(un) in the nth iteration of the gradient method is
given by the following steps:
Step 1. Find the solution yn ∈ Vh of

(αcurlyn, curl qh)L2(Ω) + (βyn, qh)L2(Ω) = (curlun, qh) ∀qh ∈ Vh.

Set λb,n = γmax(0,yn − yb) and λa,n = γmax(0,ya − yn).
Step 2. Find the solution pn ∈ Vh of

(αcurlpn, curl qh)L2(Ω) + (βpn, qh)L2(Ω) = (yn − yd, qh)L2(Ω) + τ(curlyn − yc, qh)L2(Ω)

+(λb,n − λa,n, qh)L2(Ω) ∀qh ∈ Vh.
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Step 3. Find the solution vn ∈ Vh of

(curlvn, curl qh)L2(Ω) + (vn, qh)L2(Ω) = (curlpn, qh)L2(Ω) + κ(un, qh)H(curl) ∀qh ∈ Vh.

Then we have fγh
′(un) = vn.

We numerically solve the linear systems in the above steps using the multigrid preconditioned CG
Solver from the open source software NETGEN/NGSolve ([22]) with a precision of 10−9. Further
the computational domain Ω used throughout our experiment is given by the following nonconvex
L–shaped domain:

(5.1) Ω =
{

(−0.5, 0.5)× (−0.5, 0.5)× (0, 0.5)
}
\ [0, 0.5]3.

Using NETGEN, the L–shaped domain (5.1) was triangulated with a regular mesh of mesh size h.
The regular meshes used in our experiment are depicted in Fig. 5.1. Lastly we point out that all
computations reported on in the upcoming subsections were implemented in C++.

Fig. 5.1. Regular meshes for the L–shaped domain (5.1).

5.1. Numerical verification of Theorem 4.4. Let us consider the following test problem:

min
u∈H0(curl)

1
2
‖Su− Sud‖2L2(Ω) +

1
2
‖curl Su− curl Sud‖2L2(Ω) +

1
2
‖u− ud‖2H(curl)

+
γ

2
(‖max(0,Su− Sud)‖2L2(Ω) + ‖max(0,Sud − Su)‖2L2(Ω)),

(5.2)
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where ud ∈ H0(curl) is given data satisfying divud = 0. By the presence of the shift control ud
in (5.2), we see that the optimal solution of (5.2) for any γ > 0 is given by ud = uγ .

Example 1. In (5.2) we choose α(x) = |x1|+ |x2|+ exp(x3), β = 1, γ = 103 and

ud(x) = 102

(x2
2 − 0.5|x2|)(x2

3 − 0.5 x3 )

(x2
1 − 0.5|x1|)(x2

3 − 0.5 x3 )

(x2
1 − 0.5|x1|)(x2

2 − 0.5|x2|)

 .

Table 5.1 displays the H(curl)–error between the exact solution uγ of (5.2) and the numer-
ical solution uγh of the finite element approximation of (5.2). As the mesh size h decreases, we
observe that the numerical solution becomes closer to the exact one. Further, to detect the order
of convergence, we employ the following quantity:

EOC =
log ‖uγh1

− uγ‖H(curl) − log ‖uγh2
− uγ‖H(curl)

log h1 − log h2
,

for two consecutive mesh sizes h1 and h2. According to Theorem 4.4, since the computational
domain (5.1) features a nonconvex structure, we can only expect convergence of the rate 0.5 + ε.
This theoretical prediction is confirmed by our numerical results (see the last row of Table 5.1).
The experimental order of convergence EOC approximates indeed 0.5 + ε.

Table 5.1
Example 1: Convergence behavior of uγh towards uγ for decreasing h.

h/
√

2 2−2 2−3 2−4 2−5 2−6

‖uγh − uγ‖H(curl) 0.513619 0.356033 0.234443 0.156735 0.104703

EOC - 0.528688 0.602776 0.580907 0.582024

Example 2. In (5.2) we consider

α(x) =


5 if (x1, x2) ∈ [−0.5, 0)× (0, 0.5]

8 if (x1, x2) ∈ [−0.5, 0)2

1 otherwise

β(x) =


8 if (x1, x2) ∈ [−0.5, 0)× (0, 0.5]

5 if (x1, x2) ∈ [−0.5, 0)2

1 otherwise.

Further, we set γ = 103 and

ud(x) =

 sin(2πx2) sin(2πx3)

sin(2πx1) sin(2πx3)

(x2
1 − 0.5|x1|)(x2

2 − 0.5|x2|)

 .

Example 2 deals with a case where the coefficients α and β are given by piecewise constant
functions which are no longer continuous. We are interested in the convergence behavior of this
particular case which is not covered by our analysis. The H(curl)–error between the numerical
and analytical solutions is presented in Table 5.2. For decreasing mesh size h, convergence of uγh
towards uγ can be detected, and its convergence behavior turns out to be similar to the previous
example. The experimental order of convergence approximates also 0.5 + ε.
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Table 5.2
Example 2: Convergence behavior of uγh towards uγ for decreasing h

h/
√

2 2−2 2−3 2−4 2−5 2−6

‖uγh − uγ‖H(curl) 1.147901 0.758734 0.404816 0.301656 0.192041

EOC - 0.597333 0.686842 0.643847 0.651489

5.2. Convergence with respect to γ. We close this paper by providing a numerical report
which exhibits the action of the regularization parameter. Consider now the following test problem:

min
u∈H0(curl)

1
2
‖Su− 100‖2L2(Ω) +

1
2
‖curl Su‖2L2(Ω) +

1
2
‖u‖2H(curl)

+
γ

2
(‖max(0,Su− Sud)‖2L2(Ω) + ‖max(0,Sud − Su)‖2L2(Ω)),

(5.3)

with ud ∈H0(curl) satisfying divud = 0. We should underline that, for every γ > 0, the solution
uγ of (5.3) is unknown. But, the exact solution of the associated unregularized problem is known
and is given by u = ud (see Lemma A.1 in the appendix). In what follows, the mesh size is set to
be fixed: h/

√
2 = 2−5.

Example 3. In (5.3) we choose α = β = 1 and

ud(x) =

(x2
2 − 0.5|x2|)(x2

3 − 0.5 x3 )

(x2
1 − 0.5|x1|)(x2

3 − 0.5 x3 )

(x2
1 − 0.5|x1|)(x2

2 − 0.5|x2|)

 .

The numerical solutions curluγh at γ = 103 and γ = 106 are depicted in Figure 5.2. Here we
observe that curluγh at γ = 106 exhibits a similar structure to curlu (see Figure 5.3). Furthermore,
as presented in Table 5.3, the numerical solution of the regularized problem uγh becomes closer to u
as the regularization parameter γ increases. This confirms our convergence result in Theorem 3.7.

Table 5.3
Example 3: Convergence behavior of uγh towards u for increasing γ.

γ 103 5 · 103 104 5 · 104 105 5 · 105 106

‖uγh − u‖H(curl) 0.680050 0.524371 0.419899 0.212261 0.165994 0.118289 0.107309

Example 4. In (5.3) we choose ud = (0 , 0 , π−1 sin(2πx1) sin(2πx2))T , β = 1, and α is given
by the following piecewise constant function:

α(x) =


2 if (x1, x2) ∈ [−0.5, 0)× (0, 0.5]

8 if (x1, x2) ∈ [−0.5, 0)2

1 otherwise .
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Fig. 5.2. Example 3: Field lines of curl uγh at γ = 103 (upper plot) and 106 (lower plot).
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Fig. 5.3. Example 3: Field lines of curl u.

Our last example deals with a discontinuous coefficient α. For this particular case, we also
detect a convergence behavior with respect to the regularization parameter γ. Analogously to the
previous example, theH(curl)–error due to the regularization ‖uγh−u‖H(curl) becomes smaller and
smaller as the regularization parameter γ gets larger. Also, we depict in Figure 5.4 the numerical
solutions curluγh at γ = 103 and γ = 106. Analogously to Example 3, we can observe here that
curluγh at γ = 106 approaches the exact solution of the unregularized optimal control problem.

Table 5.4
Example 4: Convergence behavior of uγh towards u for increasing γ.

γ 103 5 · 103 104 5 · 104 105 5 · 105 106

‖uγh − u‖H(curl) 0.994781 0.964027 0.934454 0.818984 0.762306 0.675294 0.667683

Appendix A.
Lemma A.1. Let ud ∈ H0(curl) satisfying divud = 0. Then the optimal solution u of the

unregularized problem (P) associated with (5.3) is given by u = ud.
Proof. Due to the construction of (5.3), the optimal state y of the unregularized problem
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Fig. 5.4. Example 4: Field lines of curl uγh at γ = 103 (upper plot) and 106 (lower plot).
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Fig. 5.5. Example 4: Field lines of curl u.

associated with (5.3) is given by y = Su = Sud, which yields by the definition of S that

(curl (u− ud), q)L2(Ω) = 0 ∀q ∈ C∞0 (Ω)3.

Thus, curl (u − ud) = 0 holds. Then, as Ω is simply connected with a connected boundary and
divu = 0 (see the proof of Theorem 2.2) as well as divud = 0, we infer that

‖u− ud‖L2(Ω) ≤ c‖curl (u− ud)‖L2(Ω) = 0;

cf. [19, Corollary 3.51] for the latter Friedrich inequality.
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